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We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem
are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this
formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is
discussed in the relativistic case together with the nature of the noise term.
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I. INTRODUCTION

Physical interpretation and theoretical interpretation of
Brownian motion, a well-known process named after the
Scottish botanist Robert Brown in 1827, were first established
by Einstein and Smoluchowski, and then developed by
Langevin and many others. From these studies, it was made
clear that Brownian motion is nothing but the manifestation of
the presence of invisible microscopic bodies such as atoms and
molecules, and their thermal motion. Thus Brownian motion
has naturally been discussed in relation with kinetic theories
and thermodynamics. Currently concepts and methods of
stochastic processes introduced in the formulation of Brownian
motion are widely applied to various fields of science such
as biophysics and economy. The mathematical foundation of
these methods has also been well studied.

After thermodynamics was established in the nineteenth
century, many efforts have been made to understand the
thermodynamic principles from a microscopic point of view.
The achievements of these efforts are summarized today as
statistical mechanics. There the time average of microscopic
behaviors is replaced by an average in terms of a suitably
chosen statistical ensemble of microscopic events, and the
temporal behavior of each particle is not questioned. Therefore
the basic question as to the foundation of statistical mechanics
is how this substitution of averages is justified from the
microscopic deterministic point of view. Of course such
a question has been studied deeply in many ways since
the time of Maxwell, Boltzmann, and Gibbs, by methods
such as the H -theorem and ergodic theory. Mathematically
rigorous or not, for physicists the overwhelming success of
statistical mechanics itself to describe the nature of thermally
equilibrated systems could be considered the proof of validity
of the hypothesis.

On the other hand, recently it has become more and
more important to understand the bulk properties of a
dynamic system where the thermodynamic equilibrium is not
necessarily attained. For example, in the field of relativistic
heavy ion collisions (RICs), we would like to determine the
thermodynamic properties of quark and gluon plasma (QGP)
from the experimental data. RIC is somehow the unique way
in laboratories to extract the thermodynamic properties of
quantum chromodynamics (QCDs) in the deconfined phase.
However, of course, real systems in RIC situations are not
in thermodynamic equilibrium, since the system size and
the reaction time scale are finite. Although many successful

models, such as relativistic hydrodynamics, have been
employed to describe several aspects of the observed data,
we feel still the existence of a “missing link” between the
thermodynamic properties and microscopic dynamics. For ex-
ample, several questions like, “How much can we be sure that
the equation of state used to fit the experimental flow data with
hydrodynamics should be the same as that obtained from the
lattice QCD calculations?,” “Is the extended thermodynamics
valid and unique?,” or “How do we deal with the relativistic
covariance and thermodynamic limit?” are still difficult to
answer. In this sense, it may still be worthwhile to ask the
repeated question for the basic foundation of statistical me-
chanics from the viewpoint of these current issues in physics.

The stochastic energetics approach may serve as a useful
tool to understand the questions above [1]. In this approach,
the dynamics of each event of Brownian motion is directly
reflected in the change of thermodynamic quantities such
as heat, energy, and work. That is, these thermodynamic
quantities are also treated as stochastic variables, reflected
in the name of this approach, stochastic energetics. Therefore,
application of this approach seems to be useful for RIC studies,
where event by event fluctuations are considered to carry
important information on QCD [2].

So far, the stochastic energetics has been applied to nonrela-
tivistic phenomena. However, it seems very attractive to apply
this approach to investigate the thermodynamic properties for
relativistic systems. This is because it is possible to incorporate
the effect of special relativity (such as the Lorentz transform)
into the model in a straight-forward manner, permitting to
discuss directly the relation between thermodynamics and the
theory of relativity. Such an analysis is difficult in statistical
physics where temporal averages are replaced by ensemble
averages from the beginning. The purpose of this paper is
to show that the stochastic energetics is still applicable to
Brownian motion of a relativistic particle. This is not a
trivial problem, because equations of motion for stochastic
variables involve a finite time interval so that the space and
time entangles when the Lorentz transformation is involved.
Therefore we have to pay a special attention to the treatment
of noise when we discuss a relativistic stochastic motion in a
general reference frame.

The present paper is organized as follows: In Sec. II we
introduce a model of relativistic Brownian motion. Relativistic
generalization of Brownian motion has been discussed by
many authors [3–15], but the definitive answer to this problem
has not yet established, or simply does not exist in a unique
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manner. As mentioned above, this is because of the difficulty
of introducing a manifestly Lorentz covariant noise in an
unambiguous way, as well as its physical model. Here, instead
of formulating a covariant equation of motion for stochastic
variables in a general case, we discuss a less ambitious
problem. We start from a Langevin equation for relativistic
Brownian motion defined in the rest frame of a heat bath. We
then determine how the noise term should transform under
an arbitrary Lorentz boost of the system in order to keep the
internal consistency. We show that in such a situation, we can
introduce a consistent noise term. In Sec. III we apply the
idea of the stochastic energetics to our model of relativistic
Brownian motion and derive the first and the second law of
thermodynamics. We also discuss the relation between the
rate of heat transfer and the relativistic equipartition relation.
Summary and concluding remarks are given in Sec. IV.

In this paper we use the natural unit, h̄ = c = kB = 1.

II. MODEL OF RELATIVISTIC BROWNIAN MOTION

As mentioned in the Introduction, the formulation of the
relativistic Langevin equation still contains an open question
due to the transformation property of thermal noise. To avoid
this question, we start with a well-defined model of relativistic
Brownian motion in the rest frame of a heat bath. Then we
study the transformation of the system under a Lorentz boost
and check the consistency between our model and special
relativity.

A. Relativistic Brownian motion in the rest frame of a heat bath

We consider the Brownian motion of a relativistic particle
with mass m in the 3 + 1 dimension. In the rest frame of a heat
bath, we consider the following Langevin equation,

dx∗

dt∗
= p∗

p0∗ , (1a)

dp∗

dt∗
= −ν(p0∗)p∗ +

√
2D(p0∗)N(t∗), (1b)

where p0∗ =
√

(p∗)2 + m2, that is, the particle always kept on
the mass shell. Throughout this paper we use the symbol ∗ to
indicate the value of a variable defined in the rest frame of
the heat bath. The parameters ν(p0∗) and D(p0∗) characterize
the relaxation of the momentum and the strength of the noise,
respectively. We assume that they are Lorentz scalar functions,
depending only on the particle energy in this frame. N is a
Gaussian white noise three-vector

N(t∗) =
⎛⎝N1

N2

N3

⎞⎠ (2)

and has the following correlation properties:

〈N(t∗)〉RF = 0, (3)

〈Ni(t∗)Nj (t∗
′
)〉RF = δij δ(t∗ − t∗

′
). (4)

The symbol 〈X〉RF denotes the stochastic average of X in the
rest frame of the heat bath (which we refer to as RF). The
similar Langevin equations have already been discussed in

Refs. [10–15]. Note that the Langevin equation can be obtained
even from a binary collision model [16].

We now replace the Langevin equation with the following
stochastic differential equation (SDE):

dx∗ = p∗

p0∗ dt∗, (5a)

dp∗ = −ν(p0∗)p∗dt∗ +
√

2D(p0∗)dwt∗ . (5b)

Here we have introduced the Wiener process wt∗ and its
difference by

dwt∗ ≡ wt∗+dt∗ − wt∗ = N(t∗)dt∗. (6)

The correlations are given by〈
dw∗

t∗i

〉
RF = 0, (7)〈

dwi∗
t∗k

dwj∗
t∗l

〉
RF = dt∗δij δkl . (8)

The last term of Eq. (5b),√
2D(p0∗)dw∗

t∗ , (9)

is a kind of Stieltjes integral for the stochastic variable. The
definition of Stieltjes integral in stochastic variables is known
to be common. Here we consider the three typical cases. Note
that this problem associated with the discretization scheme is
discussed in Refs. [12,13] in detail.

(1) Ito interpretation [17]:
In this case, the term (9) is interpreted as√

2D(p0∗) � dw∗
t∗ =

√
2D[p0∗(t∗)](w∗

t∗+dt∗ − w∗
t∗ ). (10)

Hereafter, we use the symbol � to indicate the Ito interpreta-
tion of the integral measure.

(2) Stratonovich-Fisk interpretation [17]:
In this case (hereafter, we use the symbol ◦), the term (9) is
interpreted as√

2D(p0∗) ◦ dw∗
t∗

=
√

2D[p0∗(t∗ + dt∗)] +
√

2D[p0∗(t∗)]

2
(w∗

t∗+dt∗ − w∗
t∗ )

=
√

D(p0∗)∂p∗
√

D(p0∗)dt∗ +
√

2D(p0∗) � dw∗
t∗ , (11)

where in the second line we used the Ito formula (see
Appendix) to convert the Stratonovich-Fisk interpretation by
the Ito scheme.

(3) Hänggi-Klimontovich [16,18–20]:
In this case (hereafter, we use the symbol �), the term (9) is
interpreted as√

2D(p0∗) � dw∗
t∗ =

√
2D[p0∗(t∗ + dt∗)](w∗

t∗+dt∗ − w∗
t∗ )

= 2
√

D(p0∗)[∂p∗
√

D(p0∗)]dt∗

+
√

2D(p0∗) � dw∗
t∗ . (12)

Here, again, we used the Ito formula to express this interpre-
tation in terms of the Ito scheme (see Appendix).

The equilibrium distribution function described by using
these SDEs depends on the integral schemes defined above.
To see this, we introduce the probability density in the phase
space defined in the thermal bath rest frame,

ρ(x∗,p∗,t∗) = 〈δ(3)[x − x∗(t∗)]δ(3)[p − p∗(t∗)]〉RF. (13)
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The time evolution of ρ(x∗,p∗,t∗) is given by the Fokker-
Planck equation in a unified way for the different integral
schemes as

∂t∗ρ(x∗,p∗,t∗)

= −
∑

i

∂

[
i
x∗

pi∗

p0∗ ρ(x∗,p∗,t∗)

]
+
∑

i

∂i
p∗ [ν(p0∗)pi∗ρ(x∗,p∗,t∗)]

+
∑

i

∂i
p∗ [D1−α(p0∗)∂i

p∗D
α(p0∗)ρ(x∗,p∗,t∗)]. (14)

The values of the parameter α correspond to the different
discretization schemes: α = 0 for the Hänggi-Klimontovich
scheme, α = 1/2 for the Stratonovich-Fisk scheme, and α = 1
for the Ito scheme.

From this equation we find that the corresponding equilib-
rium distribution (spatially homogeneous and static) is given
by

ρeq(x∗,p∗) ∝ exp

(
−
∫ p0(p∗)

s ds
ν(s)

D(s)
− α ln D[p0

(
p∗)]).

(15)

Since the phase space volume element d� = d3x∗d3p∗ should
be an invariant measure under the Lorentz transformation
of the reference frame, we conclude that this equilibrium
distribution (13) should be a Lorentz scalar function, although
the proof is not trivial at all [21,22]. As we see later, we can
define the transformation property of the noise by using this
fact.

B. Relativistic Brownian motion in a moving frame

We consider the reference frame which is moving with
a constant velocity V with respect to the rest frame of the
heat bath. We refer to this as an MF-moving frame. The four-
momentum dpμ in this frame is then given by the Lorentz
transform of dp∗μ as

dpμ = 	(V)dp∗μ

=
(

γ (V) β(V )nT γ (V)

β(V )nγ (V) γ (V)P‖ + Q⊥

)(
dp0∗

dp∗

)
, (16)

where γ (V) = 1/
√

1 − V2 and β(V ) = |V|. The projection
operators are defined by P‖ = nnT and Q⊥ = 1 − P‖, with
n = V/|V|. In the proceeding calculations, we assume that the
particle is always on mass shell p0 =

√
p2 + m2 during the

whole stochastic process so that the stochastic variables dp0∗
and dp∗ are not independent. We then have

dp0∗ = d

√
p∗2 + m2

=
{(

−ν(p0∗) + (1 − α)
D′(p0∗)

p0∗

)
(p∗)2

p0∗

+D(p0∗)

(
3

p0∗ − (p∗)2

(p0∗)3

)}
dt∗

+
√

2D(p0∗)
p∗

p0∗ � dw∗
t∗ , (17)

where D′(x) = dD(x)/dx. Substituting this expression into
Eq. (16), we obtain the SDE in the MF as

dp =
(
−ν(uμpμ)γ (V )(p0 − β(V )pV)

p0
+ (1 − α)

D′(uμpμ)

p0

)
×
{

p − β(V )m2n
p0 − β(V )pV

}
dt

+βγ (V )
D(uμpμ)

p0

(
2 + m2

γ 2(V )(p0 − β(V )pV)2

)
ndt

+ B̂ � dw∗
t∗ , (18)

where pV = nT p and

B̂ = √
2D(uμpμ)

γ −1(V )

p0 − β(V )pV
{p0P‖

+ γ (V )
[
p0 − β(V )pV + β(V )(npT )

]
Q⊥}. (19)

Here uμ is the four velocity (γ,γ V) , normalized as uμuμ = 1.
The presence of a second rank tensor B̂ indicates that the noise
is no longer isotropic in the moving frame [23].

The last term is not yet transformed because it contains the
noise dw∗

t∗ , which is defined only in the RF. We first introduce
the stochastic noise which shows the property of the Gaussian
white noise in the MF as

〈dwt∗ 〉MF = 0, (20)〈
dwi

t∗l
dwj

t∗m

〉
MF = dt∗δij δlm, (21)

Here the symbol 〈X〉MF denotes the stochastic average of X

in the MF. As was assumed in previous works [3–13], we may
consider that the correlations of the noise term are Lorentz
invariant in the rest frame of the particle, and we could write

〈dwt 〉MF = 〈dw∗
t∗ 〉RF = 0, (22)

γ̃ (p)
〈
dwi

tk
dwj

tl

〉
MF = γ (p∗)

〈
dwi∗

t∗k
dwj∗

t∗l

〉
RF = dτδij δkl, (23)

where dτ is the proper time of the particle, and γ (p∗) and γ̃ (p)
are the Lorentz factors of the particle in the RF and in the MF,
respectively. They are related through

γ̃ (p) = [	(V)	(−p∗)]00 = γ (V)γ (p∗)(1 − β(V )
p∗

V

p0∗ , (24)

where γ (V) is now the Lorentz factor associated to the Lorentz
transformation from the RF to the MF. In this case we conclude
that the transformation property of the noise is given by

dw∗
t∗ =

√
dt∗

dt
dwt =

√
γ (p)γ̃ −1(p∗)dwt

= γ 1/2(V )

√
p0 − β(V )pV

p0
dwt . (25)

Although very reasonable, a proof of the above argument is
not obvious. The reason is that the Stieltjes integral associated
with the noise term is defined on the time span dt , so that dw∗

t∗
is nonlocal in the time t . Thus the Lorentz transformation
entangles with the integration scheme in the order of dt .
Then the noise term itself is not necessarily covariant but
can constitute a Lorentz vector only together with the force
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term. That is, the force part and the stochastic part could be
mixed. This might be understood well from the argument of
the kinetic derivation of hydrodynamics. In the rest frame of
fluids, the velocities of molecules are completely random and
all the kinetic energy of molecules are replaced by internal
thermodynamic quantities. On the other hand, when fluids
move, a part of velocities of molecules contributes to the
collective flow of fluids. In this case, the first-order correlation
calculated in the MF of the noise term in the rest frame of the
heat bath would not necessarily vanish,

〈dw∗
t∗ 〉MF �= 0, (26)

even if 〈dw∗
t∗ 〉RF = 0.

Considering the finiteness of dt, let us write, instead of
Eq. (25), the following more general transformation property
of the noise,

dw∗
t∗ =

√
dt∗

dt
dwt + Cpdt

= γ 1/2(V )

√
p0 − β(V )pV

p0
dwt + Cpdt. (27)

Here the Cpdt term entangles with the force term in the MF,
which should be separated from the pure stochastic part dwt ,
satisfying Eqs. (20) and (21). With this definition and using
the Ito formula, the Langevin equation is given by

dp =
(
−ν(uμpμ)γ (V )(p0 − β(V )pV)

p0
+ (1 − α)

D′(uμpμ)

p0

)
×
{

p − β(V )m2n
p0 − β(V )pV

}
dt + β(V )γ (V )

D(uμpμ)

p0

×
(

2 + m2

γ 2(V )(p0 − β(V )pV)2

)
ndt

+ B̂ Cpdt + B̃ � dwt , (28)

where

B̃ =
√

γ (V )(p0 − β(V )pV)

p0
B̂. (29)

The last term in Eq. (28) should be calculated according to
the Ito scheme. Note that the Ito formula to convert the SDE
from one scheme to the other must be used only after the
transformation of the noise, Eq. (27).

The corresponding Fokker-Plank equation for the SDE (28)
is

∂tρ = −
∑

i

∂i
x

pi

p0
ρ +

∑
i

∂i
p

[
−Ai + 1

2
∂j

p (B̃B̃T )ij
]

ρ, (30)

where

A =
(

−ν(uμpμ)γ (V )(p0 − β(V )pV)

p0
+ (1 − α)

D′(uμpμ)

p0

)
×
{

p − β(V )m2n
p0 − β(V )pV

}
+βγ (V )

D(uμpμ)

p0

(
2 + m2

γ 2(V )(p0 − β(V )pV)2

)
n

+ B̂ Cp. (31)

Consequently, the equilibrium distribution function is given
by the solution of the equation,[

−Ai + 1

2
∂j

p (B̃B̃T )ij
]

ρeq(x,p) = 0, (32)

leading to the equilibrium distribution ρeq satisfying

(∂i
pρeq)/ρeq = 2

∑
jkl

(B̃B̃T )−1
ij

[
Aj − 1

2
∂k

p

(
B̃B̃T

)jk

]
. (33)

Since ρeq should be a scalar function, the above expression
must coincide with the Lorentz transform of the logarithmic
derivative of the equilibrium distribution function obtained in
the RF. A lengthy but straightforward calculation shows that
ρeqcan be the Lorentz scalar only when

Cp ≡ 0. (34)

Thus, for the present model of a Brownian motion with the
noise from a given heat bath, we conclude that the noise term
transforms separately from the force term when we go to one
reference frame to the other. That is, the transformation of
the noise (25) is consistent with the special relativity, and the
corresponding SDE in a MF should be given by Eq. (18). When
the background does not satisfy this condition, it is not obvious
whether we can always assume Cp ≡ 0 from the beginning.
Our discussion here is only for the thermal background, which
is homogeneous and static.

C. Generalized fluctuation-dissipation relation

So far we have not specified the parameter of the SDE, but
when we demand that the equilibrium distribution function
should be given by the Jüttner distribution in a MF,

ρeq = const. × e−uμpμ/T , (35)

where T denotes temperature. From this condition the param-
eters of the SDE satisfy the following relation:

ν(uμpμ) = 1

uμpμ

[
D(uμpμ)

T
− αD′(uμpμ)

]
, (36)

which is the generalized Einstein’s fluctuation-dissipation
relation of relativistic Brownian motion. Note that this relation
depends on α, showing the discretization scheme dependence
when D is not a constant.

III. RELATIVISTIC STOCHASTIC ENERGETICS

Once we have established the SDE for a relativistic particle
embedded in a heat bath, we can discuss the thermodynamic
property of the system defined as the ensemble of these
relativistic Brownian particles. For this purpose, from now
on we discuss only the rest frame of the heat bath,

dx∗ = p∗

p0∗ dt∗, (37a)

dp∗ = −∇φ dt∗ − ν(p0∗)p∗dt∗ +
√

2D(p0∗) � dwt∗ ,

(37b)

where we have not assumed the generalized fluctuation-
dissipation relation. For the sake of the discussion of the
first law of thermodynamics, we introduced a scalar potential
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φ(x∗,t∗), where the explicit time dependence of φ represents
the effect of some external forces.

A. The first law of thermodynamics

Following Ref. [1], let us introduce heat as a stochastic
variable associated with Brownian motion. Among the three
contributions of the forces in Eq. (37b), the last two terms
represent the interactions between a system and the heat bath.
The first term represents the mechanical force through the
scalar potential φ. Thus the work done by the heat bath, that
is, the heat transfer d ′Q to a Brownian particle, is defined as1

d ′Q =
(

−ν(p0∗)p∗ +
√

2D(p0∗) �
dwt∗

dt∗

)
◦ dx∗. (38)

Using Eq. (37b) we can rewrite Eq. (38) as

d ′Q =
(

dp∗

dt∗
+ ∇φ

)
◦ dx∗

= d(p0∗ + φ) − ∂φ

∂t∗
dt∗. (39)

Here, we identify that the first term represents the change
of the total energy of a Brownian particle dE, including its
potential energy. The quantity (∂φ/∂t∗) dt∗ in the last term is
the change of the energy contained in the scalar potential φ

due to the change in some external parameters contained in
φ. That is, it can be interpreted as the mechanical work d ′W
done by the external forces to the system. Thus by rewriting
Eq. (39) as

d ′Q = dE − d ′W, (40)

we can view this as the first law of thermodynamics in the
framework of the stochastic energetics, the generalization of
Ref. [1] for relativistic Brownian motion. Note that this relation
is satisfied for each event of Brownian motion.2

B. The second law

In the above, we introduced the potential φ to identify
clearly the role of external work in the first law of thermody-
namics, and there the choice of the parameters of the SDE was
arbitrary. In the following discussion of other thermodynamic
relations, however, we will consider only the case where φ = 0
and impose the generalized fluctuation-dissipation theorem to
the SDE.

For deriving the second law of thermodynamics in the
stochastic energetics, we introduce Shannon’s information
entropy,

S = −
∫

d� ρ(x∗,p∗,t∗) ln ρ(x∗,p∗,t∗), (41)

1We use the notation d ′ for quantities which generally are not perfect
differentials.

2Instead of introducing a scalar potential as in Eq. (37b), we may
as well introduce it through the mass shift as m −→ m − gφ(x∗,t∗),
where g is a coupling constant. This type of interaction is known,
for example, in the relativistic mean-field theory in nuclear physics.
Even if we use such potentials, it is still possible to derive Eq. (40).

where ρ(x∗,p∗,t∗) is defined in Eq. (13) and satisfies the
Fokker-Plank equation (14). The integration in Eq. (41) is
taken over all the phase space volume. From these definitions
for heat (38) and entropy (41), it is easy to show that the time
derivatives of heat and entropy are related as

T
dS

dt∗
− 1

T

〈
d ′Q
dt∗

〉
RF

=
∫

d�
T D(p0∗)

ρ

(
∇pρ + 1

T

p∗

p0∗ ρ

)2

,

(42)

Since the right-hand side of the above equation is non-negative,
we obtain the following inequality:

dS

dt∗
− 1

T

〈
d ′Q
dt∗

〉
RF

� 0, (43)

which is nothing but the second law of thermodynamics. For
the nonrelativistic case, see Refs. [1,24]. An important fact is
that, differently from the first law, the second law is satisfied
only for the average heat and can be violated for each event,
as in the case of the fluctuation theorem.

C. Relativistic equipartition theorem

In the preceding section we showed that the first and the
second laws of thermodynamics can be consistently derived by
generalizing the stochastic energetics to relativistic Brownian
motion. Let us apply this approach to discuss another example,
the equipartition theorem.

In nonrelativistic systems, the equipartition theorem tells
us that the average kinetic energy of a particle of an ideal gas
in equilibrium is equally distributed by T/2 for each degree of
freedom. For three-dimensional monoatomic gas, we have〈

p2

2m

〉
t→∞

= 3

2
T , (44)

where 〈O〉t denotes the expectation value of O at the instant
t, which can be expressed as

〈O〉t =
∫

d� ρ (x,p,t) O (x,p) , (45)

with ρ(x,p,t) as the solution of the Fokker-Plank equation,
corresponding to the following nonrelativistic SDE,

dx = p
m

dt, (46a)

dp = −ν
p
m

dt − ∇xU (x)dt +
√

2D � dwt , (46b)

where U (x) is a potential and ν = D/T . Note that the above
average (45) using the solution of the Fokker-Planck equation
is equivalent to the event average for the corresponding noise.

In the stochastic energetics, this relation for equipartition
of energy is seen to be valid in a more general situation if
the average heat transfer vanishes, even if the system is not in
equilibrium [1]. To see this, we consider the case where D is a
constant so that the noise is additive. Then the time derivative
of the heat described by this SDE is given by〈

d ′Q
dt

〉
= − 2D

mT

∫
d�

(
p2

2m
− 3

2
T

)
ρ(x,p,t)

= − 2D

mT

(〈
p2

2m

〉
t

− 3

2
T

)
, (47)
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where the left-hand side average is the event average. One can
see that the equipartition relation is satisfied; when the heat
transfer disappears even ρ is not the equilibrium distribution.
Thus we may consider that the condition of the null heat
transfer leads to the equipartition relation in a more generalized
situation. We apply this idea to relativistic Brownian motion.

The relativistic analog is not trivial in the sense that
there is no simple interpretation of the quantity involved
[25]. The expectation value of relativistic kinetic energy,
K =

√
p2 + m2 − m, does not satisfy a simple relation such

as Eq. (44). Tolman proposed to read Eq. (44) as [26,27]

1

2

〈
p

∂E

∂p

〉
eq

= 3

2
T , (48)

or equivalently, 〈
p2

2p0

〉
eq

= 3

2
T , (49)

where the subscript eq denotes the expectation value at
equilibrium, that is, t → ∞. The left-hand side of Eq. (48)
is proportional to the average of p · v, which is interpreted to
be the momentum transfer rate rather than the kinetic energy
itself.

As an application of the stochastic energetics for relativistic
Brownian motion, we can derive the relativistic analog of
Eq. (47). Taking the noise average of Eq. (38), we obtain〈
d ′Q
dt∗

〉
RF

=
〈
dp∗

dt∗
◦ dx∗

〉
RF

=
〈
dp∗ ◦ dx∗

dt∗

〉
RF

= −
∫

d�

{
D(p0∗)

T

(p∗)2

(p0∗)2
−
(

∇p · D(p0∗)p∗

p0∗

)}
×ρ(x∗,p∗,t∗)

= − 1

T

〈
D(p0∗)

(p∗)2

(p0∗)2

〉
t∗

+
〈
∇p · D(p0∗)p∗

p0∗

〉
t∗

.

(50)

To derive this expression, we used the relation

p∗

p0∗ ◦ dp∗ = dp∗ �
(

p∗

p0∗ + 1

2
d

p∗

p0∗

)
. (51)

From Eq. (50) the null heat transfer rate leads to a relation,

1

T

〈
D(p0∗)

(p∗)2

(p0∗)2

〉
t∗

=
〈
∇p · D(p0∗)p∗

p0∗

〉
t∗

, (52)

independent of ρ. We call the above equation the generalized
equipartition theorem for the relativistic Brownian motion.
Note that this relation does not have the same form as the
Tolman relation (49). Only when the multiplicative noise is
chosen as D ∝ p0∗, Eq. (52) coincides with〈

p2

2p0

〉
t∗

= 3

2
T (53)

as in the nonrelativistic case of Eq. (47), which is valid even
in non-equilibrium. In the ultrarelativistic limit, this relation is
reduced to

〈E〉t∗ = 3T , (54)

where E = p0∗ so that it is related to the specific heat of the
system.

The meaning of the equipartition theorem is modified
for more general cases. For example, suppose the noise has
the energy dependence as D ∝ (p0∗)q with q = const, then
Eq. (52) becomes

〈Eq〉t∗ = T (q + 2)〈Eq−1〉t∗ (55)

in the ultrarelativistic limit, and

〈|p|q+2〉t∗ = T m (q + 3) 〈|p|q〉t∗ (56)

in the nonrelativistic Brownian motion [for the nonrelativistic
case, Eq. (50) is still the general form of Eq. (47) when the
noise is multiplicative, provided that p0∗ and D(p0∗) are m and
D(p2), respectively]. These expressions show that the ratio
of two moments of kinetic energy should be kept constant
proportional to the temperature. In this sense we call Eq. (52)
the generalized equipartition theorem.

For q = −2 in Eq. (55) or q = −3 in Eq. (56), the left-hand
side is finite but the prefactor in the right-hand side vanishes.
This means that the average value in the right-hand side in
each equation diverges but the products

lim
q→−2

(q + 2)〈Eq−1〉t∗ , (57)

lim
q→−3

(q + 3)〈|p|q〉t∗ , (58)

have finite positive values and the equalities are still valid. This
is easily checked for equilibrium cases, since we can calculate
explicitly

〈Eq〉eq = 4π

Z
T q+3�(q + 3), (59)

〈|p|q+2〉eq = 2π

Z
(2mT )(q+5)/2�[(q + 5)/2], (60)

where Z is the normalization factor of the equilibrium
distribution function and �(x) is the γ function. From the
recursion relation of the γ function, we obtain Eqs. (55) and
(56). Of course, these relations do not make sense for q < −2
in Eq. (55) or for q < −3 in Eq. (56), since the left-hand side
(so the right-hand side, too) diverges.

Note that the condition [Eqs. (55) or (56)] itself does not
determine the distribution function. Of course, if we assume
that there exists a distribution function, f (E; t∗), independent
of q, satisfying Eq. (55) for any q > 2, we can demonstrate
that such a distribution function should be proportional
to exp(−E/T ), and similarly for the nonrelativistic case.
However, for a finite t the distribution function still reflects
the initial condition and depends on q.

Thus, as stated before, the null heat transfer condition does
not mean that the system is in equilibrium, but inversely, the
null heat transfer condition is naturally satisfied in thermal
equilibrium for any choice of D(p0∗). For a more general
noise coefficient, this can be seen directly from Eq. (50) by
re-expressing it as〈

d ′Q
dt∗

〉
RF

= −
∫

d�

{
D(p0∗)

T

(p∗)2

(p0∗)2
+
(

D(p0∗)p∗

p0∗

)
· [∇p ln ρ(x∗,p∗,t∗)

]}
ρ(x∗,p∗,t∗). (61)
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FIG. 1. The two ratios as a function of time t∗ with the initial
condition of 50 MeV.

The integrand vanishes if ρ is given by the Jüttner distribution
function. Therefore in thermal equilibrium, both the general-
ized equipartition theorem (52) and the Tolman relation (49)
are satisfied at the same time.

To see how the null heat transfer condition is attained, we
consider the case of a pion m = 139 MeV in a heat bath of
T = 150 MeV as an example for a possible application to RIC
physics. In Figs. 1 and 2 we plot the ratio,

RGE(t∗) = 1

T

〈
D(p0∗) (p∗)2

(p0∗)2

〉
t∗〈

∇p · D(p0∗)p∗
p0∗

〉
t∗

, (62)

by solving Eq. (37b) for the one-dimensional case with φ =
0. In this example we compare the two different situations:
one is that the pion is initially has a lower energy than the
temperature of the heat bath, p(t∗ = 0) = 50 MeV (Fig. 1), and
in the other the pion initially has a higher energy, p(t∗ = 0) =
300 MeV (Fig. 2). When the null heat transfer

〈
d ′Q/dt∗

〉
RF =

0 is attained, we should have RGE (t∗) = 1. For the sake of
comparison we show also the ratio

RTol(t
∗) = 1

T

〈
p2

p0

〉
t∗

, (63)

which corresponds to the Tolman relation for the one-
dimensional case. In thermal equilibrium, this value should
stay at RTol (t∗) = 1. In these simulations we consider the case
of q = −1, that is, D(p0∗) = K/p0∗ with K = 0.1 (MeV)4 .

As seen from these figures, the null heat transfer condition is
almost satisfied before t∗ � 0.5 f m/c, whereas the Tolman
relation only converges for t∗ > 1 f m/c. We checked some
different parameter sets and found that such behavior always
occurs.

IV. SUMMARY AND CONCLUDING REMARKS

In this paper we extended the stochastic energetics for
relativistic Brownian motion. As a model for the relativistic

FIG. 2. The two ratios as a function of time t∗ with the initial
condition of 300 MeV.

particle embedded in a heat bath, we first established a rela-
tivistic SDE which produces the invariant Jüttner equilibrium
distribution under an arbitrary Lorentz transformation. Using
this model we discussed the thermodynamic laws and the
equipartition theorem by applying the stochastic energetics.
We showed how the first and second laws of thermodynamics
are derived from relativistic Brownian motion in this context.
We obtained the explicit form of the heat transfer rate between
the relativistic Brownian particle and the heat bath. Of course,
our results recover the corresponding results of Ref. [1] in the
nonrelativistic limit. As a result, we showed that the concept of
the stochastic energetics is applicable to relativistic Brownian
motion.

We further showed that the condition of the null heat
transfer leads to the generalized equipartition theorem. Except
for the particular choice of the parameters of the SDE, the
generalized equipartition theorem does not coincide with
Tolman’s relativistic equipartition theorem if not in thermal
equilibrium. The null heat transfer and thermal equilibrium are
not equivalent, but the former includes the latter. As a matter
of fact, we found that the generalized equipartition relation is
attained before the system reaches the true thermal equilibrium
in a few examples. It will be interesting to investigate more in
detail the meaning of null heat transfer condition with respect
to possible transient thermodynamic properties.

Stochastic energetics is considered a promising approach
for the study of thermodynamics of mesoscopic systems [1,28].
Thus the present study will be a starting point for the appli-
cation of stochastic energetics for the physics of relativistic
heavy ion collisions. There the finite size of the system, as
well as the short reaction time, are not negligible so that the
deviation from local thermal equilibrium must be clarified.
In particular, the approach via stochastic energetics allows
introducing the energy conservation between microscopic
and macroscopic degrees of freedom. This may serve as a
consistent description of the formation of initial conditions
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or the freezeout processes of final states in hydrodynamic
modeling [29].
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APPENDIX: ITO FORMULA

Let us consider an arbitrary function f (x) and the evolution
of x is given by the SDE:

dx = Adt + B � dw. (A1)

Then the variation of f (x) is

df (x) =
⎧⎨⎩∑

i

Ai∂if (x) + 1

2

∑
ij

[BBT ]ij ∂i∂jf (x)

⎫⎬⎭ dt

+
∑
ij

Bij ∂if (x) � dwj . (A2)

This is called the Ito formula [17]. By using the Ito formula,
we obtain

[B ◦ dw]i = [B � dw]i + 1

2

∑
jk

Bjk∂j Bikdt, (A3)

[B � dw]i = [B � dw]i +
∑
jk

Bjk∂j Bikdt. (A4)

Thus we can conclude as follows. When we have the
Stratonovich-Fisk SDE,

dx = Adt + B ◦ dw, (A5)

this is equivalent to the Ito SDE,

dxi =
⎧⎨⎩Ai + 1

2

∑
jk

Bjk∂j Bik

⎫⎬⎭ dt + B � dw. (A6)

When we have the Hänggi-Klimontovich SDE,

dx = Adt + B � dw, (A7)

this is equivalent to the Ito SDE,

dxi =
⎧⎨⎩Ai +

∑
jk

Bjk∂j Bik

⎫⎬⎭ dt + B � dw. (A8)
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