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Two-pole approximation for response function

Hiroki Tutu*

Department of Applied Analysis and Complex Dynamical Systems, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
(Received 23 December 2010; published 7 June 2011)

Stochastic resonance (SR) enhanced by time-delayed feedback control is studied. The system in the absence of
control is described by a Langevin equation for a bistable system, and possesses a usual SR response. The control
with the feedback loop, the delay time of which equals to one-half of the period (2π/�) of the input signal, gives
rise to a noise-induced oscillatory switching cycle between two states in the output time series, while its average
frequency is just smaller than � in a small noise regime. As the noise intensity D approaches an appropriate level,
the noise constructively works to adapt the frequency of the switching cycle to �, and this changes the dynamics
into a state wherein the phase of the output signal is entrained to that of the input signal from its phase slipped
state. The behavior is characterized by power loss of the external signal or response function. This paper deals
with the response function based on a dichotomic model. A method of delay-coordinate series expansion, which
reduces a non-Markovian transition probability flux to a series of memory fluxes on a discrete delay-coordinate
system, is proposed. Its primitive implementation suggests that the method can be a potential tool for a systematic
analysis of SR phenomenon with delayed feedback loop. We show that a D-dependent behavior of poles of a
finite Laplace transform of the response function qualitatively characterizes the structure of the power loss, and
we also show analytical results for the correlation function and the power spectral density.
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I. INTRODUCTION

Noise-induced phenomena in nonlinear dynamics have
been widely studied [1–10]. Stochastic resonance (SR) [1–6]
and coherent resonance (CR) [7–10] are the prominent
examples of such phenomena. SR is the phenomenon where
the response of system to input signal is improved by an
appropriate amount of noise. CR is the phenomenon found
in excitable systems in the context of chemical oscillation
or neural network systems where the system manifests a
coherent oscillation as an appropriate amount of noise is
supplemented.

In recent years, noise-induced phenomena where delayed
feedback loop and noise constructively work to enhance a
coherence of response is a subject of great interest [11–18].
Misono et al. reported in Refs. [19,20] a noise-induced
phase-locking phenomenon in a Schmitt-trigger inverter with
delayed feedback loop in which, as a noise intensity reaches
an appropriate level, the frequency of oscillation induced by
CR approaches to that of external signal, and this causes a
resonance. One of the characteristics in such SR in systems
with delays is bimodal or multimodal peaks at different noise
intensities in a signal-to-noise-ratio measure on power spectral
density of output time series or coherence measure [20,21].
Such phenomena with multiple resonances at different noise
intensities have also been reported in mathematical models
[22,23] in the contexts of neural network system or chemical
oscillation since the first experimental study in the Belousov-
Zhabotinsky reaction system by Miyakawa et al. [21,24].

Although relevance of such SR with delayed feedback
loop to neural networks or animal sensory systems is
often emphasized, mathematical tools for analyzing such
phenomena are still in infancy because of difficulties from
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non-Markovian property. SR can be characterized by a
response function that describes a relationship between input
and output signals, and which is obtained from a conditional
probability function (CPF). Let P (X ,t |X ′,t ′) be a CPF for
finding a state X(t) ∈ X at a time t under the condition X(t ′) ∈
X ′ at t ′, where X(t) is a stochastic variable, χ and χ ′ are sets of
state. In general, the nature of non-Markovian systems is that a
master equation for P (X ,t |X ′,t ′) may depend on more highly
CPF, e.g., that with multiple conditions P (X ,t |X ′,t ′;X ′′,t ′′),
and this causes most of the difficulties. Usually, theoretical
treatment employs some kind of approximation to reduce such
a non-Markov-type master equation to a Markov one. In some
cases, moreover, some kind of self-consistent approximation
may be required to obtain a closed set of equations for the CPF.

An earlier theoretical study on CR (or SR) in a bistable
system with a delayed input has been carried out in
Ref. [12]. The study [12] provides a framework to deal with
correlation function and response function on the basis of
the dichotomic model [5,6], which is the basic model of
SR even in non-Markovian systems. Several extensive studies
follow this study (see, e.g., Refs. [25,26]). However, in these
studies, the CPF is somewhat oversimplified; then, for a more
self-consistent and systematic treatment, an extension taking
a property of the CPF into account should be added to these
studies. Small time-delay approximation also provides a useful
tool for analyzing SR or CR induced by time delay [27,28]. It
can be said that the approximation makes the non-Markovian
system into an effective Markovian system with a modified
potential function through the Taylor series expansion of delay
term. And, this gives a successful explanation for the multiple
resonances mentioned above in a small delay case [18,29]. In
this approach the problem of the CPF is removed; however,
there is a certain necessity to understand the non-Markovian
nature with the CPF without expanding it to the differential
series.
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In a previous paper [30], the author studied SR in a
theoretical model for a bistable magnetic system that is
designed to enhance the coherence of SR utilizing a time-
delayed feedback control. As mentioned above, in this system,
the power loss exhibits two peaks at different noise levels.
However, the theory for the power loss was incomplete because
of some ad hoc assumptions employed, and the theory for
the correlation function was not obtained. In this paper,
we show a more refined analysis, which is based on the
treatment in Ref. [12] and additionally incorporates what we
call delay-coordinate series expansion for response function. It
is a method to expand a non-Markovian transition probability
flux to memory fluxes on a discrete delay-coordinate system,
the form of which may be reminiscent of the memory term in
the Mori-Zwanzig formalism [31,32]. In the studies mentioned
above, this type of approach has not been examined. In this
approach, the Mth order series expansion of response function
on the delay-coordinate system yields 2M poles in its finite
Laplace transform, and we also call it 2M-pole expansion
(approximation). This study shows the results of the power
loss, the correlation function, and the power spectral density
obtained from its primitive implementation, i.e., the two-pole
expansion. The obtained results imply that the method can be a
potential tool for a systematic analysis of the SR phenomenon
with delayed feedback loop. One noticeable point is that
the noise-dependent behavior of the pole gives an important
characteristic for SR and has a close relationship with the
shape of the power loss. A second point is that the linear
response relation [33] between a signal input and an output
can not hold in a similar way as that of the conventional SR
in the Markovian system, but it has an additive input term due
to a coherence induced by interplay between noise and the
time-delayed feedback loop.

This paper is organized as follows. In Sec. II, we introduce
a model described by the Langevin equation and the corre-
sponding Fokker-Planck equation. In Sec. III, we review the
feature of the SR. In Sec. IV, we obtain a master equation
for a dichotomic model. In Sec. V, we obtain the response
function on the basis of the two-pole expansion. Section VI
gives tests for the analytical results for the power loss and
its related quantiles, correlation function, and power spectral
density. The last section summarizes the whole results.

II. MODEL

A. Langevin equation

Let us consider a controlled system that induces SR for an
ac input signal. Let X ≡ X(t) be a scalar variable at a time t ,
and let us assume that it obeys the Langevin equation

Ẋ = −V ′(X) + Hac(t) + Hfb(t) + R(t), (2.1)

where V ′(X) ≡ dV (X)/dX, V (X) = (1 − X2)2/4, and
Hac(t) = h cos(�t) is the ac input signal with the amplitude
h and the (angular) frequency � (2π/� ≡ T ). Hfb(t) is a
time-delayed feedback control (TDFC) given by

Hfb(t) = −K {X(t) + X(t − τ )} , (2.2)

where K is a feedback gain and the delay τ is chosen as
τ = π/� = T/2 (the half-period delayed feedback [34]). R(t)
is a Gaussian white noise satisfying 〈R(t)〉 = 0 and

〈R(t)R(t ′)〉 = 2Dδ(t − t ′), (2.3)

where 〈. . .〉 denotes the average over the whole stochastic
process.

The potential function V (X) has two local minima at
X = 1 and −1. The model for the case K = 0 is used as a
fundamental model for SR. In that case, the SR occurs in the
case that the mean switching rate (Kramers rate) between two
states X > 0 and X < 0 in the absence of Hac(t) and Hfb(t),
w̃K ∼ e−1/(4D), satisfies the relationship w̃K ∼ � [5,6]. The
TDFC [Eq. (2.2)] is designed to enhance the coherence of
the SR. Namely, the system possesses the reflection symmetry
due to the invariance of the system for X → −X and t →
t − π/�, and the TDFC works for regulating the output to a
symmetric oscillatory cycle satisfying X(t) = −X(t − π/�).
Actually, as an appropriate amount of noise is supplemented,
the time-delayed feedback loop gains a potential to induce
an oscillatory switching cycle between the two states in
accordance with the symmetry mentioned above. Although
such a symmetric oscillatory cycle may be allowed for the
cases τ = nπ/� (n = 3,5, . . .), we limit ourselves to the case
n = 1. For more information about several utilities of TDFC,
see Ref. [35].

B. Fokker-Planck equation

The Fokker-Planck equation (FPE) corresponding to
Eqs. (2.1)–(2.3) is given as follows. For a general derivation
of FPE from a Langevin equation with the time delay, see
Refs. [27,36,37]. Let p(x,t |·)dx be a conditional probability
for X(t) ∈ [x,x + dx], where the “dot” stands for condition(s).
A typical condition is that a constraint X(t ′) = x ′ at a given
time t ′, i.e., p(x,t |x ′,t ′), or an initial process {X(t)| − τ �
t � 0} [≡ {x}i], i.e., p(x,t |{x}i). Then, the conditional proba-
bility density function (CPDF) p(x,t |·) (≡ p) obeys

∂

∂t
p = − ∂

∂x
J , J ≡ F (x,t |·)p − D

∂

∂x
p, (2.4)

where

F (x,t |·) ≡ −V ′(x) + Hac(t) − K (x + 〈xτ |x,t ; ·〉) , (2.5)

〈xτ |x,t ; ·〉 ≡
∫ ∞

−∞
dxτxτp(xτ ,t − τ |x,t ; ·). (2.6)

〈xτ |x,t ; ·〉 denotes the conditional average for the condition
“X(t) = x” at the time t and some additional one, which
inherits from the CPDF p(x,t |·). Let p(xτ ,t − τ ; x,t |·) be the
conditional joint probability density function (CJPDF) for the
jointed states x = X(t) and xτ = X(t − τ ) at the times t and
t − τ , which depends on the same condition(s) as the CPDF.
Then, the CJPDF and the CPDF p(xτ ,t − τ |x,t ; ·) in Eq. (2.6)
have a relationship

p(xτ ,t − τ |x,t ; ·) = p(x,t ; xτ ,t − τ |·)/p(x,t |·). (2.7)

As shown here, the FPE depends on the CPDF or the CJPDF,
which involves a more higher order correlation effect. One of
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the subjects in the later analysis is to reduce this complexity
without losing the essence of the correlation effect.

III. CHARACTERISTICS OF SR

In this section, we provide an overview of the characteristic
features of SR in the present model, employing the power loss
defined as follows. The mean work done by the field (signal)
Hac(t) during a period Ttot is defined as

Pac ≡ 1

Ttot

∫ Ttot

0
dt Ẋ(t)Hac(t). (3.1)

This is also the mean power loss of the system over the
process {X(t)|0 � t � Ttot}. This expression also involves a
relationship between the phase of the response X(t) and that
of the signal Hac(t).

Figure 1 shows the normalized power loss 〈Pac〉/(h2�)
(the vertical axes) and associating quantities referred to in
Sec. VI as functions of the noise intensity D (the horizontal
axes). The circles in each upper panel of Figs. 1(a)–1(d)
indicate the results obtained from the numerical simulation
of Eq. (2.1) for each parameter of K ∈ {0,0.1,0.2,0.3} with
(�,h) = (0.01,0.01). The solid curves indicate analytical
results for the power loss, the expression of which is given
in Sec. VI. Hereafter, in all the results obtained from the
numerical simulation, 〈X〉 denotes the statistical mean of a
quantity X over 32 runs of Eq. (2.1) for Ttot = 2048T . The

numerical simulation of Eq. (2.1) was carried out with the
second order stochastic Runge-Kutta method [38,39] with
the time increment T/219. As shown in the upper panels of
Figs. 1(a)–1(d), with K , the shape of 〈Pac〉 changes from (a) a
single peak shape (K = 0) to (b) that with plateau (K = 0.1),
(c) that with two peaks and a local minimum (K = 0.2), and
(d) that with a single peak and a local minimum (K = 0.3).
When 〈Pac〉 has two peaks and a local minimum, we call their
left (right) peak the first (second) peak. The appearance of the
local minimum in 〈Pac〉 implies a change in dynamics induced
by noise, the detail of which is discussed in Sec. VI. Typical
time series of X(t) around such characteristic points on 〈Pac〉
are shown next.

Figure 2 shows the time series of X(t) (solid curves)
together with Hac(t) (waves of dotted curve) and sgn [Hac(t)]
(rectangular waves of dashed lines): panels 2(a)–2(c) display
those obtained at (a) D = 0.016, (b) 0.04, and (c) 0.082 near
the three extrema on the curve for K = 0.2 in the upper panel of
Fig. 1(c), and the panels 2(d)–2(f) display those obtained at (d)
D = 0.001, (e) 0.041, and (f) 0.099 on the curve for K = 0.3 in
the upper panel of Fig. 1(d). Here and hereafter, sgn(x) denotes
the sign function satisfying sgn(x) = 1 for x � 0, otherwise,
−1 for x < 0.

In Fig. 2(a), we see the situation that the switching rate
between the two states becomes comparable to � as the
noise intensity reaches the first maximum. Here, the switching
rate differs from the Kramers rate w̃K, but includes an effect

)b()a(

0

5

<
P

ac
>

 / 
h2 Ω

data
theo.

0

10

20

30

Reκ

0.00 0.05 0.10 0.15
D

0

1

Im
(κ

) ×
 τ

Imκ

0

5

10

15

data
theo.

0
10
20
30
40

R
e (

κ)
 ×

 τ

Reκ

0.00 0.05 0.10 0.15
D

0

1 Imκ

)d()c(

0

5

10

15

<
P

ac
>

 / 
h2 Ω

data
theo.

0
10
20
30
40

Reκ

0.00 0.05 0.10 0.15
D

0

1

Im
(κ

) ×
 τ

Imκ

0

5

10

15

20 data
theo.

0
10
20
30
40

R
e(

κ)
 ×

 τ

Reκ

0.00 0.05 0.10 0.15
D

0

1

2
Imκ

FIG. 1. (Color online) Normal-
ized power loss 〈Pac〉/(h2�) (upper
parts of panels) and real and imagi-
nary parts of κ (lower parts of panels)
as functions of noise intensity D. In
each upper part of the panels, the
filled circles indicate the numerical
results of 〈Pac〉/(h2�) on D for each
of the cases (a) K = 0, (b) 0.1, (c) 0.2,
and (d) 0.3 with (�,h) = (0.01,0.01).
The solid curves represent the analyt-
ical result [Eq. (4.42)] based on the
two-pole approximation in Sec. V.
In each lower part of the panels,
the solid (dashed) curve indicates the
imaginary (real) part of κ (see Sec. V).
The arrows indicate reference points
for the data used in Figs. 2, 3, 5, and 6.
The scales of the D axis are common
for all the panels. The vertical scales
are individual. The scales for the real
(imaginary) part of κ are multiplied
by τ , and are attached to the lower
right (left) sides of the panels.
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FIG. 2. (Color online) Time series of X(t) (solid curves), Hac(t)
(waves of dotted curve), and sgn [Hac(t)] (rectangular waves of dashed
lines) obtained at (a) D = 0.016, (b) 0.042, and (c) 0.084 near the
three extrema on the curve for K = 0.2 in Fig. 1(c), and those obtained
at (d) D = 0.001, (e) 0.041, and (f) 0.099 on the curve for K = 0.3
in Fig. 1(d). The arrows in Figs. 1(c) and 1(d) indicate the observed
points on D. The horizontal axis indicates the scaled time t/T .

of the TDFC, the analytic expression of which is given in
Sec. IV. Such an effect appears in a sequence of the shifts in
the first peaks of 〈Pac〉 in the upper panels of Figs. 1(b)–1(d).
This implies an enhancement in the switching rate due to the
TDFC. As K increases beyond a certain value, the system
undergoes a Hop bifurcation with a frequency of being less
than �, which is intrinsic to the feedback loop. We see such
an oscillation in Fig. 2(d).

In Figs. 2(b) and 2(e), we see that the relative phase
between the rectangular wave and X(t) slips, and that the
mean frequency for the switching cycle of X(t) is less than �.
In Figs. 2(c) and 2(f), we can observe that the phase of X(t)
is approximately locked to that of Hac(t). This state is referred
to as a phase-locked (PL) state. These results demonstrate

that the switching cycle becomes in concert with the external
signal as the noise intensity reaches an appropriate level. This
mechanism can be considered as a result of interplay between
chattering behavior of the switching cycle and the TDFC.
The chattering means an event of a multiple rapid switching
(roundtrip) motion of X(t) between the two states during one
cycle of Hac(t) as can be seen in Figs. 2(c) and 2(f). As a result
of chattering events, the mean frequency of the switching cycle
will rise in a short term average over a few cycles of Hac(t). By
mediating an appropriate frequency of the chattering events,
the mean frequency of the switching cycles will be adapted to
�, which is permitted under the TDFC. The PL state, therefore,
can have a persistence against the phase slipping when the
amplitude of the ac input is sufficiently large.

IV. DICHOTOMIC MODEL

The dichotomic model [5,6], which is obtained on the basis
of the Kramers rate theory, is useful for a coarse-grained
description of a bistable system. For that, the following
situation is assumed: D is sufficiently smaller than the height
of the potential barrier, i.e., D 
 1, the amplitude of the ac
input is sufficiently small (h 
 1) (this enables one to assume a
linear response relation from input to output) and the frequency
� of the ac input is sufficiently small � 
 1 (this enables one
to treat the external input as a quasistatic field).

In addition to these assumptions, we limit ourselves
to the situation in which the delay time τ is not too
long, and the feedback strength K is sufficiently small.
As is mentioned in the context of the small time-delay
approximation [18,27–29], if such parameters are out of the
range, deviation of the effective potential in the Markovian
approximation from its original one becomes large. Figure 3
shows such behaviors with the effective potential

Veff(x) ≡ − D

Ttot

∫ Ttot

0
dt log p(x,t) (4.1)

at (a) D = 0.064, K = 0, (b) D ∈ {0.042,0.073}, K = 0.1,
(c) D ∈ {0.016,0.042,0.082}, K = 0.2, and (d) D ∈ {0.001,

0.041,0.099}, K = 0.3 in (�,h) = (0.01,0.01). We see that
the shape of the effective potential considerably differs from
the original one V (x) in a small D regime, i.e., see the cases
D = 0.016 and 0.001 in Figs. 3(c) and 3(d), and it appears
with the region(s) of gradual slope or plateau as K increases.
This tendency becomes large as τ increases. Thus, we limit the
ranges of D, K , and τ to those in which a major deformation
from V (x) in the effective potential can be regarded to be
O(x2). Since we have τ = π/�, the limitation for τ further
limits the range of �. Let π/�K be the upper limit of τ for
a given D and K , then we have �K < � 
 1. The �K may
depend on a type of approximation.

In the situation mentioned above, the trajectory X(t)
fluctuates around either of the local minima of V (X) almost
all the time. The (C)PDF p(x,t |·) for the state X(t) = x has
sharp peaks around x = ±1, and it can quasistatically follow
the external signal.
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FIG. 3. (Color online) Effec-
tive potentials defined by Eq. (4.1)
at (a) D = 0.064, K = 0, (b) D ∈
{0.042,0.073}, K = 0.1, (c) D ∈
{0.016,0.040,0.082}, K = 0.2,
and (d) D ∈ {0.001,0.041,0.099},
K = 0.3 with (�,h) = (0.01,0.01).
These positions on 〈Pac〉 are
indicated by the arrows in the upper
panels of Fig. 1. The scales are all
the same.

Assigning a dichotomous variable σ ∈ {−1,1} to sgn[X(t)],
probability for a state σ is defined as

P (σ,t |·) ≡
∫ ∞

−∞
dx 
(σx)p(x,t |·). (4.2)

As mentioned in Sec. II B, the “dot” indicates some condition if
the probability is conditional, or else it indicates nothing. The
master equation for the probabilistic process in the dichotomic
model can be assumed as

∂tP (σ,t |·) = W (σ,t |·)P (−σ,t |·) −W (−σ,t |·)P (σ,t |·), (4.3)

with a transition rate W (σ,t |·) for a jump from a state −σ to
the other one σ .

All the estimation for W (σ,t |·) is described in Appendix A.
Within the situation that a major deformation in the effective
potential can be regarded as O(x2), we employ a piecewise
linear hypothesis [Eq. (A5)] for the conditional average
[Eq. (2.6)] [30]. By keeping the expression of W (σ,t |·) to
be linear in h, the transition rate is obtained as

W (σ,t |·) ≈ 1
2 [wA(t |·) + σ {wh(t |·)Hac(t) − wK (t |·)B1(t |·)}] ,

(4.4)

where, with Ē ≡ 1 − KA1(t |·),

wA(t |·) ≡
√

2

π
Ē exp

(
− Ē2

4D

)
, (4.5)

wK (t |·) ≡ K(Ē2−D)wA(t |·)/(2DĒ), wh(t |·) ≡
√

ĒwA(t |·)/
D, and

A1(t |·) ≡
∑

σ

P (σ,t − τ ; σ,t |·)
P (σ,t |·) , (4.6)

B1(t |·) ≡
∑

σ

σ
P (σ,t − τ ; σ,t |·)

P (σ,t |·) . (4.7)

Here,
∑

σ ≡ ∑
σ∈{±1}, and P (σ ′,t ′; σ,t |·) is the condi-

tional joint probability for the states σ ′ = sgn[X(t ′)] and
σ = sgn[X(t)]. B1(t |·) is assumed as a quantity of O(h).
Again, the transition rate depends on the conditional joint
probability as in Eqs. (4.6) and (4.7), which inherits the
condition(s) in Eq. (4.2). This expresses a nature of the
non-Markovian process.
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By substituting Eq. (4.4) into (4.3) without the condition
“dot,” the master equation for the probability P (σ,t) for the
dichotomous states σ ∈ {±1} is obtained as

∂tP (σ,t) ≈ W (σ,t)P (−σ,t) − W (−σ,t)P (σ,t) (4.8)

≈ −wA(t) {P (σ,t) − 1/2} + σ {whHac(t) − wKB1(t)} /2,

(4.9)

where

A1(t) =
∑

σ

P (σ,t − τ |σ,t), (4.10)

B1(t) =
∑

σ

σP (σ,t − τ |σ,t). (4.11)

Also, the master equation for the conditional probabil-
ity P (σ,t |σ ′,t ′) (t > t ′) is obtained from Eqs. (4.3) and
(4.4) as

∂tP (σ,t |σ ′,t ′) ≈ W (σ,t |σ ′,t ′)P (−σ,t |σ ′,t ′)
−W (−σ,t |σ ′,t ′)P (σ,t |σ ′,t ′) (4.12)

= −wA(t |·) {P (σ,t |·) − 1/2}
+ σ {wh(t |·)Hac(t) − wK (t |·)B1(t |·)} /2,

(4.13)

where the dot abbreviates “σ ′, t ′.”
In Eq. (4.13), wA(t |·) depends on the higher order condi-

tional probability through the quantity A1(t |·), which remains
unknown so far. In order to reduce this complexity, this
study attempts a delay-coordinate series expansion (DCSE),
described in Appendix B, together with a Markov approx-
imation. Instead of P (σ,t |σ ′,t ′), let us use Q(σ,t |σ ′,t ′) ≡
P (σ,t |σ ′,t ′) − 1/2. The DCSE is a procedure for expanding
wA(t |·)Q(σ,t |·) into a series of Q(σ,t − kτ |·) on the delay
coordinates with k = 0,1,2, . . . and additional terms with the
factor B1(t |·). Appendix B estimates the DCSE up to the
second order delay coordinate. Using this, Eq. (4.13) can be
expanded as

∂tQ(σ,t |σ ′,t ′) ≈ −
M∑

k=0

wkQ(σ,t − kτ |σ ′,t ′) + σwBB1(t)/2

+ σ {wh(t)Hac(t) −wK (t)B1(t)} /2, (4.14)

where M represents the order of the DCSE. The coefficients
wM , wK (t), wh(t), wB(t), and B1(t) depend on the condition
“σ ′,t ′” (=“dot”). However, in the following treatment, we sim-
plify Eq. (4.14) by replacing A1(t |·) and B1(t |·) involved in the
coefficients with A1(t) and B1(t) in Eqs. (4.10) and (4.11). In
these replacements, we assume P (στ ,t − τ ; σ,t |·)/P (σ,t |·) ≈
P (στ ,t − τ |σ,t) in Eqs. (4.6) and (4.7). If the condition
“σ ′,t ′,” which is abbreviated by “dot,” satisfies t − τ 
 t ′, this
assumption may be valid; however, we use the replacements
even for t − τ < t ′ < t without justification hereafter. We call
these replacements the Markov approximation.

Under the Markov approximation, for the case M = 1, the
wk(t) (k = 0,1) are given as

w0 ≡
√

2

π
(1 − K) exp

{
− (1 − K)2

4D

}
[= wA(t |·)|A1(t |·)=1],

(4.15)

w1 ≡ wA(t) − w0

A1(t) − 1
, (4.16)

and wB = w1. Furthermore, for the case M = 2, w0, w1, w2,
and wB are given as Eq. (4.15), w

(2)
1 in Eq. (B7), w

(2)
2 in

Eqs. (B13) and (B14), respectively. See Appendix B for details.
This paper examines only the case M = 1.

A. Response function

A1(t) and B1(t) in Eq. (4.14) still remain unknown. This
requires us to make a closed set of equations for them, and one
must obtain backward and adjoint equations from Eq. (4.12).
However, it is difficult to obtain them without the Markov
approximation. This paper imposes the Markov approximation
to construct the backward and the adjoint equations for a closed
description, and its procedure is described in Appendix C.

First, let us consider the function a(t,t ′) ≡∑
σ P (σ,t |σ,t ′) − 1, which is concerned with A1(t) as

A1(t) = 1 + a(t − τ,t). From Eq. (4.13) or (4.14), the
forward development of a(t,t ′) (t > t ′) obeys

∂ta(t,t ′) = −wA(t)a(t,t ′) ≈ −
M∑

j=0

wja(t − jτ,t ′) (t > t ′).

(4.17)

The other required equations are made from the set of adjoint
and backward master equations given in Eqs. (C4), (C6),
and (C7) in Appendix C. From Eqs. (C10)–(C12), and the
subsequent description, the associated adjoint and backward
equations with a(t,t ′) are obtained as

∂ta(t ′,t) ≈ a(t ′,t)wA(t) (t ′ > t), (4.18)

∂ta(t,t ′) ≈
M∑

j=0

wja(t − jτ,t ′) (t < t ′), (4.19)

∂ta(t ′,t) ≈ −
M∑

j=0

a(t ′ − jτ,t)wj (t ′ < t). (4.20)

From Eqs. (4.19) and (4.20), making the differentiation
of a(t − τ,t) with respect to t , we find ∂t ′a(t ′,t)|t ′=t−τ +
∂ta(t ′,t)|t ′=t−τ = 0. This indicates that Ȧ1(t) = 0 and A1(t)
is a constant. Accordingly, all the coefficients in Eq. (4.14),
i.e., {wj (t)}Mj=0, wh(t), etc., can be regarded as constants,
then, hereafter, we omit the t dependence “(t)” from them.
Also, the fact ∂t ′a(t ′,t) + ∂ta(t ′,t) = 0 from Eqs. (4.19) and
(4.20) suggests that a(t,t ′) has a translational invariance in
time as a(t,t ′) = ã(t − t ′) for t < t ′. For the case t > t ′, from
the second expression of Eqs. (4.17) and (4.18), we find
a(t,t ′) = ã(t − t ′). However, the DCSE of Eq. (4.18), i.e.,
the counterpart to the third expression of Eq. (4.17), can not
be exactly deduced because of the reason described below
Eq. (C15) in Appendix C. Although this may be an obstacle
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for the translational invariance a(t,t ′) = ã(t − t ′) for t > t ′ in
the form of the DCSE, hereafter, we assume that the relation
a(t,t ′) = ã(t − t ′) approximately holds for both t < t ′ and
t > t ′. Thus, by replacing a(t,t ′) with ã(t − t ′) in Eqs. (4.17)
and (4.19), we have

∂t ã(t) ≈
⎧⎨
⎩

−∑M
j=0 wj ã(t − jτ ) (t > 0),

∑M
j=0 wj ã(t − jτ ) (t < 0).

(4.21)

In addition to this, we impose the time-reversal symmetry
a(t,t ′) = a(t ′,t) [ã(−t) = ã(t)] as an assumption.

In a similar way, let us consider a function B(t,t ′) ≡∑
σ σP (σ,t |σ,t ′) [=∑

σ σQ(σ,t |σ,t ′)], which is concerned
with B1(t) [=B(t − τ,t)]. From Eq. (4.14) and the set of
adjoint and backward master equations given in Eqs. (C4)
and (C6)–(C9) in Appendix C, we obtain the forward and
backward equations for B(t,t ′) as follows:

∂tB(t,t ′) = −
M∑

j=0

wjB(t − jτ,t ′) + H ′(t) (t > t ′), (4.22)

∂tB(t ′,t) = −H+(t)a(t ′,t) (t ′ > t), (4.23)

∂tB(t,t ′) = wAB(t,t ′) + H−(t) (4.24)

=
M∑

j=0

wjB(t − jτ,t ′) + H−(t) − wBB1(t) (t < t ′), (4.25)

∂tB(t ′,t) = −H−(t)a(t ′,t) (t ′ < t), (4.26)

where

H ′(t) = whHac(t) − wKB1(t) + wBB1(t), (4.27)

H+(t) = whHac(t) − wKB1(t), (4.28)

H−(t) = −whHac(t) + wKB1(t) + 2 ˙〈σ 〉t . (4.29)

The temporal evolution of 〈σ 〉t ≡ ∑
σ,σ0

σQ(σ,t |σ0,t0)
P (σ0,t0) [≈ 〈X(t)〉] is obtained from Eq. (4.14) as

˙〈σ 〉t ≈ −
M∑

j=0

wj (t)〈σ 〉t−jτ + H ′(t), (4.30)

where the initial condition 〈σ 〉t = 〈σ 〉t0 at t = t0 is imposed.
Here, H ′(t) given in Eq. (4.27) represents an effective periodic
force. A noticeable point is that Eq. (4.27) has the additional
terms with the factor B1(t). The property that B1(t) has
the same symmetry as Hac(t), i.e., B1(t) = −B1(t − τ ) from
Eq. (C3), implies that B1(t) has a close relationship to the
phase entrainment of X(t) to Hac(t) [30]. Section VI A gives
details for that.

Also, from Eq. (4.14), an equation of development for the
correlation function

C(t,t ′) =
∑
σ,σ ′

σσ ′Q(σ,t |σ ′,t ′)P (σ ′,t ′), C(t,t) = 1 (4.31)

is derived as

Ċ(t,t ′) = −
M∑

j=0

wjC(t − jτ,t ′) + H ′(t)〈σ 〉t ′ . (4.32)

Or, using P (σ,t) = (1 + σ 〈σ 〉t )/2, we have

C(t,t ′) = a(t,t ′) + 〈σ 〉t ′B(t,t ′) (t > t ′). (4.33)

The function a(t,t ′) in Eqs. (4.17)–(4.20) has the same
property as the response function in the context of the linear
response theory [33]. In terms of a(t,t ′), the solutions of
Eqs. (4.22)–(4.26) and (4.30) can be expressed as

B(t,t ′) =
∫ t

t ′
ds H±(s)a(t,s), (4.34)

〈σ 〉t = a(t,t0)〈σ 〉t0 +
∫ t

t0

ds H+(s)a(t,s), (4.35)

where, depending on the case t > t ′ or t < t ′, we have H+(t)
or H−(t) in Eq. (4.34). Noting that∫ t

t ′
ds H±(s)∂ta(t,s) = ∓wA(t)B(t,t ′)

= ∓
M∑

j=0

wjB(t − jτ,t ′) ± wBB1(t),

(4.36)

where the second line is derived from Eqs. (B12) and (C14),
Eqs. (4.34) and (4.35) can be checked by their differentiation
with respect to t . A distinctive point from the linear response
relation in the conventional SR theory on the Markovian
process is that H+(t) and H−(t) in Eqs. (4.34) and (4.35)
include the term with B1(t) in addition to the external signal
input Hac(t). A later consideration in Sec. VI A suggests that
the factor B1(t) can be regarded as a measure for the effect of
the coherent oscillation induced by noise and the TDFC.

B. Power loss

The power loss 〈Pac〉 defined in Eq. (3.1) is related to
the response function within the linear response theory [33].
The first term in the right-hand side of Eq. (4.35) vanishes
in the limit t0 → −∞. Therefore, supposing the asymptotic
form of 〈σ 〉t and B1(t) as 〈σ 〉t ≈ hRe[χ̃(�)ei�t ] and B1(t) =
hRe[B̃1(�)ei�t ], respectively, the dynamic susceptibility χ̃(ω)
is estimated from Eqs. (4.28) and (4.35) as

χ̃(�) = �(i�){wh − wKB̃1(�)}, (4.37)

where �(
) = ∫ ∞
0 dt ã(t)e−
t , and Re[X] (Im[X]) denotes

the real (imaginary) part of X. The Laplace transform of
Eq. (4.21) reads as

�(
) = ã(0) − ∑M
j=1 wje

−j
τ Ij (
)


 + ∑M
j=0 wje−j
τ

, (4.38)

where Ij (
) ≡ ∫ jτ

0 ã(t)e
tdt (j = 1,2, . . .). Also, from
Eqs. (4.29) and (4.34), for B1(t) = B(t − τ,t), we have

B̃1(�) = I1(i�){−wh + wKB̃1(�) + 2i�χ̃ (�)}. (4.39)

Then, we rewrite Eqs. (4.37) and (4.39) as

Ĝ(�)

(
χ̃ (�)
B̃1(�)

)
= wh

(
1 − ∑M

j=1(−1)jwj Ij (i�)
−I1(i�)

)
, (4.40)
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with the matrix

Ĝ(�)

≡
(

i�+ ∑M
j=0(−1)jwj wK{1 − ∑M

j=1(−1)jwj Ij (i�)}
−2i�I1(i�) 1 − wKI1(i�)

)
.

(4.41)

From Eq. (4.40), we can obtain χ̃(�) and B̃(�). In terms of
χ̃ (�), the power loss is expressed as

〈Pac〉 ≈ −h2�

2
Im [χ̃ (�)] . (4.42)

Here, the valid ranges of �, K , and D must be restricted to
those in which the determinant of the matrix (4.41) is not too
small or does not vanish. This limitation corresponds to that
for the permissible deformation of the effective potential (4.1)
under consideration. Similar circumstances also appear in the
analysis based on the small time-delay approximation [27,28].

V. TWO-POLE EXPANSION

Let us consider the fundamental solution for ã(t) (t � 0) in
Eq. (4.21) for the case M = 1, i.e.,

∂t ã(t) = −w0ã(t) − w1ã(t − τ ). (5.1)

The same equation is treated in Refs. [12,40]. First, we find
a solution of Eq. (5.1) for |t | � τ with the boundary condi-
tion ã(t) = ã(−t). The transformation I1(
) = ∫ τ

0 ã(t)e
tdt

rewrites Eq. (5.1) as

(w0 − 
)I1(
) + w1e

τ I1(−
) = ã(0) − ã(τ )e
τ . (5.2)

By using this, we obtain∫ τ

−τ

ã(t)e
tdt = I1(
) + I1(−
) = C̃0(
)ã(0) + C̃1(
)ã(τ ),

(5.3)

where

C̃0(
) ≡ 2

κ2 − 
2
{w0 − w1 cosh(
τ )} , (5.4)

C̃1(
) ≡ 2

κ2 − 
2
{w1 − w0 cosh(
τ ) − 
 sinh(
τ )} ,

(5.5)

and κ ≡
√

w2
0 − w2

1. In this paper, the integral transformation
in the left-hand side of Eq. (5.3) is referred to as the finite
Laplace transform. Since the functions {C̃j (
)}j=0,1 have two
poles 
 = κ and −κ on the complex plane, we call this analysis
two-pole expansion (approximation). In this way, the analysis
based on the Mth order DCSE is called 2M-pole expansion.
The poles ±κ lie on either the real or pure imaginary axis,
depending on D.

The inverse transformation of Eq. (5.3) yields

ã(t) = C0(t)ã(0) + C1(t)ã(τ ), (5.6)

where Cj (t) ≡ (2πi)−1
∫ i∞
−i∞ d
 C̃j (
)e−
t (j = 0,1), i.e.,

C0(t) = −w0

κ
Sx(κ,t) + w1

κ
Sx(κ,τ ) cosh(κt), (5.7)

C1(t) = −w1

κ
Sx(κ,t) + w0

κ
Sx(κ,τ ) cosh(κt)

+Cx(κ,τ ) cosh(κt). (5.8)

Here, the functions Sx(κ,t) and Cx(κ,t) are defined as

Sx(κ,t) ≡ eκt
(−Reκ) − e−κt
(Reκ), (5.9)

Cx(κ,t) ≡ eκt
(−Reκ) + e−κt
(Reκ), (5.10)

with 
(. . .) being the Heaviside’s unit step function: 
(x) = 1
for x > 0, 
(x) = 0 for x < 0, and 
(x) = 1/2 for x = 0,
e.g., in Eq. (5.10), Cx(κ,t) = e−κt for a positive real κ or
Cx(κ,t) = cosh(κt) for a pure imaginary κ .

The boundary condition at t = τ in Eq. (5.6) leads to

ã(τ ) = w0 − w1 cosh(κτ )

−w1 + w0 cosh(κτ ) + κ sinh(κτ )
, (5.11)

where we set ã(0) = 1. With the expression of ã(τ ) in
Eq. (5.11), a self-consistent equation for A1 is given as

A1 = 1 + ã(τ ). (5.12)

For given parameters D, �, and K , A1 is determined by
numerically solving Eq. (5.12) together with Eqs. (4.5), (4.15),
and (4.16).

Furthermore, let us define �n(
) ≡ ∫ nτ

(n−1)τ ã(t)e
tdt

(n > 1). From Eq. (5.1), �n(
) satisfies

(w0 − 
)�n(
) + w1e

τ�n−1(
) = ãn−1e

(n−1)
τ − ãne
n
τ ,

(5.13)

where ãn ≡ ã(nτ ). Therefore, via the inverse transformation
(2πi)−1

∫ i∞
−i∞ �n(
)e−
td
 (n > 1), we obtain

ã[(n − 1)τ + u] = ãn−1e
−w0u

−w1

∫ u

0
ds e−w0(u−s)ã[(n − 2)τ + s]

(5.14)

for 0 < u < τ [t ≡ (n − 1)τ + u]. Using Eqs. (5.6) and (5.14),
we can find ã(nτ + u) (0 � u < τ ) for n > 0 [12,40].

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, we examine the results of the analysis.
Sections VI A, VI B, and VI C deal with the power loss, corre-
lation function, and the power spectral density, respectively.

A. Power loss

The analytical result for the power loss 〈Pac〉 based on the
two-pole expansion is given by Eq. (4.42) with the dynamic
susceptibility χ̃ (�) in Eqs. (4.40) and (4.41) for M = 1. In
the actual calculation of 〈Pac〉, at first, A1 and {wj }j=0,1 are
determined by solving Eq. (5.12) with Eqs. (4.15), (4.16), and
(5.11) for a given set of parameters, i.e., D, �, and K . Then, the
obtained values are substituted into the associated equations
with 〈Pac〉. In the present cases, we have 0.001 < �K < 0.01.
The upper panels of Figs. 1(a)–1(d) in Sec. III show the
analytical results for 〈Pac〉 versus D with solid curves, together
with the results obtained from the numerical simulation of
Eq. (2.1) with circles, for the cases (a) K = 0, (b) 0.1,
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FIG. 4. (a) A1 and (b) |B̃1|2�2 as functions of D. They are obtained from Eqs. (5.12) and (4.40), respectively, on the basis of the two-pole
approximation (M = 1). The curves in both panels correspond to the results for K = 0 (dashed-dotted curves), 0.1 (solid curves), 0.2 (dashed
curves), and 0.3 (dashed-double-dotted curves) with (�,h) = (0.01,0.01).

(c) 0.2, (d) 0.3 with (�,h) = (0.01,0.01). Except for the case
K = 0, the analytical results do not precisely agree with the
simulation results in their small D regimes. On the other hand,
one can see that their qualitative shapes in both results have
similarities in their large D regimes. Namely, the region of
the middle-right slope and the plateau of the solid curves in
Figs. 1(c) and 1(d) roughly agree with that of the simulation
results. The deviation in the small D regions reflects the large
deformation of the effective potential equation (4.1) as shown
in Fig. 3. Observing the shapes of the potential in Fig. 3 and
the corresponding regions of D in Fig. 1, we can admit that
the piecewise linear approximation qualitatively works in the
range beyond the minimal point in D of 〈Pac〉.

Some studies consider that the bimodal peak structure in
〈Pac〉 is a superposition of two kinds of peaks, one is due to
the original SR mechanism and the other one comes from the
CR-like effect due to the TDFC [20,21,30]. Although 〈Pac〉 in
the present analysis does not clearly reveal the bimodal peak
structure in Fig. 1(c), we can specify each of the bimodal peaks
with other quantities. Figure 4 shows (a) A1 and (b) |B̃1|2 as
functions of D. The quantities A1 and |B̃1|2 are obtained from
Eqs. (4.15), (4.16), (4.40), (4.41), (5.11), and (5.12). We see
that, in Fig. 4(a), the region in which A1 steeply decreases in
D shifts its position in D to the left as K increases; on the
other hand, in Fig. 4(b), the peak of |B̃1|2 shifts its position to
the right. From Fig. 4(a) and 〈Pac〉 in the upper panels of
Figs. 1(a)–1(d), we can notice that the steeply decreasing
region of A1 corresponds to the first peak of 〈Pac〉. This can be
relevant to the exponential dependence of wA (or wh) on A1 in
Eq. (4.5). Namely, in the region where A1 steeply changes, wA

correspondingly changes, and the region can have a resonance
point on D, which satisfies wA ≈ �. This is similar to the
conventional SR. Likewise, from the observation of Fig. 4(b)
and 〈Pac〉 in the upper panels of Figs. 1(a)–1(d), we find that
the peak point of |B̃1|2 on the D axis corresponds to the second
peak point of 〈Pac〉. As mentioned after Eqs. (4.30) and (4.36),
|B̃1|2 can be regarded as a measure for the phase entrainment to
Hac(t). This can be concluded by the numerical evidence that

the maximum point of 〈Pac〉 in K > 0 corresponds to the PL
state [Figs. 2(c) and 2(f)]. In this way, the two quantities A1 and
|B̃1|2 can qualitatively specify the first and the second peaks of
〈Pac〉. Although 〈Pac〉 includes these quantities, a roughness of
approximation, e.g., the piecewise linear hypothesis equation
(A5), may destruct the bimodal peak structure.

We also show the D dependence of the pole κ defined in
Eqs. (5.4) and (5.5) in the lower panels of Figs. 1(a)–1(d). We
see that κ is pure imaginary below a certain value of D in the
cases K > 0; on the other hand, as D increases, through the
degenerate point at which the two poles ±κ merge at the origin
on the complex plane, κ becomes real and increases. It is also
found the minimal point or plateau of 〈Pac〉 corresponds to the
degenerate point (κ = 0). Thus, we can expect that the minimal
point of 〈Pac〉 indicates a sort of critical point in dynamics. The
next section shows the change of behavior in the correlation
function depending on D.

B. Correlation function

In the correlation function (4.33), the first term is given by
ã(t − t ′) with Eqs. (5.6)–(5.12), and (5.14). 〈σ 〉t and B(t,t ′) of
the second term are given by the asymptotic form of Eq. (4.35)
in t0 → −∞, and Eq. (4.34) for the case t > t ′, respectively.
Putting H+(t) = hRe[H̃+ei�t ] in Eqs. (4.34) and (4.35), 〈σ 〉t
and B(t,t ′) are estimated as

〈σ 〉t ≈ hRe[ei�t H̃+�(i�)], (6.1)

B(t,t ′) = hRe

[
ei�t H̃+

∫ t−t ′

0
ds e−i�s ã(s)

]
. (6.2)

By applying the averaging procedure C(t) ≡ ∫ T0+T

T0
C(s +

t,s)ds/T (T0 → ∞) to Eq. (4.33) after substituting Eqs. (6.1)
and (6.2) into Eq. (4.33), we obtain

C(t) = ã(t) + h2

2
|χ̃ (�)|2 Re

[
ei�t

�(i�)

∫ t

0
ds e−i�s ã(s)

]
,

(6.3)
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FIG. 5. (Color online) The correlation functions at the three
extrema of 〈Pac〉 in Fig. 1(c) (K = 0.2). The solid and dashed
curves in the panels show the scaled correlation functions C(t/τ )
obtained from the numerical simulation of Eq. (2.1) (solid curves)
and the analytical results of Eq. (6.3) at (a) D = 0.016, (b) 0.04, and
(c) 0.082, with positions on the curve 〈Pac〉 versus D indicated by
the arrows in the upper panel of Fig. 1(c). The horizontal axes are
scaled as t/τ . The dashed-dotted curve in panel (b) indicates the
analytical result of Eq. (6.3) at D ≈ 0.0484 (the vanishing point of
κ), the position of which is indicated by the arrow in the lower panel
of Fig. 1(c). In these curves, the oscillation component composed of
the harmonics of � is eliminated.

where χ̃ (�) = �(i�)H̃+ from Eq. (4.37). In the limit t → ∞,
the last term becomes h2 |χ̃ (�)|2 cos(�t)/2.

Figure 5 shows the correlation functions obtained from
the numerical simulation of Eq. (2.1) (solid curves) and the
analytical results (dashed curves) at (a) D = 0.016, (b) 0.04,
and (c) 0.082 in (K,h,�) = (0.2,0.01,0.01), where these
positions on the curve 〈Pac〉 versus D are indicated by the
arrows in the upper panel of Fig. 1(c). The solid curves are
made by the Fourier transform of the power spectral density
from the time series {X(t)|0 � t � Ttot}, but the line spectrums
at the harmonics of � are eliminated (see Fig. 6). The dashed
curves represent the first term of Eq. (6.3), i.e., ã(t), where
t is replaced with t/τ . The dashed-dotted curve in Fig. 5(b)
represents the first term of Eq. (6.3) at D ≈ 0.0484, which
corresponds to the vanishing point of the pole κ [Fig. 1(c)],
and gives a reference point comparable to the minimal point of
〈Pac〉 in the simulation result. We see that the solid and dashed
curves in Fig. 5(a) quite differ. This disagreement comes
from the roughness of the piecewise linear approximation.
Figure 5(b) shows that, in two comparisons with the dashed
and the dashed-dotted curves to the solid one, the dashed-
dotted curve is closer to the solid one, while its frequency
is still slightly different. For more quantitative agreement, it
is necessary to improve the employed approximations. The

solid curve in Fig. 5(b) exhibits a characteristic behavior
of the correlation function that the relaxation time of the
oscillation grows near the minimal point of 〈Pac〉. This is
consistent with the observation that the vanishing point of
the pole κ corresponds to the minimal point, and that |κ| is the
inverse of a characteristic time scale of the correlation function.
Figure 5(c) shows the correlation function at the second peak
of 〈Pac〉. One can see that the modulation frequency of the
analytical result agrees with that of the simulation result.

C. Power spectral density

Power spectral density is obtained through the Fourier
transform of the correlation function, i.e., S(ω) ≡
2Re

∫ ∞
0 dt e−iωtC(t). From Eq. (6.3), we have

S(ω) = Sn(ω) + πh2

2
|χ̃(�)|2 {δ(� − ω) + δ(� + ω)} , (6.4)

Sn(ω) = 2Re�(iω)

+ h2

2
|χ̃(�)|2Im

[
�(iω)

�(i�)

1

ω − �
+ �(iω)

�(−i�)

1

ω + �

]
.

(6.5)

Figure 6 shows the power spectral densities obtained
from the numerical simulation of Eq. (2.1) (circles) and
the analytical results (dashed curves) at (a) D = 0.016,
(b) 0.04, and (c) 0.082 in (K,h,�) = (0.2,0.01,0.01). The
dashed curves indicate the first term in the right-hand side
of Eq. (6.5), i.e., we drop the terms associated with the ac
input signal. The dashed-dotted curve in Fig. 6(b) indicates the
analytical result at D ≈ 0.0484 (the vanishing point of κ). As
mentioned in Sec. VI B, this point of D is related to the minimal
point of 〈Pac〉 in the simulation results. In the same way as
Fig. 5(a), in Fig. 6(a), the analytical result quite differs from
the simulation result. In Fig. 6(b), both the peak position in
ω and the magnitude of the analytical curve deviate from
the simulation result. However, we see that the dashed-dotted
curves are closer to the solid curves than the dashed curves.
This tendency implies that we can adjust the analytical result
by more careful approximation than Eq. (A5). In Fig. 6(c),
we see that the peak positions of the two curves almost agree.
Figures 6(b) and 6(c) demonstrate that, as D increases, the peak
position of Sn(ω) in ω reaches the position of the line spectrum
at ω = �, and the signal-to-noise ratio, i.e., h2|χ̃(�)|2/Sn(�),
improves. This manifests the frequency adaptation caused by
the interplay of noise and the TDFC.

VII. SUMMARY

This paper investigated the property of controlled stochastic
resonance (SR) in a bistable system under the time-delayed
feedback control. As an extension to the dichotomic Markov
approximation in Refs. [12,30], a systematic approach, the
DCSE and the associating Markov approximation, for ob-
taining the response function was proposed. As a primitive
implementation, the analysis based on the two-pole expansion
was reported. In this approach, first we obtain the master
equation for the dichotomous states, i.e., Eq. (4.3). This step
needs a hypothetical treatment for the conditional average
Eq. (2.6). This paper employed the piecewise linear hypothesis
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FIG. 6. (Color online) The power spectral densities at the three extrema of 〈Pac〉. The circles and dashed curves in the panels show the
results obtained from the numerical simulation of Eq. (2.1) (circles) and the analytical results of Eqs. (6.4) and (6.5) (dashed curves) at
(a) D = 0.016, (b) 0.04, and (c) 0.082, with positions on 〈Pac〉 indicated by the arrows in the upper panel of Fig. 1(c). The dashed-dotted curve
in panel (b) indicates the analytical result of Eqs. (6.4) and (6.5) at D ≈ 0.0484 (the vanishing point of κ), the position of which is indicated by
the arrow in the lower panel of Fig. 1(c). In the analytical curves, the first term of Eq. (6.5) is plotted. The horizontal axes are scaled as ω/�.
The vertical axes indicate log10 S(ω/�). The line at ω/� = 1 in each panel indicates the spectrum intensity of the external signal.

(A5) for it. Second, the master equation is expanded into
the series on the delay coordinate system, i.e., Eq. (4.14).
Third, a set of closed equations associated with the response
function, i.e., Eqs. (4.17)–(4.20) and (4.22)–(4.29), is obtained.
In this paper, this step employed the Markov approximation
and utilized the symmetric property of the system to obtain the
backward and adjoint master equations. Finally, the finite pole
approximation for the response function is carried out. Then,
we can evaluate the power loss, the correlation function, and
the power spectral density.

A remarkable result obtained through the DCSE is the
linear response relation (4.35), where in Eqs. (4.28) and
(4.29) the additional term with B1(t) manifests the coherent
oscillation induced by the TDFC. As shown in Fig. 4, the
quantity B1(t) together with A1 well characterizes the bimodal
peak structure. Generally, linear response relation provides a
fundamental property of SR. While systematic approach for
linear response relation is firmly formulated in Markovian
systems, it is nontrivial in non-Markovian systems because
of the hierarchical dependence of conditional probabilities.
For this problem concerning SR, the treatments up to date
have been insufficient to self-consistently incorporate the
non-Markovian property, and have not derived the relation as
mentioned above. The present approach proposes a method
to convert and approximate the non-Markovian transition
probability flux to the series of memory flux on the delay-
coordinate system. This is the first step for a systematic and
self-consistent determination of the effective potential, which
has been assumed with the piecewise linear hypothesis, by
extracting an essence of the non-Markovian dynamics.

It was shown that the D-dependent behavior of the pole well
characterizes the change in dynamics as D changes, where the
degenerate point of poles corresponds to the minimal point of
the power loss on D. The comparisons between the analytical
and the simulation results for the quantities mentioned above
showed that, in the region of D beyond the minimal point
of the power loss, the analytical results qualitatively reveal
the simulation results; on the other hand, below the minimal
point on D, the analytical results drop their quality. The latter
circumstances come from the deformation of the effective

potential. For a more quantitative estimation, more precise
approximations, in particular, a more extended treatment of the
piecewise linear hypothesis (A5), will be required. The future
plans of this study are to improve the employed approximations
and to examine more higher order pole expansion, and also to
extend the method to systems with the asymmetric bistable
potential.

APPENDIX A: KRAMERS RATE

In addition to the assumptions mentioned in the beginning
of Sec. IV, we assume that, after passing a sufficiently
long-term development, a CPDF p(x,t | · ,{x}i) [a CJPDF
p(x,t ; xτ ,t − τ | · ,{x}i)] converges on a certain asymptotic
CPDF p(x,t |·) [CJPDF p(x,t ; xτ ,t − τ |·)], independent of the
initial process {x}i.

Under the assumptions, the CPDF p(x,t |·) for the state
X(t) = x has sharp peaks around the two points x = −1 and
1, and it almost vanishes around the origin. Let us define three
subdomains for x of p(x,t |·) as D− ≡ {x| − ∞ < x � x−},
D+ ≡ {x|x+ � x < ∞}, and D0 ≡ {x|x− < x < x+} [41].
Here, x+ and x− are constants satisfying −1 < x− < 0 and
0 < x+ < 1. Let us assume x− = −x+ by virtue of symmetry.
As mentioned above, the CPDF almost vanishes on the domain
D0, and we assume p(±1,t |·) 
 p(x±,t |·).

In the framework of the dichotomic model [5,6], the
probability flux J in Eq. (2.4) can be read as J ≈ 0
for D± and J ≈ Jt for D0, where Jt is a time-dependent
probability current without dependence on x. Then, from
Eqs. (2.4)–(2.6), for each domain of x ∈ D− and x ∈ D+, the
CPDF p(x,t |·) satisfies p(x,t |·) = p(x±,t |·)e−�(x,x±), where
the function �(x,x∗) is defined as

�(x,x∗) ≡ 1

D

∫ x∗

x

dy[−V ′(y) + Hac(t)

−K {y + 〈xτ |y,t ; ·〉}]. (A1)

Using this, the conditional probability P (σ,t |·) de-
fined in Eq. (4.2) for the dichotomic observable
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σ = sgn[X(t)] ∈ {−1,1} can be approximately expressed as

P (σ,t |·) ≈
∫

x∈Dσ

dx e−�(x,xσ )p(xσ ,t |·), (A2)

where σ ’s in xσ and Dσ indicate the sign “+” or “−”
corresponding to +1 or −1. For x ∈ D0, by multiplying the
second line of Eq. (2.4) by e�(x,0) and integrating it from x−
to x+, we obtain

−D e�(x,0)p(x,t |·)∣∣x+
x−

= Jt

∫ x+

x−
dx e�(x,0). (A3)

The temporal development of P (σ,t |·) is given by
Ṗ (σ,t |·) ≈ σJt . By combining this with Eqs. (A3) and (A2),
we obtain the master equation (4.3) for the probabilistic
process between the dichotomous states with the transition
rate (the so-called Kramers rate) W (σ,t |·) as

W (σ,t |·) ≡ D

[∫
x∈D−σ

dx eU (x)
∫ x+

x−
dy e−U (y)

]−1

, (A4)

where U (x) ≡ −�(x,0). The “dot” in W (σ,t |·) stands for the
condition that corresponds to that of P (σ,t |·) if it is conditional.

Through the conditional average 〈xτ |x,t ; ·〉, the force
[Eq. (2.5)] or “potential” function [Eq. (A1)] depends on
the path of the state before t . Here, by the piecewise linear
hypothesis used in Ref. [30], we approximate 〈xτ |x,t ; ·〉 as

〈xτ |x,t ; ·〉 ≈ S(1,t |·)x
(x) + S(−1,t |·)x
(−x), (A5)

where S(σ,t |·), σ ∈ {−1,1} is independent of x, and 
(·) is
the Heaviside’s unit step function. This hypothesis holds in the
limited situation wherein a major deformation of the effective
potential (4.1) as shown in Fig. 3 is regarded as O(x2). In each
of the domains, x <> 0, 〈xτ |x,t ; ·〉 is linearized with each of the
coefficients S(±1,t |·), which depend on the condition “dot.”
This expression utilizes the symmetric property of the system.

Conversely, regarding Eq. (A5) as a definition of S(σ,t |·),
S(σ,t |·) can be read as

S(σ,t |·) ≈
∫∫ ∞

−∞ dx dxτ xxτ
(σx)p(x,t ; xτ ,t − τ |·)∫ ∞
−∞ dx x2
(σx)p(x,t |·) , (A6)

from Eqs. (2.6) and (2.7). Assuming that the CPDF and the
CJPDF in the integrand in Eq. (A6) have the sharp peaks near
the points x,xτ = ±1, Eq. (A6) is replaced by

S(σ,t |·) ≈ S̃
∑
στ

στ σ
P (στ ,t − τ ; σ,t |·)

P (σ,t |·) (A7)

with the conditional and conditional joint probabilities for
the dichotomous variables, where

∑
στ

≡ ∑
στ ∈{±1}, and vari-

able(s) in the additional condition(s) “dot” is(are) also replaced
by the corresponding dichotomous variable(s). The constant S̃

can be regarded as a number close to unity. Although it may
be a useful adjustable parameter in regression analysis, we fix
it as S̃ = 1 for a simplification. By incorporating Eq. (A5) into
�(x,0) [= −U (x)] defined in Eq. (A1), we obtain

U (x) ≡ −V (x)

D
− K

2D
{1 + S(sgn[x],t |·)} x2 + Hac(t)

D
x,

(A8)

where the constant V (0)/D has been dropped.

The integrals in the transition rate (A4) can be carried
out with Eq. (A8). By using the abbreviation Eσ ≡ 1 − K

{1 + S(σ,t |·)}, and assuming Eσ/D 
 1, the first integral in
the denominator in the right-hand side of Eq. (A4) can be
estimated as∫

x∈D−σ

dx eU (x)

=
∫

x∈D−σ

dx exp

[
−x4 − 2E−σ x2 + 1

4D
+ Hac(t)

D
x

]

≈
√

πD

E−σ

exp

[
−1 − E2

−σ

4D
− σ

Hac(t)
√

E−σ

D

]
(A9)

by the Gaussian integral approximation around the point x =
−σ

√
E−σ , where the terms of O(h2) are dropped. Likewise,

keeping the terms up to O(h), we obtain the second integral
of the denominator in the right-hand side of Eq. (A4) as∫ x+

x−
dx e−U (x)

=
∫ 0

x−
dx exp

[
x4 − 2E−1x

2 + 1

4D
− Hac(t)

D
x

]

+
∫ x+

0
dx exp

[
x4 − 2E1x

2 + 1

4D
− Hac(t)

D
x

]

≈ e1/(4D)
∫ 0

−∞
dx exp

(
−E−1

2D
x2

) {
1 − Hac(t)

D
x

}

+ e1/(4D)
∫ ∞

0
dx exp

(
− E1

2D
x2

) {
1 − Hac(t)

D
x

}

≈ e1/(4D)

[
1

2

√
2πD

E−1
+ Hac(t)

E−1
+ 1

2

√
2πD

E1
− Hac(t)

E1

]

≈ e1/(4D)

√
2πD

Ē
, (A10)

where Ē ≡ 1 − K{1 + ∑
σ S(σ,t |·)/2}, and the factor

S(1,t |·) − S(−1,t |·) is regarded to be O(h) [30]. From
Eq. (A7), we have

Ē = 1 − K
∑

σ

P (σ,t − τ ; σ,t |·)
P (σ,t |·) ≡ 1 − KA1(t |·), (A11)

where A1(t |·) is defined in Eq. (4.6). By substituting Eqs. (A9)
and (A10) into Eq. (A4), we have

W (σ,t |·) ≈
√

ĒE−σ√
2π

exp

{
−E2

−σ

4D
+ σ

Hac(t)
√

E−σ

D

}
.

(A12)

For the sake of convenience, let us define

B1(t |·) ≡ 1

2

∑
σ

σS(σ,t |·) =
∑

σ

σ
P (σ,t − τ ; σ,t |·)

P (σ,t |·) .

(A13)

Using this, we have Eσ = Ē − σKB1(t |·). Since B1(t |·)
is a quantity of O(h), within the approximation up to
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O(h), we have
√

ĒE−σ ≈ Ē + σKB1(t |·)/2, E2
−σ ≈ Ē2 +

2σĒKB1(t |·), and

W (σ,t |·) ≈ 1√
2π

exp

(
− Ē2

4D

) {
1 − σ

ĒK

2D
B1(t |·)

+ σ

√
Ē

D
Hac(t)

}{
Ē + σ

K

2
B1(t |·)

}
. (A14)

The right-hand side of Eq. (4.4) is obtained by expanding the
factors {. . .} × {. . .} in Eq. (A14) up to O(h).

APPENDIX B: DELAY-COORDINATE SERIES EXPANSION

From the properties
∑

σ=±1 P (σ,t |·) = 1 and
∑

σ ′=±1
P (σ ′,t ′; σ,t |·) = P (σ,t |·), we find that the function Q(σ,t |·) ≡
P (σ,t |·) − 1/2 multiplied by A1(t |·) (≡A1) defined in Eq. (4.6)
yields

A1Q(σ,t |·) = Q(σ,t |·) + Q(σ,t − τ |·) − σ

2
B1(t |·). (B1)

This application to functions of A1, say F (A1), has

{F (A1) − F (1)}Q(σ,t |·)
= F (A1) − F (1)

A1 − 1

{
Q(σ,t − τ |·) − σ

2
B1(t |·)

}
. (B2)

For a function of A1, if we take Ē = 1 − KA1 defined in
Eq. (A11), we have

ĒQ(σ,t |·) = (1 − K)Q − K

(
Qτ − σ

2
B1

)
, (B3)

where B1 = B1(t |·), Q ≡ Q(σ,t |·), and Qτ ≡ Q(σ,t − τ |·).
Also, for wA(t |·)Q(σ,t |·) with wA(t |·) (≡wA) defined in
Eq. (4.5), we obtain

wAQ = w0Q + w1

(
Qτ − σ

2
B1

)
, (B4)

where the coefficients {wj }j=0,1 are defined in Eqs. (4.15) and
(4.16) [in Eq. (4.16), the Markov approximation described
after Eq. (4.14) has been already applied to A1]. This is
the first series expansion of wAQ onto the delay-coordinate
system {Q,Qτ }. Hereafter, the series expansion of wAQ onto
the Mth order delay-coordinate system {Q,Qτ , . . . ,QMτ },
where QMτ ≡ Q(σ,t − Mτ |·) with a set of the expansion
coefficients {wj }Mj=0, is called the Mth order delay-coordinate
series expansion (DCSE).

The second order DCSE is obtained as follows. The second
term in Eq. (B4) is estimated as

w1Qτ = w
(2)
1 Qτ + w1 − w

(2)
1

A
(2)
1 − 1

(A(2)
1 − 1)Qτ (B5)

= w
(2)
1 Qτ + w

(2)
2

(
Q2τ − σ

2
B

(2)
1

)
, (B6)

where

w
(2)
1 ≡ lim

A1→1
w1 = w0K

2D

(
1 − K − 2D

1 − K

)
, (B7)

w
(2)
2 ≡ w1 − w

(2)
1

A
(2)
1 − 1

, (B8)

A
(2)
1 ≡

∑
σ

P (σ,t − 2τ ; σ,t − τ |·)
P (σ,t − τ |·) = A1(t − τ |·), (B9)

B
(2)
1 ≡

∑
σ

σ
P (σ,t − 2τ ; σ,t − τ |·)

P (σ,t − τ |·) = B1(t − τ |·). (B10)

By substituting Eq. (B6) into (B4), we have

wAQ= w0Q+ w
(2)
1 Qτ + w

(2)
2

(
Q2τ − σ

2
B

(2)
1

)
− σw1

2
B1(t |·).

(B11)

Applying the Markov approximation, we replace A
(2)
1 and B

(2)
1

with
∑

σ P (σ,t − 2τ |σ,t − τ ) and
∑

σ σP (σ,t − 2τ |σ,t − τ )
in addition to the same replacement for A1 and B1 with
Eqs. (4.10) and (4.11). Also, assuming P (σ,t |σ ′,t ′) =
P (−σ,t ± τ | − σ ′,t ′ ± τ ), which comes from the symmetric
property of the system [30], Eq. (B11) is approximated as

wAQ ≈ w0Q + w
(2)
1 Qτ + w

(2)
2 Q2τ − σ

2
wBB1(t), (B12)

where A
(2)
1 (t |·) and B

(2)
1 (t |·) are replaced as A

(2)
1 (t |·) → A1 and

B
(2)
1 (t |·) → −B1(t), and hence

w
(2)
2 ≈ w1 − w

(2)
1

A1 − 1
, (B13)

wB ≡ w1 − w
(2)
2 . (B14)

In a similar way, we may obtain more higher order series
of expansion, however, the computations for the response
function will be much harder. Also, we should note that the
last replacements utilize the symmetric property of the system.

APPENDIX C: BACKWARD AND ADJOINT
MASTER EQUATIONS

Let us obtain backward and adjoint equations from
Eq. (4.12) under the Markov approximation. The Markov
approximation reads Eq. (4.12) as

∂tP∗(σ,t |σ ′,t ′) ≈ W (σ,t)P∗(−σ,t |σ ′,t ′)

−W (−σ,t)P∗(σ,t |σ ′,t ′), (C1)

where the transition rate W (σ,t) is no longer conditional to
“σ ′,t ′,” and P∗(σ,t |σ ′,t ′) (t > t ′) represents the asymptotic
conditional probability for a sufficient passage of the times t

and t ′. For P∗(σ,t |σ ′,t ′), we impose the Chapman-Kolmogorov
equality

P∗(σ,t |σ ′,t ′) =
∑
σ ′′

P∗(σ,t |σ ′′,t ′′)P∗(σ ′′,t ′′|σ ′,t ′) (C2)

for t ′ < t ′′ < t and t ′ > t ′′ > t [30]. Moreover, we
assume

P∗(σ,t |σ ′,t ′) = P∗(−σ,t ± τ | − σ ′,t ′ ± τ ), (C3)

from the symmetric property of the system. From Eqs. (C1)
and (C2), we obtain the adjoint master equation as

∂tP∗(σ ′,t ′|σ,t) ≈ P∗(σ ′,t ′|σ,t)W (−σ,t)

−P∗(σ ′,t ′| − σ,t)W (−σ,t) (t ′ > t). (C4)
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With the asymptotic probability P∗(σ,t) of Eq. (4.8), we im-
pose that the asymptotic conditional probability P∗(σ,t |σ ′,t ′)
satisfies

P∗(σ,t |σ ′,t ′)P∗(σ ′,t ′) = P∗(σ ′,t ′|σ,t)P∗(σ,t) (C5)

for t > t ′. By applying Eq. (C5) to (C1) and (C4) with (4.8),
it is found that P∗(σ,t |σ ′,t ′) (t < t ′) satisfies

∂tP∗(σ,t |σ ′,t ′) ≈ W∗(−σ,t)P∗(σ,t |σ ′,t ′)

−W∗(σ,t)P∗(−σ,t |σ ′,t ′) (t < t ′), (C6)

∂tP∗(σ ′,t ′|σ,t) ≈ P∗(σ ′,t ′| − σ,t)W∗(−σ,t)

−P∗(σ ′,t ′|σ,t)W∗(−σ,t) (t > t ′), (C7)

where

W∗(−σ,t) ≡ W (σ,t)
P∗(−σ,t)

P∗(σ,t)
= W (−σ,t) + ∂tP∗(σ,t)

P∗(σ,t)
.

(C8)

Here, let us define 〈σ 〉t ≡ ∑
σ σP∗(σ,t), then we have

P∗(σ,t) = (1 + σ 〈σ 〉t )/2. Regarding 〈σ 〉t as O(h), and ac-
cording to the adiabatic approximation, neglecting the terms
of O(�h) and O(h2), from Eqs. (4.4) and (C8), we
assume∑

σ

W∗(σ,t) ≈ wA,

∑
σ

σW∗(σ,t) ≈ whHac(t) − wKB1(t) − 2 ˙〈σ 〉t . (C9)

From Eqs. (C4), (C6), (C7), (C9), and (4.4), we obtain
equations of motion for a(t,t ′) ≡ ∑

σ P∗(σ,t |σ,t ′) − 1 as

∂ta(t ′,t) ≈ a(t ′,t)wA(t) (t ′ > t), (C10)

∂ta(t,t ′) ≈ wA(t)a(t,t ′) (t < t ′), (C11)

∂ta(t ′,t) ≈ −a(t ′,t)wA(t) (t ′ < t). (C12)

Here, from Eq. (C2), Q(σ,t |σ ′,t ′) ≡ P (σ,t |σ ′,t ′) − 1/2 for
t < t ′ multiplied by A1(t) = ∑

σ P (σ,t − τ |σ,t) yields

A1(t)Q(σ,t |σ ′,t ′) = Q(σ,t |σ ′,t ′)

+Q(σ,t − τ |σ ′,t ′) − σ

2
B1(t), (C13)

where B1(t) = ∑
σ σP (σ,t − τ |σ,t). This results in the same

form as Eq. (B1). Consequently, Q(σ,t |σ ′,t ′) has similar
relations to Eqs. (B2)–(B4), and we have

wAQ(σ,t |·) ≈ w0Q(σ,t |·) + w
(2)
1 Q(σ,t − τ |·)

+w
(2)
2 Q(σ,t − 2τ |·) − σ

2
wBB1(t), (C14)

for t < t ′, where the dot abbreviates “σ ′,t ′” and the coefficients
w0, w

(2)
1 , w

(2)
2 , and wB are given by Eqs. (4.15), (B7),

(B13), and (B14). Then, up to the second order DCSE,
we have wA(t)a(t,t ′) = ∑M

j=0 wja(t − jτ,t ′) [M = 1,2], and
Eq. (4.19), with the same coefficients {wj }Mj=0 as in Eqs. (4.15)
and (4.16), and the description following them.

Equation (C12) can also have a similar expansion to
Eq. (C14) by virtue of the symmetry. Namely, using Eqs. (C2)
and (C3), we obtain

a(t ′ − jτ,t)A1(t) = a(t ′ − jτ,t)

+a(t ′ − (j + 1)τ,t) (j = 0,1, . . .).

(C15)

This form for j = 0 corresponds to Eqs. (B1) and (C13)
since a(t,t ′) = ∑

σ Q(σ,t |σ,t ′). This, therefore, leads to
a(t ′,t)wA(t) = ∑M

j=0 a(t ′ − jτ,t)wj , and Eq. (4.20), with the
same coefficients {wj }Mj=0 as mentioned above. However, the
same expansion has not been obtained for the case Eq. (C10)
from the restriction on the time ordering in Eq. (C2).

As well as Eqs. (C10)–(C12), from Eqs. (C4) and (C6)–
(C9), equations of motion for B(t,t ′) ≡ ∑

σ σP∗(σ,t |σ,t ′) can
be obtained as Eqs. (4.23)–(4.26). In Eq. (4.25), we have
used the fact that wAB(t,t ′) for t < t ′ can be expanded into∑M

j=0 wjB(t − jτ,t ′) − wBB1(t) [M = 1,2] from Eq. (C14).
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