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Critical temperatures of the three- and four-state Potts models on the kagome lattice
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The value of the internal energy per spin is independent of the strip width for a certain class of spin systems on
two-dimensional infinite strips. It is verified that the Ising model on the kagome lattice belongs to this class through
an exact transfer-matrix calculation of the internal energy for the two smallest widths. More generally, one can
suggest an upper bound for the critical coupling strength Kc(q) for the q-state Potts model from exact calculations
of the internal energy for the two smallest strip widths. Combining this with the corresponding calculation for
the dual lattice and using an exact duality relation enables us to conjecture the critical coupling strengths for
the three- and four-state Potts models on the kagome lattice. The values are Kc(q = 3) = 1.0565094269290
and Kc(q = 4) = 1.1493605872292, and the values can, in principle, be obtained to an arbitrary precision. We
discuss the fact that these values are in the middle of earlier approximate results and furthermore differ from
earlier conjectures for the exact values.
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The finite-size scaling technique, known as phenomeno-
logical renormalization, has proven to be a very reliable
method for obtaining critical properties of low-dimensional
systems [1–3]. Since its beginning, this method has been
used to extract thermodynamic quantities in the infinite-width
limit from transfer-matrix calculations for infinite strips of
finite width [1]. Since a transfer-matrix calculation gives exact
results for an infinite strip with width L, it can give very
precise information on the system in the thermodynamic limit,
provided that the relevant thermodynamic functions have good
convergences with respect to the width L. For this reason,
corrections to the critical finite-size scaling have been a key
issue in this phenomenological renormalization method [4,5].
The present investigation makes use of the recent progress in
computing algorithms, which makes it possible to solve an
eigenvalue problem for a transfer matrix with a considerable
size in an exact or arbitrarily precise manner. This means
that one may use symbolic algebra systems to solve a given
transfer matrix in a closed form. Alternatively, if this is not
possible, one can do numerical calculations with an arbitrary
precision, which means that the numerical precision of every
calculation is free from rounding errors but limited only by
the computing memory. This makes it possible to take full
advantage of the exactness of the transfer-matrix method. In the
present work we use exact calculations of narrow infinite strips
to locate the critical point of the q-state Potts models [6] on the
kagome lattice with q = 3 and 4. The kagome lattice is one of
the simplest two-dimensional (2D) structures belonging to the
Archimedean lattices and has also drawn practical attention
due to distinct structural properties [7,8]. The case of q = 2
on the kagome lattice was solved more than half a century
ago [9], but the three- and four-state Potts models have been
long-standing open questions in statistical physics, and have
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given rise to, by now, classical conjectures [10,11], as well as a
number of numerical and approximate determinations [12–15].

The zero-field q-state Potts model is defined by the
following Hamiltonian:

H = −J
∑

〈ij〉
δ(Si,Sj ),

where each spin Sk may take an integer value from 0 to (q − 1),
δ denotes the Kronecker delta function, and the sum is over
all the nearest-neighbor pairs. We will set the interaction
strength J as unity throughout this work and identify the
inverse temperature β with the coupling strength K ≡ βJ .
According to the Fortuin-Kasteleyn representation [16], the
partition function corresponding to this Potts Hamiltonian can
be written as

Z =
∑

{S}
e−βH =

∑

{S}
pb(1 − p)B−bqNc (1)

with p ≡ 1 − e−K , where the sum is over all the spin
configurations with Nc clusters made of b connected bonds
out of B total bonds inside the system. At the critical point
Kc the partition function for the infinite system (= both length
and width infinite) has singularities in its K derivatives. The
conjecture in Ref. [10] states that the critical points can be
located by solving the following sixth-order polynomial:

v6 + 6v5 + 9v4 − 2qv3 − 12qv2 − 6q2v − q3 = 0 (2)

with v ≡ eK − 1. As will be described below, our estimates,
based on the two thinnest infinite strips, are very close to the
values predicted by this conjecture.

To illustrate the transfer-matrix method [17], we first
consider a thin strip of spins with size ∞ × L as shown in
Fig. 1(a). Once the transfer matrix is obtained, the free energy
per spin fL is given in terms of the largest eigenvalue λ

(0)
L of
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the matrix as

− βfL = L−1 log λ
(0)
L (3)

and the internal energy per spin is therefore given as

uL = ∂

∂β
(βfL) = − 1

Lλ
(0)
L

∂λ
(0)
L

∂β
. (4)

Furthermore, given the second largest eigenvalue λ
(1)
L , the

inverse correlation length is obtained as ξ−1
L = log λ

(0)
L

|λ(1)
L | . In the

context of the arbitrary-precision arithmetic, the differentiation
in Eq. (4) may need some care. The derivatives of the
eigenvalues can be calculated by using the equation �′ =
Y ∗T ′X, where T ′ = ∂T /∂β is the first-order derivative of the
matrix T and � is a diagonal matrix with the eigenvalues
of T [18]. The matrices X and Y represent the right and left
eigenvectors, respectively, which are constructed in such a way
that Y ∗X = I is the identity matrix. Here the asterisk means
the complex conjugate transpose. Suppose that the spins on
the strips are described by the q-state Potts model with q = 2,
which is equivalent to the Ising model with the temperature
divided by 2. It has been shown in Ref. [1] that the correlation
length is very well approximated by ξL ∝ L near the critical
coupling strength Kc = βcJ = log(1 + √

2) [19,20]. This
means that close enough to the critical coupling strength
one may use the width L as a substitute for the correlation
length and describe the system in terms of this length scale.
The proportionality coefficient between ξL and L in the limit
L → ∞ is related to the correlation-decay exponent η by
conformal invariance [21]. In fact, it has been furthermore
found that ∂

∂β
ξ−1
L |β=βc

= −ξ−2
L (∂ξL/∂β) = const. for every

finite L [22]. Assuming that ξL ∼ (β − βc)−ν near βc in
the limit of L → ∞, this yields the exact correlation-length
exponent ν = 1 [22]. Another interesting fact, crucial for
the present investigation, is that the internal energy per spin
[Eq. (4)] has at β = βc the same value for all the strips
irrespective of their widths L [23]. This fact opens up a simple
and practical way of locating the critical point of the 2D Ising
model by calculating the internal energy for the two thinnest
strips and then finding the coupling strength for which they
have the same internal energy. For the square-lattice strip in the
diagonal direction shown in Fig. 1(b), for example, equating
the internal energy per spin for L = 2 to that of L = 3, we get

e2K (e2K − 1)(e4K − 6e2K + 1)

(e2K + 1)F (K) + (e2K + 1)2
√

F (K)
= 0,

where F (K) ≡ e8K − 8e6K + 30e4K − 8e2K + 1. It is
straightforward to see that the nonnegative solutions of the
equation are eK = 0,1, ∞, and

√
2 ± 1. Only the latter

two are nontrivial and give us the exact Kc for the 2D
ferromagnetic and antiferromagnetic models, respectively.
The largest eigenvalues for L = 4 and 5 are also available in
closed forms and lead to the same conclusion. By using the
geometry shown in Fig. 1(a), the exact results eK = 1 + √

q

have been obtained for q � 5 [23], but there are also cases
where the method does not apply [23,24]. The invariance of
the internal energy with respect to strip width has therefore
been conjectured to be due to certain symmetries in the
model [24,25].

(a) (b)

FIG. 1. Spin blocks to make spin strips of (a) the square-lattice
type and (b) the double-square-lattice type. The periodic boundary
condition is imposed in the vertical direction for all the cases, so
the vertical lengths are regarded as L = 3. Note that the periodic
boundary condition may introduce double connections in some pairs
of spins if L is small.

We apply the transfer-matrix method to the Potts models
on the kagome lattice. First, we verify that the known exact
solution for the two-state Potts model is reproduced by
assuming that the internal energy per spin is invariant also
in this case. We construct two spin blocks for generating the
kagome lattice, as illustrated in Figs. 2(a) and 2(b). Writing
down the corresponding transfer matrices and denoting their
largest eigenvalues as λ(0)

a and λ
(0)
b , respectively, we compute

the internal energies per spin as ua = −(3λ(0)
a )−1(∂λ(0)

a /∂β)
for Fig. 2(a) and ub = −(6λ

(0)
b )−1(∂λ

(0)
b /∂β) for Fig. 2(b).

Indeed, it is readily found that ua = ub = −(7 + 2
√

3)/6 at
β = 1

2 log(3 + 2
√

3), which is the exact critical point of this
system [9]. This verifies that the correct critical Kc can be
obtained from the two thinnest strips also for the two-state
Potts model on the kagome lattice. Or, in other words, this
shows that the internal energy per spin is invariant also for the
two-state Potts model on the kagome lattice.

In case of the three- and four-state Potts models on the
kagome lattice, neither the critical values Kc are exactly
known, nor is it a priori known if the internal energy is
invariant. In order to generalize the method, we study pairs
of strips, one with finite length M and width L and the other
with 2M and 2L. The two strips in such a pair have the same
aspect ratio r = M/L where M and L are chosen such that r

is a positive number. When r is suitably chosen, each such pair
will have a single Kcross(L) for which the internal energy per
spin is the same. Figures 3(a) and 3(b) show that the crossing
point Kcross(L) monotonically decreases with increasing L. In
the limit of L → ∞, the crossing point approaches the true
critical Kc, that is, [Kcross(L) − Kc] → 0+. This implies that

(a)

A B

C

A B

(b)

A B

A B
(c)

A
B

A
B

(d)

A
B

A
B

FIG. 2. Spin blocks to make spin strips of the kagome type with
(a) L = 1 and (b) L = 2, and those of the dice type with (c) L = 1
and (d) L = 2. The dotted lines show the periodic boundary condition
in the vertical direction. Note that B and C are doubly connected in
(a), and such double connections are also found in (c).
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FIG. 3. (Color online) Monte Carlo data of the internal energy per spin for q = 3, with aspect ratios (a) r = 2 and (b) r = 4, respectively.
The vertical dotted lines show the critical coupling strength obtained in this work. (c) Sectional view at this particular point, where the horizontal
dotted line indicates the value obtained in this work, u = −1.6295437063996. The scaling dimension x is expressed as (1 − α)/ν with the
specific-heat exponent α, and therefore x = 4/5 for q = 3. (d) Qualitatively the same behavior is observed for q = 4. Here we plot it with
r = 4.

Kcross(L) will give an upper bound for Kc for each of the fixed
aspect ratios. As long as the aspect ratio does not change any
essential physics but only the convergence rate toward the bulk
criticality [Fig. 3(c)], we can suggest that the crossing point
Kcross(L = 1) for r = ∞ will either give an upper bound or
alternatively the exact results: that is, for the case of q = 2
it gives the exact result, whereas it gives at least an upper
bound for q = 3 and q = 4. An argument can be given in the
following way: the crossing point would fail to be an upper
bound if crossing could be found on both sides of the true
critical point Kc. This actually means that the internal energy
per spin uL would not be a monotonic function of L at K = Kc.
We note that the classical Potts model on the L × M strip can
be mapped to the one-dimensional quantum Potts model of
size L by putting the strip length M in the imaginary-time
direction [26]. One can describe the finite-size scaling around
the critical point as uL − u∞ = L−xa

[
(K − Kc)L1/ν,ML−z

]

to the leading order with a two-parameter function a [27],
the dynamic critical exponent z = 1 [26], and the scaling
dimension x of the energy-density operator [28]. At K = Kc,
the scaling function reduces to a(ML−1) = a(r), so we find
that uL ∼ u∞ + a(r)L−x . The geometric factor r is absorbed

by the coefficient a which determines the convergence rate.
It would be plausible to say that a(r) is continuous and
nonvanishing for any finite r and hence cannot change the
sign. The theory of the finite-size scaling therefore tells us that
uL is a monotonic function of L so that the crossing point for a
fixed aspect ratio will exist only on one side, which is K � Kc

in this case.
In the present investigation we are for practical reasons

restricted to q � 4 and L � 2 since the transfer-matrix
size increases as q3L × q3L. It is straightforward to write the
transfer matrices for q = 3 and 4 and solve the eigenvalue
problem. By equating ua to ub as above, we obtain the
two values Kcross(L = 1), which are 1.0565094269290 and
1.1493605872292 for q = 3 and q = 4, respectively. These
values are shown in Table I together with other existing
estimates. Note that the arbitrary-precision arithmetic can
make our values as precise as we want, in principle. As seen in
Table I, our values are somewhere in the middle of the earlier
existing estimates and conjectures, suggesting that they may
be the exact values. In order to further examine the obtained
values, we make use of the fact that there exists an exact
relation between the critical coupling strengths of the kagome

TABLE I. Critical thresholds of the q-state Potts models on the kagome lattice in terms of p = 1 − e−K .

Reference q = 1 q = 2 q = 3 q = 4

Exact [9] 1 − 1/
√

3 + 2
√

3

Conjecture [10] 0.52442971 1 − 1/
√

3 + 2
√

3 0.65232740 0.68312734

Conjecture [11] 0.52237207 1 − 1/
√

3 + 2
√

3 0.65393282 0.68596783
Series [12] 0.652350(5) 0.68315(5)
Monte Carlo [30] 0.5244053(3)
Monte Carlo [13] 0.60662(8) 0.65232(7) 0.68317(2)
Subnet [15] 0.524404978(5) 0.60668010683(15) 0.6523502(4) 0.683163(5)

This work 1 − 1/
√

3 + 2
√

3 0.65233274726401 0.68316070428484
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lattice and its dual [called a dice lattice, compare Figs. 2(c)
and 2(d)] [10,29],

(eKc − 1)(eK̃c − 1) = q, (5)

where K̃c means the critical coupling strength of the dice
lattice. This means that the upper bound K̃cross(L = 1)
obtained for the dual lattice can be turned into a lower
bound for Kc of the kagome lattice. Repeating the calculation
for K̃cross(L = 1) with the two thinnest strips, given in
Figs. 2(c) and 2(d), gives K̃cross(L = 1) = 0.9550805683974
as an upper bound for K̃c, which through Eq. (5) gives the lower
bound Kc = 1.0565094269290. This is, to all 14 decimal
places, identical to the upper bound obtained directly for
the kagome lattice. The most reasonable conclusion is that
the calculation gives the exact value and that, just as for the
two-state Potts model on the kagome lattice, the internal energy
is independent of the strip width at the critical temperature
and that, furthermore, the same is true for the q = 4 case
[Fig. 3(d)]. A complete analytic argument is called for, and a
simple way to test this conjecture would be to solve the transfer
matrix with L = 3.

As seen from Table I, the situation for the three-state Potts
model is as follows: both the two earlier conjectured exact
values can be ruled out, although the conjecture by Wu in
Ref. [10] is very close to the value in this work. Our conjectured
exact value is somewhat surprisingly outside the bounds of
the value estimated from series expansion in Ref. [12] and
the subnet estimate in Ref. [15]. It agrees well with and is
inside the bounds of the Monte Carlo estimate in Ref. [13]. For
the four-state Potts model, the situation is somewhat different:
again, the earlier conjectured exact values can be ruled out.
However, our conjectured exact value is inside the bounds of
all the other estimates.

The conjecture by Wu in Ref. [10] gives the critical coupling
strengths as solutions of the sixth-order polynomial given in
Eq. (2). It is important to note that we have also given our
values as solutions of certain polynomial equations since we
are dealing with transfer matrices. Although we have not
factorized the full polynomials yet, one may ask if such
sixth-order polynomials as Wu has derived can be eventually
factored out. To answer this, we follow Ref. [30] and try
to determine polynomials in the variable v = eK − 1 which
have roots at the exact critical values. Even if we work
with numeric values, instead of symbolic manipulations, this
method makes it possible to find such a polynomial. For
example, in case of q = 2, one recovers the compact analytic

expression v =
√

3 + 2
√

3 − 1 by solving the obtained poly-
nomial equation. Based on the conjecture by Wu, we try to find
the value for the q = 3 case as the solution of the sixth-order
polynomial

∑6
i=0 cnv

i
n = 0 with integer-valued coefficients.

We furthermore assume that c6 = 1, and let c5 and c4 vary from
−25 to 25, while the other four coefficients may take values

from −102 to 102. Substituting our value v = 1.876313463895
for q = 3, the best polynomial is found to be

v6 − 6v5 + 22v4 − 79v3 + 99v2 + 28v − 56 = 0,

yielding a solution vpoly = 1.876313463898. Even if the
discrepancy between our conjectured exact value and the
solution of the polynomial is tiny, it is still significant, which
means that there is no such polynomial within the range of
coefficients tested. This might suggest that the solution cannot
be obtained from a simple sixth-order polynomial as was
assumed in the conjecture by Wu.

We conclude this work with a brief sideline: the Fortuin-
Kasteleyn representation [Eq. (1)] for q = 1 recovers the
bond-percolation problem on the kagome lattice. The method
in the present paper cannot be directly used in this case,
since the internal energy becomes a constant independent of
the coupling strength. Without the knowledge of the exact
q dependence of Kc, one can only interpolate it from the
other estimates. For the case of the square lattice, which has
coordination number 4, as does the kagome lattice, we have
a general expression of the critical point as vsq = √

q [6].
We assume that v(q) of the kagome lattice can be expanded
in series of this variable: v(q) = a(

√
q)3 + b(

√
q)2 + c

√
q,

where we further note that v(0) = 0 is an exact limit. Finding
the three parameters a, b, and c by substituting the conjectured
values for v(2), v(3), and v(4), we can interpolate the value
at q = 1 and obtain p ≈ 0.52433. Compared to the numerical
estimate shown in Table I, the fractional error amounts to be
about 140 parts per million.

In summary, we have conjectured the exact values of critical
temperatures for the three-state and four-state Potts models on
the kagome lattice by using exact transfer-matrix calculations
on thin infinite strips. This suggests that the internal energy
can provide a sharper condition for criticality than lattice
symmetries considered in the earlier conjecture by Wu. It
has also been noted that, for the three-state Potts model on
the kagome lattice, the series expansion in Ref. [12] does not
contain our result within its bounds. The method devised to
obtain the results is based on exact solutions of the two thinnest
infinite strips. These solutions have been obtained by taking
full advantage of computational symbolic algebra systems.
Since the method itself appears to be quite general, it may
possibly be used to solve other problems.
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