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Kinetics of ring formation

E. Ben-Naim1 and P. L. Krapivsky2

1Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2Department of Physics, Boston University, Boston, Massachusetts 02215, USA

(Received 25 February 2011; published 2 June 2011)

We study reversible polymerization of rings. In this stochastic process, two monomers bond and, as a
consequence, two disjoint rings may merge into a compound ring or a single ring may split into two fragment
rings. This aggregation-fragmentation process exhibits a percolation transition with a finite-ring phase in which
all rings have microscopic length and a giant-ring phase where macroscopic rings account for a finite fraction of
the entire mass. Interestingly, while the total mass of the giant rings is a deterministic quantity, their total number
and their sizes are stochastic quantities. The size distribution of the macroscopic rings is universal, although the
span of this distribution increases with time. Moreover, the average number of giant rings scales logarithmically
with system size. We introduce a card-shuffling algorithm for efficient simulation of the ring formation process
and we present numerical verification of the theoretical predictions.
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I. INTRODUCTION

Percolation [1,2] controls many natural processes from
polymer gelation [3–5] and diffusion in porous media [6,7]
to the spread of forest fires [8,9] and infectious diseases
[10–12]. In the standard percolation picture, a system evolves
from a state with many small microscopic clusters into a
state with a single macroscopic system-spanning cluster. This
phase transition is continuous and it is controlled by the
total number of connections between elementary units in the
system.

In this study, we show that restricting the structure of
the clusters leads to a different percolation behavior where
multiple macroscopic clusters coexist. Percolation with mul-
tiple giant clusters has been recently reported in theoretical
studies [13,14] and it is relevant to the production of colloidal
microgels [15,16].

Our starting point is the classic polymer-gelation process
introduced by Flory [3–5,17,18], a simplified model that is
essentially the mean-field theory for percolation [1,19–23]. In
this polymerization process, a very large number of molecular
units (i.e., “monomers”) join irreversibly to form clusters
(i.e., “polymers”). This process has a second-order phase
transition between a “sol” phase, in which all polymers are
finite, to a “gel” phase in which a single gel containing a
finite fraction of the monomers in the system emerges. With
time this gel grows and, eventually, it engulfs the entire
system.

In the Flory model, there is no limit on the number of
bonds per monomer and the resulting polymers may have very
different structures. We modify the polymerization process
so that all polymers have the same structure. In our version,
all monomers have exactly two bonds, so that all polymers
are rings. Rings occur in magnetized powders or beads
[24–26] because due to magnetic interactions, linear chains
are unstable with respect to formation of rings (see Fig. 1).
As is the case for magnetic beads, we consider directed rings
where the bonds have directionality (see Fig. 2). The results
extend to undirected rings.

II. AGGREGATION-FRAGMENTATION PROCESS

At time t = 0, our system consists of N isolated monomers.
These particles bond to form polymeric rings through the
following process. In each elementary step, two monomers
are selected at random and a first bond is drawn between
them. Subsequently, both monomers drop an existing bond and
then, the two “dangling” monomers form a second bond, as
shown in Fig. 2. Time is updated, t → t + �t with �t = 2/N ,
after each step so that each monomer experiences one bonding
event per unit time. We note that the directionality of the
first bond dictates the directionality of the second bond. This
polymerization process conserves the total number of bonds
because two bonds are gained and two bonds are lost in each
event. We assign an imaginary self-bond to every original
monomer so that, formally, the original monomers have a ring
structure. Therefore, the total number of bonds in the system
equals N . With this formulation the polymerization process
maintains a ring topology as every monomer has exactly two
bonds.

The above polymerization process is equivalent to an
aggregation-fragmentation process. When a monomer that
belongs to a ring of size i bonds with a monomer that belongs to
a different ring of size j , a composite ring with size i + j forms
[Fig. 2(a)]. Hence, rings undergo the aggregation process

i,j
Kij−→ i + j with Kij = ij. (1)

The aggregation rate, Kij , is proportional to the product of the
sizes because there are i × j distinct pairs that can bond. We
note that the aggregation process, Eq. (1), alone constitutes
the Flory model.

A bond between two monomers in the same ring breaks that
ring into two smaller rings. Schematically, the fragmentation
process is [see Fig. 2(b)]

i + j
Fij−→ i,j with Fij = i + j

N
. (2)

Due to the circular symmetry, the fragmentation rate Fij is
proportional to the ring size while the factor 1/N reflects
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FIG. 1. Rings made of magnetic beads.

that for fragmentation to occur, one must pick two monomers
within the same ring. The fragmentation rate, given by
Eq. (2), is unusual as there is an explicit dependence on system
size. Also, the aggregation-fragmentation process, specified by
Eqs. (1) and (2), is reversible because for every aggregation
event, there is an opposite fragmentation event and vice versa.

Let rk(t) be the density of rings made of k monomers at
time t . That is, if Rk is the expected number of rings of size k,
then rk ≡ Rk/N . This size density obeys the rate equation

drk

dt
= 1

2

∑
i+j=k

ij rirj −krk + 1

N

⎡
⎣∑

j>k

jrj − k(k − 1)

2
rk

⎤
⎦. (3)

The first two terms represent gain and loss due to the
aggregation process, Eq. (1), and the last two terms represent
gain and loss due to the fragmentation process, Eq. (2).
In particular, let us consider the two loss terms. The total
aggregation rate is, by definition, the ring size k, but the total
fragmentation rate, Fk ≡ ∑

i+j=k Fij , grows quadratically

with the size, Fk = (1/N)( k

2 ) = k(k − 1)/2N . Our goal is to
understand the time evolution of the density rk(t) starting from
the monomer-only initial condition, rk(0) = δk,0.

(b)

(a)

FIG. 2. (a) Inter-ring bonds lead to aggregation. (b) Intra-ring
bonds result in fragmentation.

III. FINITE RINGS

Our implicit assumption is that the system is very large.
When N → ∞, one can use perturbation theory with the
inverse system size being the small parameter [27]. We expand
the size distribution to first order, rk = ck + (1/N)gk + · · ·,
and substitute this form into Eq. (3) to obtain the rate equation

dck

dt
= 1

2

∑
i+j=k

ijcicj − kck. (4)

The initial condition is ck(0) = δk,1. The two terms in this
equation describe gain and loss due to aggregation. To zero
order, the fragmentation process is negligible because the
likelihood of picking two monomers within the same ring
vanishes when N → ∞. Equation (4) describe the evolution
of the size distribution in the Flory model, where there is no
fragmentation. The solution to this equation is well-known
(see Refs. [20,28] for a review)

ck(t) = 1

k × k!
(kt)k−1e−kt . (5)

Let Mn(t) = ∑
k�1 knck(t) be the nth moment of the

distribution ck . The second moment diverges at a finite time
as M2(t) = (1 − t)−1 for t < 1, a signature of the percolation
transition at time t = 1. The first moment, M1(t), provides
additional information about this phase transition. Consider
the “missing mass” g(t) = 1 − M1(t). This quantity obeys the
transcendental equation

g = 1 − e−gt . (6)

When t < 1, there is only the trivial solution g = 0 and,
hence, finite clusters contain all of the mass. However, when
t > 1, there is a second, nontrivial solution, 0 < g < 1, and
this solution is the physical one. Finite rings account for only
a finite fraction, M1 = 1 − g, of the total mass. Therefore,
giant rings must account for the remaining fraction of the total
mass, g. At a time t > 1, the total mass of the giant rings
equals g(t)N .

At time t = 1, the critical size distribution has a power-law
tail (see Fig. 3),

ck(1) � 1√
2π

k−5/2, (7)

when k � 1. At the critical point, the size of the largest ring
scales as N2/3 with the system size N [29–31].

IV. GIANT RINGS

When t > 1, we expect that macroscopic rings, that is, rings
that contain a finite fraction of the total mass in the system,
account for the missing mass. For a giant ring with size k ∝ N ,
the total aggregation rate, k, and the total fragmentation rate,
k(k − 1)/2N , are both proportional to N . Hence, aggregation
and fragmentation occur with comparable rates. Also, since
both rates are proportional to the system size, aggregation and
fragmentation are very rapid. To find the size distribution of the
giant rings, we must consider the aggregation-fragmentation
process governing the giant rings.

We characterize a giant ring using the normalized size, �,
defined as � = k/N . This quantity equals to the fraction of
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FIG. 3. (Color online) The critical size distribution, ck ≡ ck

(t = 1), vs k. The simulation results are from 104 independent
realizations of a system with N = 108.

the total mass contained in the ring. Let G(�,t) be the average
number of rings with normalized size � at time t . Conservation
of mass dictates

g(t) =
∫

d� �G(�,t), (8)

where g(t) is the nontrivial solution of Eq. (6).
The quantity G(�,t) satisfies

1

N

∂G(�,t)

∂t
= 1

2

∫ �

0
ds s(� − s)G(s,t)G(� − s,t)

− �(g − �)G(�,t)

+
∫ g

�

ds s G(s,t) − 1

2
�2G(�,t). (9)

This rate equation, essentially the continuous analog of Eq. (3),
describes the aggregation-fragmentation process that governs
the giant rings. To formally derive Eq. (9) from Eq. (3), we
first make the transformations Gk ≡ Nrk and k = �N . Note
that the aggregation loss rate is reduced by the factor (g − �)
because self-interactions do not lead to aggregation.

From the definition of G(�,t) and from Eq. (8), we deduce
that the quantity G(�,t) is finite when t > 1 and 0 < g(t) < 1.
Therefore, the right-hand side of Eq. (9) is finite while the
left-hand side is negligible in the large-N limit. We therefore
replace the left-hand side of Eq. (9) with zero to determine the
time-dependent distribution G(�,t). The resulting nonlinear
integral equation has the remarkably simple solution (see
Fig. 4):

G(�,t) =
{

�−1 � < g(t),

0 � > g(t).
(10)

Indeed, this solution obeys the mass-conservation statement
given by Eq. (8). Surprisingly, the size distribution is univer-
sal, although the span of the distribution grows with time,
0 < � < g(t). Therefore, at a time t > 1, there are giant rings
of all sizes up to the maximal value g(t)N .

The distribution of rings includes two distinct components:
Nck gives the average number of finite rings and G(�) gives
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FIG. 4. (Color online) Simulation results for G(�) ≡ G(�,t)
at three different times: t(g = 1/4) = 1.150729, t(g = 1/2) =
1.386294, and t(g = 3/4) = 1.848392. The time t(g) =
(1/g) ln[1/(1 − g)] follows from Eq. (6). Also shown, for
reference, is the theoretical prediction, Eq. (10). The simulation
results are from 107 independent realizations of a system with a size
N = 106.

the average number of giant rings. Of course, the former
expression applies at all times while the latter holds only for
t > 1. The giant rings grow at the expense of the finite rings
and, essentially, they take over the entire system as g → 1
when t → ∞.

Finite rings and giant rings undergo separate, essentially,
decoupled aggregation-fragmentation processes. Indeed, the
rate equation [see Eq. (4)] for ck is closed while the rate
equation [see Eq. (9)] for G(�) is, in practice, also a closed
equation. There is a constant flux of mass, Ndg/dt , from
finite rings to giant rings and this flux couples the two types
of rings. This coupling enters only through the fraction g(t),
which appears explicitly in Eq. (9).

The distribution, Eq. (10), implies that there are multiple
giant rings; the average number of giant rings, Ng , scales
logarithmically with system size (see Fig. 5) as

Ng � ln N. (11)

This behavior follows from Ng = ∫ g

l∗
d�G(�). The lower limit

�∗=k∗/N can be deduced from the criterion N
∑

k�k∗ ck(t)=1
that estimates the size of the largest finite ring. Using
this criterion together with Eq. (5) we find k∗ � (t − ln
t − 1)−1 ln N and therefore �∗ ∼ N−1 ln N .

Since the merger-breakup process is random, we expect that
the variance in the number of giant rings, σ 2, is proportional
to the mean, σ 2 � ln N . Numerical simulations confirm this
behavior (see Fig. 5). Hence, the standard deviation

σ �
√

ln N (12)

quantifies fluctuations in the number of giant rings.
Figure 6 shows the normalized sizes of the three largest

rings as a function of time using a simulated system. These
sizes exhibit huge fluctuations as giant rings constantly
merge and break on a very fast time scale. Interestingly, while

061102-3



E. BEN-NAIM AND P. L. KRAPIVSKY PHYSICAL REVIEW E 83, 061102 (2011)

10
2

10
3

10
4

10
5

10
6

10
7

10
8

N

0

5

10

15

Ng

σ 2

FIG. 5. (Color online) The average number of giant rings, Ng , and
the variance σ 2, vs system size N . The simulation results represent an
average over 105 independent realizations. We measured Ng and σ 2

by counting the number of rings with size k > 4 ln N at time t = 2.

the size of an individual giant ring is a stochastic quantity, the
total size of all giant rings, g(t), is a deterministic quantity.

The number of finite rings is proportional to N while the
number of giant rings scales only logarithmically with N .
Equation (5) shows that monomers dominate in the long-time
limit. By comparing the average number of monomers, Nc1 =
Ne−t , with the the average number of giant rings, given by
Eq. (11), we conclude that giant rings overtake finite rings
when t � tf with

tf � ln N. (13)

In writing this expression, we ignored secondary logarithmic
corrections.
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FIG. 6. (Color online) The largest three rings. Shown is the time
evolution of �n(t), the size of the nth largest ring at time t , for n = 1
(upper red line), n = 2 (middle green line), and n = 3 (lower blue
line). The results are from a single run of a system with N = 106.
Also shown is the cumulative mass g(t).

For times t � tf , the ring-size distribution reaches a steady
state. Setting g = 1 in Eq. (10) shows that Nk , the average
number of rings with (unnormalized) size k, has the following
form:

Nk = 1

k
(14)

for all 1 � k � N . Thus at the steady state, there are rings of all
lengths, from finite rings to macroscopic rings. The distribution
in Eq. (14) also follows from the detailed-balance condition
Kijcicj = Fij ci+j with the solution ck = (Nk)−1 [28,32].

In the steady state, aggregation generates an upward flux
from small sizes to larger sizes while fragmentation leads to
a downward flux from large sizes to smaller sizes. These two
fluxes perfectly balance. While the steady-state distribution,
Eq. (14), includes rings of all sizes, rings of finite size account
only for a microscopic mass while rings of giant size account
for nearly all of the (macroscopic) mass.

V. SHUFFLING ALGORITHM

Throughout this paper we presented results of Monte
Carlo simulations that support the theoretical predictions. We
implemented an elegant algorithm that takes advantage of an
isomorphism between the polymerization process and a card
shuffling process. In the card-shuffling algorithm [33–36], we
start with an ordered deck of N cards, numbered 1 through N .
Then, at each elementary step, we pick two cards at random
and exchange their positions. For example, the first two steps
in shuffling a deck of 6 cards may look like

123456 → 153426 → 154326 → · · · .
Time is updated by �t = 2/N after each step, t → t + 2/N ,
and thus each card participates in one shuffling event per unit
time on average.

We now use cycles to represent permutations. For example,
six cards ordered 134265 are represented by (1)(234)(56)
because there are three cycles: the card 1 forms a cycle of
length one, the cards 234 form a cycle of length three, and
the cards 56 form a cycle of length two. Initially, there are
N cycles of length 1. Then, exchange of two cards in distinct
cycles leads to merger, while exchange of two cards in the
same cycle leads to breakup. For example, the following steps
generate the merger and breakup events in Fig. 2,

(123)(456) → (156423), and (156423) → (123)(456).

Furthermore, the merger rate and the breakup rate are given
by Eqs. (1) and (2). Hence, the dynamics of cycles in the
shuffling process are identical to the dynamics of rings in the
polymerization process.

The above algorithm is straightforward and efficient. The
shuffling steps take O(N ) operations per unit time and,
moreover, tracing the cycle structure requires only O(N )
operations. This linear algorithm enabled us to simulate large
systems with N = 108. Figure 7 demonstrates the excellent
agreement between the simulation results and the theoretical
prediction given by Eq. (14).

The distribution Nk , given in Eq. (14), equals to the average
number of cycles of length k for a random permutation of N

elements [37,38]. As expected, repeated shuffling randomizes
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FIG. 7. (Color online) The average number Nk of rings of size k

at the steady state. The simulation results are from 103 independent
realizations of a system with N = 108 at time t = 20.

the card order and according to Eq. (13) the number of
exchanges required to generate a perfectly random shuffle
scales as N ln N .

A natural generalization is to n-card shuffling where n

randomly chosen cards are reordered according to a prescribed
rule. For example, if n = 3, we may follow the cyclic
rule 123 → 231. The equivalent polymerization process now
involves merger of n polymers. Straightforward generalization
of the Flory model shows that the total gel mass, g(t),
satisfies [39]

1 − g = e
− 1−(1−g)n−1

(n−1)! t
, (15)

with 0 < g < 1 in the giant-ring phase t > (n − 2)!. We
anticipate that the distribution of giant rings is given by
Eq. (10) except that the total mass is now specified by Eq. (15).
Our numerical simulations of the three-card process confirm
this behavior.

VI. DISCUSSION

In summary, we studied a ring polymerization process
in which a bond between two monomers results either in
aggregation of two rings into one or in fragmentation of one
ring into two. This process exhibits a percolation transition
with a finite-ring phase in which all rings are microscopic and

a giant-ring phase in which multiple macroscopic rings coexist.
While the cumulative mass of the giant rings is deterministic,
the sizes of individual giant rings are stochastic. Moreover, the
giant rings exhibit huge fluctuations due to the extremely rapid
merger and breakup processes. Finally, the size distribution of
giant rings is stationary, although the span of this distribution
grows with time.

The aggregation-fragmentation process that governs the
rings is perfectly reversible. On the one hand, the distribution
of ring size reaches a stationary state where detailed balance is
formally satisfied. On the other hand, this final distribution
is not thermodynamic because the number of rings varies
logarithmically, rather than linearly, with system size. Phase
transitions with nonthermodynamic states were previously
observed only in irreversible aggregation-fragmentation pro-
cesses [40–42].

The original Flory model is equivalent to an evolving
random graph [17,18,22,23,28–31] in which a node can
have an arbitrary degree. The ring formation process above
generates an evolving regular random graph in which all nodes
have degree 2. In this context, the fragmentation process,
illustrated in Fig. 2(b), naturally represents a redirection of the
links. Hence, our analysis also constitutes the kinetic theory
of an evolving regular random graph.

The ring formation process can be generalized in many
ways. We focused on the mean-field version and it will
be interesting to study two-dimensional rings where spatial
correlations play an important role. Another direction for
further study is percolation of polymers with other types of
fixed structures, for example, polymers where all monomers
have exactly three bonds [3].

Finally, we notice that the unusual behaviors in the giant-
ring phase are the consequence of the basic topological
constraint; the polymers maintain a ring structure. This
suggests to investigate the influence of other constraints, such
as planarity [43,44]. Another interesting question is what
happens if the polymers are membranes [45], such as spheres
(say due to the surface tension), that can merge and divide.
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