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Do athermal amorphous solids exist?
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We study the elastic theory of amorphous solids made of particles with finite range interactions in the
thermodynamic limit. For the elastic theory to exist, one requires all the elastic coefficients, linear and nonlinear,
to attain a finite thermodynamic limit. We show that for such systems the existence of nonaffine mechanical
responses results in anomalous fluctuations of all the nonlinear coefficients of the elastic theory. While the shear
modulus exists, the first nonlinear coefficient B2 has anomalous fluctuations and the second nonlinear coefficient
B3 and all the higher order coefficients (which are nonzero by symmetry) diverge in the thermodynamic limit.
These results call into question the existence of elasticity (or solidity) of amorphous solids at finite strains, even
at zero temperature. We discuss the physical meaning of these results and propose that in these systems elasticity
can never be decoupled from plasticity: the nonlinear response must be very substantially plastic.
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I. INTRODUCTION

Amorphous solids are ubiquitous in nature and in technol-
ogy, spanning well-known materials from obsidian to metallic
glasses. They are typically obtained by fast cooling a liquid
such that it glides over the melting point, where normally
it can form a crystalline solid via a standard first-order
phase transition. Rather, the fluid becomes supercooled and
experiences the so-called glass transition where its relaxation
time becomes ever longer upon decreasing the temperature [1].
When T → 0 we have typically a frozen amorphous structure
which appears to react elastically to small strains. In this paper
we consider only amorphous solids that are made of N point
particles in d dimensions, in a volume V , which interact
with each other via finite range interactions. The subject of
our investigation is how athermal amorphous solids react to
external strains.

The potential energy in our strained amorphous solids can
be written as U ({r i(γ )},γ ), where {r i}Ni=1 are the positions
of the particles and γ is the applied strain. In this paper we
treat the strain as a scalar; all equations can be written in full
tensorial form if required (cf. Ref. [2]), but for our purposes a
single scalar strain γ is sufficient.

For normal crystalline solids there is a rich literature
spanning decades and centuries of studies of their elastic
properties. It is well known that for small external strains
γ normal solids react elastically to create an opposed stress
σ . For very small external strains the stress is linear in
the strain, with the coefficient of proportionality being the
shear modulus μ. If we choose an equilibrium reference
state at γ = γ0, the stress resulting from a small strain thus
reads

σ = μ(γ − γ0). (1)

For higher strains the elastic response becomes nonlinear,
and we denote, for the purpose of the discussion be-
low, the nonlinear coefficients as Bn with n � 2 (that is
to say, by convention B1 ≡ μ). We thus write for large
strains

σ (γ ) = μ(γ−γ0)+1

2
B2(γ−γ0)2+1

6
B3(γ − γ0)3 + · · · . (2)

For perfect monatomic crystalline solids the elastic theory is
entirely transparent since both the linear and the nonlinear
coefficients in this expansion can be computed directly from
the change in system energy as a function of the strain,

Bn → BBorn
n = 1

V

∂n+1U

∂γ n+1
(3)

(the so-called Born term; see below for details). When the
crystalline solid becomes riddled with defects, the nature
of the elastic theory becomes much more obscure, since
the Born term does not tell the whole story. In amorphous
solids, deviations from the Born approximation are inevitable.
Any strain is bound to bring about, in addition to an affine
transformation in the position of the particles, nonaffine
transformations that are necessary to return the system to a
mechanical equilibrium in which the net force f i on every
particle is zero. Nevertheless, the fundamental assumption that
is equivalent to the assertion that a piece of material is a solid is
that, before any plastic deformation takes place, the potential
can be expanded in powers of the strain to derive the various
expressions for the stress, shear modulus, and higher nonlinear
elastic coefficients.

In the following we consider deformations via parametrized
transformations on the particle coordinates J(γ ) = I + γ h,
where h determines the imposed deformation,1

r i → J · r i + ui , (4)

where the nonaffine coordinates ui are additional displace-
ments that guarantee that the mechanical equilibrium con-
straint is fulfilled. The total derivatives with respect to strain in
the athermal limit should thus satisfy the zero-forces constraint
[2–4]:

d

dγ
= ∂

∂γ
+ dui

dγ
· ∂

∂ui

= ∂

∂γ
+ dui

dγ
· ∂

∂ r i

, (5)

1The incremental strain tensor is then conventionally written as
ε ≡ 1

2 JT · J − I .
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where the second equality results from from Eq. (4), and here
and below repeated subscript indices are summed over, unless
indicated otherwise.

Using Eq. (5) to compute the stress,

σ = 1

V

dU

dγ
= 1

V

[
∂U

∂γ
+ ∂U

∂ r i

· dui

dγ

]
= 1

V

∂U

∂γ
, (6)

where the second equality holds because of mechanical
equilibrium f i = −∂U/∂ r i = 0. The condition of mechanical
equilibrium is used further in asserting that the amorphous
solid also remains in mechanical equilibrium after straining
(but before any plastic event takes place). Thus,

d f i

dγ
= ∂ f i

∂γ
+ ∂ f i

∂ rj

· duj

dγ
= 0. (7)

Using the notation for the mismatch forces

� = −∂ f
∂γ

, (8)

and the nonaffine velocities

v = du
dγ

, (9)

we can rewrite Eq. (7) as

v = −H−1 · �. (10)

Here the Hessian matrix H ij is defined as H ij = ∂2U
∂ r i ∂ rj

. A
realization of the nonaffine velocities is plotted in Fig. 1 for a
two-dimensional model amorphous solid. With the definition
of the nonaffine velocities, the total derivative operator (5)
takes the form

d

dγ
= ∂

∂γ
+ vi · ∂

∂ r i

. (11)

FIG. 1. (Color online) The nonaffine velocities v ≡ du
dγ

=
−H−1 · � for a typical quenched realization of a two-dimensional
glass forming model, with N = 10 000.

By repeating the application of the total derivative of stress
with respect to strain, the shear modulus appears:

μ = 1

V

d2U

dγ 2
= 1

V

[
∂2U

∂γ 2
+ ∂2U

∂γ ∂ r i

· dui

dγ

]

= μB + v · �

V
= μB − � · H−1 · �

V
, (12)

where the last step is achieved with the help of Eq. (10).
In Eq. (12), μB is the affine Born contribution to the shear
modulus while the second term represents the reversible
nonaffine contribution to the shear modulus due to the motion
of the atoms in the amorphous solid finding new equilibrium
sites after being strained by an affine transformation. We
should stress that until now the strain has remained reversible
in the sense that reducing γ back to zero (or to γ0 if that was
the reference state) returns all the coordinates r i to their
reference values.

Examining the expression for the shear modulus, Eq. (12),
we note that it contains a contraction of the inverse of the
Hessian matrix H−1. The existence of eigenmodes associated
with vanishing small eigenvalues of the Hessian H result in a
singularity in H−1, which in turn may lead to singularities in
the shear modulus. We stress here that we always consider the
inverse Hessian after removing the Goldstone modes. We show
in the following that higher order elastic coefficients consist of
terms containing an increasing number of contractions of H−1,
which can thus lead to increasingly higher order singularities.

There are two main physical reasons for the existence
of low-lying modes in amorphous solids. First, it is well
known that, with increasing system size, one finds low-lying
delocalized modes, for example in the form of plane waves
with a wave vector of the order of q̃ ∼ 1/L, with associated
eigenvalues λ̃ which can be estimated as

λ̃ = ω̃2 ≈ c2q̃2 ∼ L−2 ∼ N−2/d . (13)

In addition to the existence of low-lying delocalized modes,
there exist plastic events, which are understood as a mechanical
instability in amorphous systems [2,4,5]. When a plastic
event occurs at some value of the external strain γ = γP , it
is manifested as a saddle-node bifurcation, with the lowest
eigenvalue, denoted as λP , vanishing as λP ∝ √

γP − γ . It
was found in Ref. [6] that when N → ∞ then γP → 0; plastic
events occur at smaller and smaller values of the strain as the
system increases in size. This important finding is reiterated in
Sec. IV. This inevitable proximity of mechanical instabilities
is therefore the second reason for the existence of low-lying
modes, and below we show that it is in fact the most dangerous
one.

The question we address in this paper is how the shear
modulus μ and higher order elastic moduli Bn scale in the
thermodynamic limit N → ∞, V → ∞, and N/V = ρ in
athermal amorphous media by directly analyzing the effect
of low-lying modes through their corresponding statistics.
The analytic estimates are then validated against numerical
simulations of model glass formers, in both two and three
dimensions. The first point to be made is that, because of the
amorphous nature of the quenched solid, the various elastic
moduli are random variables and are therefore characterized
by their expectation values, their fluctuations, or more fully
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by their probability distribution functions (PDFs). We need
to know whether these PDFs collapse to a delta function
in the thermodynamic limit. If not, are the PDFs attaining
a limit function in the thermodynamic limit, or are the
fluctuations divergent in this limit? It turns out that μ exists
in the thermodynamic limit and its distribution attains a delta
function. On the other hand, the PDF of B2 does not collapse
and remains wide, independently of the value of N . The
coefficient B3 and all higher order coefficients are shown to
diverge; they do not exist at all in the thermodynamic limit.
We stress that these considerations are entirely orthogonal to
questions raised, say, in Ref. [7], where it was argued that
amorphous glassy systems at finite temperatures can always
flow if we wait sufficiently long. The present analysis has
nothing to do with temperature fluctuations or with long time
scales. Our findings are also fundamentally different from
those conveyed in Ref. [8], where it was shown that for a
solid that contains a crack the series (2) has a zero radius
of convergence. The present analysis pertains to homogenous
amorphous solids and is a direct quest for the existence of its
elastic theory in athermal conditions, but in the thermodynamic
limit.

The structure of this paper is as follows. In Sec. II we de-
scribe the models and numerical methods used in this work. In
Sec. III we derive expressions for the most singular terms of the
nth-order elastic coefficients. In Sec. IV we remind the reader
when a freshly quenched amorphous solid is expected to suffer
its first plastic event upon increased strain, and we introduce the
statistics of “plastic modes.” Section V is devoted to the analy-
sis of the effect of plane waves on the elastic coefficients in the
thermodynamic limit; the conclusion is that plane waves do not
lead to singularities in the elastic coefficients of any order. In
Sec. VI we present an analysis of the effect of localized plastic
modes on the elastic coefficients. We show that these modes do
not lead to the divergence of the shear modulus in the thermo-
dynamic limit. However, they do lead to enormous fluctuations
in B2: its PDF is predicted to attain a limit distribution that
does not narrow upon increasing the system size. In addition,
we predict and exemplify that the plastic modes lead to a
divergence in the mean of B3 in the thermodynamic limit, con-
cluding that it does not exist. All the higher order coefficients
are expected to diverge even faster. The paper is summarized
and discussed in Sec. VII. We present our conclusion regarding
the physical meaning of the analysis, proposing that our
results explain some surprising experimental statements about
metallic glasses that were made by various groups.

II. MODEL AND NUMERICAL METHODS

Below we employ a model glass-forming system with point
particles of two “sizes” but of equal mass m in two and three
dimensions, interacting via a pairwise potential of the form

φ

(
rij

λij

)
=

{
ε
[( λij

rij

)k + ∑q


=0c2


( rij

λij

)2
]
,

rij

λij
� xc,

0,
rij

λij
> xc,

(14)

where rij is the distance between particle i and j , ε is the
energy scale, and xc is the dimensionless length for which
the potential vanishes continuously up to q derivatives. The

interaction length scale λij between any two particles i and
j is λij = 1.0λ, λij = 1.18λ, and λij = 1.4λ for two “small”
particles, one “large” and one small particle, and two large
particles, respectively. The coefficients c2
 are given by

c2
 = (−1)
+1

(2q − 2
)!!(2
)!!

(k + 2q)!!

(k − 2)!!(k + 2
)
x−(k+2
)

c . (15)

We chose the parameters xc = 1.48, k = 10, and q = 3. The
unit of length λ is set to be the interaction length scale
of two small particles, and ε is the unit of energy and
temperature. Accordingly, the time is measured in units of
τ� =

√
mλ2/ε. The density is set to be N/V = 0.85λ−2 for

our two-dimensional systems, and N/V = 0.82λ−3 for our
three-dimensional systems. We prepared 5000 independent
amorphous solids by quenching high-temperature equilibrium
states with the rate of 10−4 ε

τ�
. Any residual heat was removed

by a potential energy minimization. We deformed our systems
using the athermal quasistatic (AQS) scheme described in
detail in Ref. [9]. Elastic coefficients were calculated using the
prescriptions and microscopic expressions given in Ref. [10].

III. MOST SINGULAR TERMS OF ELASTIC
COEFFICIENTS

The shear modulus was calculated exactly in Eq. (12). It
contains two terms, the Born term and the consequence of
the nonaffine field v. The Born term is always finite, being a
straightforward partial derivative of the energy. (This remark
pertains to the Born terms 1

V
∂nU/∂γ n in all the higher order

elastic coefficients as well.) On the other hand, the second term
in Eq. (12), which is due to the nonaffine response, contains
the contraction of H−1 which can be potentially singular. The
higher order elastic coefficients have more terms that result
from the nonaffine response, but it is always easy to identify
which is the potentially most divergent term. In the following
section, we consider the expressions for the most singular
terms of the nth-order elastic coefficients, denoted Dn, which
are the terms containing the largest number of contractions
with H−1. It should be understood that Bn contains terms of
all orders in H−1, from zero order (which is the Born term)
all the way to the (2n − 1)th order (cf. [2]). It is the latter one
which is potentially most singular, and we focus on that term
in the sequel.

To derive the most singular terms Dn of Bn, one can take
consecutive total derivatives of the most divergent part of μ

with respect to the external strain. The technical tool to do so is
derived by taking the total derivative (11) with respect to strain
of the equation H−1 · H = I ; then one obtains the relation [2]

d H−1

dγ
= −H−1 · ∂ H

∂γ
· H−1 − H−1 · (v · T ) · H−1, (16)

where we have introduced the third-rank tensor T ijk ≡
∂3U

∂ rk∂ rj ∂ r i
. Since v contains one contraction of H−1 [cf.

Eq. (10)], the second term on the right-hand side of Eq. (16)
contains a total of three contractions of H−1, as opposed to
only two contraction in the first term. So it is the second term,
H−1 · (v · T ) · H−1, that gives rise to the most singular terms
which are considered below.
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Using Eq. (16), we can operate on the most singular term
of the shear modulus,

D1 = −� · H−1 · �

V
, (17)

to obtain the most singular terms Dn of the elastic coefficients
Bn of the next two orders:

D2 = � · (H−1 · (v · T ) · H−1) · �

V
= T

...vvv

V
(18)

where triple vertical dots means contraction of a 3rd rank
tensor ( here T) with three vectors (here v) and

D3 = −3
(vv : T ) · H−1 · (T : vv)

V
. (19)

The full tensorial form of D2 and D3 was worked out in
Ref. [2], and one can check directly there that Eq. (19) indeed
presents their most singular terms.

We denote the set of Nd eigenvalues of the Hessian by
{λk}Nd

k=1 and their associated real eigenvectors by {�(k)}Nd
k=1.

For concreteness, we denote delocalized plane wave modes as
�̃ and their associated eigenvalues as λ̃. Similarly we denote
localized plastic modes as �̂ and their associated eigenvalues
as λ̂. We next introduce the contractions ak and bk
m:

ak ≡ � · �(k), bk
m ≡ T
... �(k)�(
)�(m). (20)

Using the normal mode decomposition of the inverse Hessian,
H−1 = ∑

k
�(k)�(k)

λk
, we write the most singular terms employ-

ing the contractions ak and bk
m as

D1 = − 1

V

∑
k

a2
k

λk

, D2 = − 1

V

∑
k
m

aka
ambk
m

λkλ
λm

, (21)

and

D3 = − 3

V

∑
ijk
m

aiaja
ambijkbk
m

λiλjλkλ
λm

. (22)

The nth most singular term can be written in a symbolic
notation as

Dn = −cn

V

∑
(···)

{a}n+1{b}n−1

{λ}2n−1
, (23)

with the combinatorial factors cn = (2n − 3)!!, and the sum
should be understood as running over the corresponding 2n −
1 indices of the eigenvectors. We list a number of important
realizations regarding Eq. (23):

(i) Every index that is being summed upon appears exactly
twice in the numerator with a corresponding eigenvalue in the
denominator. This is a direct result of the contraction of the
normal mode decomposition of H−1 = ∑

k
�(k)�(k)

λk
.

(ii) The sum can consist of only one arrangement of
indices (up to trivial permutations in identities of dummy
indices). This can be understood by examining the form of
Eq. (16); in the various contractions, any H−1 is always
contracted with two tensors, never with a single one. For
instance, contractions of the form T ijk : H−1

jk cannot appear.
Consequently, combinations of the form bikk or bkkk cannot
appear.

(iii) For odd n, Dn can be written as

Dn = −cn

V

∑
k

s2
k

λk

, (24)

where

sk =
∑
(···)

{a} n+1
2 {b}

n−1
2

k

{λ}n−1
, (25)

and the above sum should be understood to run over n − 1
corresponding indices. This is a consequence of the form w ·
H−1 · w that the most singular terms of odd order take, as seen
in, e.g., Eqs. (17) and (19).

The above points are consistent with the symmetry to
flipping γ → −γ that require, for even n, that 〈Dn〉 = 0.
One should note that although Bn are defined as the nth total
derivatives of stress with respect to strain, the most singular
terms contain at most a third derivative of the potential energy
with respect to coordinates. This stems from the fact that the
most singular terms contain the highest number of contractions
with H−1; dimensional consideration then limits the order of
the energy derivatives with respect to coordinates to third order.
This is the order that contributes since the first-order derivative
vanishes due to mechanical equilibrium, and the second order
is the Hessian itself which annuls H−1. Of course one finds
also mixed second-order derivatives with respect to external
strain and coordinates appearing through �.

IV. DISTRIBUTION OF PLASTIC MODES

To help us in studying the issues raised in this paper, we
briefly review one of the findings of Ref. [6] that plays a key
role in the analysis of the thermodynamic limit throughout this
work. Reference [6] employed the same generic glass-forming
system in two and three dimensions as introduced above; see
Ref. [6] for details. The numerical experiments performed
were as follows: An ensemble of independent initial glassy
configurations quenched from the high-temperature liquid was
constructed. Then the AQS scheme (see Ref. [9] for details)
was utilized to strain each system up to the first mechanical
instability occurring at some strain value 
γiso (see Fig. 2
for an illustration). The mechanical instability is a saddle-
node bifurcation in which the lowest nonzero eigenvalue λP

of the Hessian matrix vanishes as λP ∝ √
γP − γ . Statistics

of 
γiso were collected for a variety of system sizes. The first
plastic event (when a freshly quenched undeformed system
is strained) does not occur for any infinitesimal value of γ ,
and careful measurement of the mean strain interval 〈
γiso〉
that separates the undeformed state from the first plastic event
results in a scaling law

〈
γiso〉 ∼ Nβiso , βiso ≈ −0.62. (26)

In Fig. 3 we show the numerical evidence that supports
Eq. (26). If we accept the (reasonable but not proven) assertion
that the scaling law measured at relatively low values of N

continues for all N , this scaling law means that the potentially
unstable eigenvalue of the Hessian, λP , which goes through
the saddle-node bifurcation at the first plastic event, scales
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γ

σ

γP0

0

Δγiso

FIG. 2. (Color online) Cartoon of a typical stress vs strain curve
of a single instance of the numerical experiment performed in Ref. [6].
Each undeformed system was strained until the first mechanical
instability was encountered at some strain value γP . Statistics of

γiso ≡ γp were collected for a variety of system sizes, in both two
and three dimensions.

with the system size as

λP ∼
√


γiso ∼ Nβiso/2. (27)

We should state at this point that the accuracy of measurement
cannot rule out that the second digit in the exponent is
not accurate, so we need to use Eq. (27) with a grain of
salt, as discussed below. Based on this finding, we work
out the accumulation of localized modes around λP . Once
a distribution of “plastic modes,” P (λ̂), is formed in the
thermodynamic limit, we only know that when we observe
its minimal value we find λP ∼ Nβiso/2. Using the Weibull
theorem [11], we can therefore estimate that

P (λ̂) ∼ (N/λD)λ̂θK(λ̂), (28)

where θ = − 2+βiso

βiso
≈ 2.23, and K(λ̂) is some smooth function

with a cutoff of the order of a typical (Debye) cutoff eigenvalue
λD .

V. EFFECT OF DELOCALIZED MODES ON
ELASTIC COEFFICIENTS

In this section we show that the delocalized modes in the
form of plane waves do not contribute to the divergence of

10
3

10
4

10
−3

10
−2

10
−1

N

〈Δ
γ i

so
〉

10
3

10
4

10
−2

10
−1

N

〈Δ
γ
is

o
〉

(3D)(2D)

FIG. 3. (Color online) The mean strain interval before the first
mechanical instability 〈
γiso〉, for two dimensions (left) and three
dimensions (right). The continuous lines represent the scaling law
Eq. (26).

the elastic coefficients of any order. A reader who is more
interested in the divergence due to the plastic modes can skip
this section in favor of the next one.

Before we turn to the analysis, we work out the system size
dependence of the contractions, Eq. (20), when calculated in
the context of delocalized plane-wave modes �̃.

A. Scaling of the contractions ã and b̃ on delocalized modes

We begin with ãk ≡ � · �̃
(k)

:

ãk = � · �̃
(k) = −�̃

(k) · ∂ f
∂γ

= −
∑
i,j �=i

�̃
(k)
i · ∂ f ij

∂γ
,

where f ij is the force exerted by the j th particle on the
ith particle. Using the symmetry of the binary force, we can
rewrite

ãk = −1

2

∑
i,j �=i

�̃
(k)
i · ∂

∂γ
( f ij − f ji)

= 1

2

∑
i,j �=i

(
�̃

(k)
j − �̃

(k)
i

) · ∂ f ij

∂γ

= 1

2

∑
i,j �=i

�̃
(k)
ij · ∂ f ij

∂γ
, (29)

where we have introduced the notation �̃
(k)
ij ≡ �̃

(k)
j − �̃

(k)
i .

For long wavelength modes, �̃
(k)
i ∼ 1√

N
sin(qk · r i) and we

expect that the maximal contribution to the difference �̃
(k)
ij

follows the scaling

�̃ ij ∼ qk√
N

∼
√

λ̃k

N
. (30)

Note that this estimate is not precise for small systems where
the plane waves are not exact eigenmodes. With the system
approaching the thermodynamic limit, this estimate gets better
and better, since on very long wavelengths the effect of the
geometric disorder is not felt.

Since
∂ f ij

∂γ
can be positive or negative, the sum of N terms in

Eq. (29) cancels the
√

N of the normalization of the eigenmode
and accordingly

ãk ∼ qk ∼
√

λ̃k. (31)

We turn now to the contraction of delocalized plane-wave
modes on the third-rank tensor b̃k
m ≡ T k
m

...�̃
(k)

�̃
(
)

�̃
(m)

. To
proceed we need to use the symmetry properties of the tensor
that were spelled out in Ref. [2]. Including spatial component
Greek indices in the superscripts, the symmetries are

T
νηχ

ijk = 0 if i �= j �= k,

T
νηχ

ijj = −T
νηχ

iij if i �= j,

T
νηχ

iii = −
∑
j �=i

T
νηχ

iij , (32)

T
νηχ

iij = T
νχη

iji = T
χνη

jii if i �= j,

T
νηχ

ijk = T
νχη

ijk and all possible permutations of νηχ.
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Using these symmetries, it is easily verified that, for general
vectors w, y,z,∑

ijk

T ijk

...wi yj zk = 1

2

∑
i,j �=i

T iij

...wij yij zij , (33)

with wij ≡ wj − wi . Using this relation and Eq. (30), we can
estimate

b̃k
m ∼ qkq
qm

N
3
2

√
N ∼ 1

N

√
λ̃kλ̃
λ̃m, (34)

where the factor of
√

N accounts for summing O(N ) random
terms which can be positive or negative.

B. Proof of no divergence

With the scaling laws (31) and (34) for the contractions
ã and b̃, respectively, in hand, we are in the position to
calculate the contribution of delocalized modes on the elastic
coefficients. We begin with the case of odd n; we return to
the scaling of sk , given in a symbolic notation in Eq. (25), and
consider the sums as running over the delocalized modes �̃.

Since {ã} n+1
2 {b̃}

n−1
2

k ∼
√

λ̃k{λ̃}n−1/N
n−1

2 , then sk is a sum over

O(Nn−1) positive or negative terms of order
√

λ̃k{λ̃}n−1/N
n−1

2 .
This leaves us with sk ∼

√
λ̃k . Next, plugging in this scaling

into Eq. (24), we obtain

Dn ∼ − 1

V

∑
k

s2
k

λ̃k

∼ O(1), odd n, (35)

since it is (the negative of) a sum of N positive terms, each
of O(1), and the prefactor of 1/V cancels the N dependence
altogether. To exemplify these arguments for odd n, consider
D3 given in Eq. (22); we can rewrite it as

D3 ∼ − 3

V

∑
k

1

λ̃k

∑
ij

ãi ãj b̃ijk

λ̃i λ̃j

∑

m

ã
ãmb̃k
m

λ̃
λ̃m

∼ − 3

V

∑
k

1

λ̃k

( ∑
ij

ãi ãj b̃ijk

λ̃i λ̃j

)2

.

In this case ãi ãj b̃ijk ∼ λ̃i λ̃j

√
λ̃k/N and

sk =
∑
ij

ãi ãj b̃ijk

λ̃i λ̃j

∼
√

λ̃k, (36)

since it is a sum of O(N2) positive or negative terms, each
of order

√
λ̃k/N . From here, the scaling given in Eq. (35) is

immediately obtained.
We next consider the case of even n. Starting from Eq. (23),

we again consider sums over the delocalized modes �̃. In
the even n case, we consider the numerator {ã}n+1{b̃}n−1 ∼
{λ̃}2n−1/Nn−1; then

{ã}n+1{b̃}n−1

{λ̃}2n−1
∼ 1

Nn−1
. (37)

Now Dn is a sum over O(N2n−1) positive or negative terms of
order 1/Nn (incorporating the 1/V prefactor); hence,

Dn ∼ 1√
N

, even n. (38)

To exemplify these arguments for even n, consider D4, which
can be worked out from Eq. (23):

D4 ∼ −15

V

∑
ijk
mpq

ãi ãj ãkã
ãmb̃ijpb̃pkq b̃q
m

λ̃i λ̃j λ̃kλ̃
λ̃mλ̃pλ̃q

. (39)

In this case, using again Eqs. (31) and (34), we have

ãi ãj ãkã
ãmb̃ijpb̃pkq b̃q
m ∼ λ̃i λ̃j λ̃kλ̃
λ̃mλ̃pλ̃q/N
3,

with a sign which can be positive or negative. Therefore, the
sum in Eq. (39) runs over O(N7) terms, each of order 1/N3.
This, together with the 1/V prefactor, results in the scaling
D4 ∼ 1/

√
N , as expected from Eq. (38).

We conclude that the effect of low-lying delocalized modes
on the most singular terms of the elastic coefficients is regular;
we obtained the scaling Dn ∼ O(1) for odd n and Dn ∼ 1/

√
N

for even n, which is consistent with the symmetries and the
intensive nature of the elastic coefficients.

VI. EFFECT OF PLASTIC MODES ON ELASTIC
COEFFICIENTS

The most important physical origin for low-lying modes,
besides the presence of delocalized modes, is the eminent prox-
imity of plastic failures manifested as mechanical instabilities.
In this section we analyze the effect of the resulting localized
plastic modes on the elastic coefficients of various orders. As
opposed to the case of delocalized modes (cf. Sec. V), in this
case we cannot present an a priori estimate of the system
size scaling of the contractions, Eq. (20), when calculated for
the case of plastic modes �̂. We need to rely on numerical
information. Notwithstanding, we go as far as possible with
scaling arguments before turning to the numerical simulations.

We define the contractions for the case of localized plastic

modes, b̂k
m ≡ T
... �̂

(k)
�̂

(
)
�̂

(m)
and âk ≡ � · �̂

(k)
. Since we

expect the plastic modes to be highly localized, the triple
contractions b̂k
m can be taken to be represented approximately
by delta functions b̂k
m ∼ δk
δ
m. With this approximation
(whose consequence we test below against our numerics),
we conclude that all the sums appearing in Eq. (23) (when
considered to run over the plastic modes �̂) are dominated by
the diagonal terms,

Dn ∼ − 1

V

∑
k

ân+1
k b̂n−1

k

λ̂2n−1
k

. (40)

It has been shown [2,4] that, close to a mechanical
instability, the eigenvalue λP associated with the eigenmode
which is becoming unstable follows the equation of motion

dλ−1
P

dγ
∼ −âP b̂P λ−3

P + O
(
λ−2

P

)
, b̂P ≡ b̂kkk for k = P.

(41)

This equation is analogous to Eq. (16), where it is given
in terms of H−1. The analogous equation for λ̂−1

k is more
involved, but once we apply the above assumption that b̂k
m ∼
δk
δ
m it simplifies to an isomorphic equation,

dλ̂−1
k

dγ
∼ −âkb̂kλ̂

−3
k + O

(
λ̂−2

k

)
. (42)
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FIG. 4. (Color online) An example of a single measurement of
D2 close to a mechanical instability at γP in three dimensions for
N = 1000. We extract the coefficient of the resulting power law,
D2 ∼ (γP − γ )−

3
2 , and average over realizations to obtain Fig. 5.

The left panel is in linear scale while the right panel is in logarithmic
scale.

A consequence of this result is that the product âkb̂k has
to remain independent of the system size. We see this from
Eq. (27), which implies that the left-hand side of Eq. (42) is of
the order of λ−3

k .
The assumption that âkb̂k is system size independent does

not guarantee that ân+1
k b̂n−1

k is also system size independent.
In order to establish this, we can measure, say, D2 close to a
mechanical instability at γP . Defining âP and b̂P as âk and
b̂k for the plastic mode �(P ), such a measurement results
in a power law D2 = (â3

P b̂P /V )(γP − γ )−
3
2 [2], allowing us

to extract the prefactor. By taking statistics over the system
size dependence of the prefactor, one can then deduce how
ân+1

k b̂n−1
k scales with system size.

We now turn to the numerical simulations. For every
independent system from our ensemble of 5000 realizations
per system size, we strain the system using the AQS scheme
until the first mechanical instability is encountered at γP . We
then backtrack and measure the most singular term D2 at
various distances from the instability, γP − γ . An example
of a single such measurement is plotted in Fig. 4. We then
extract the prefactor of the resulting power law and collect
statistics of this number for various system sizes, in both two
and three dimensions. The results are plotted in Fig. 5. We find
that the dependence of 〈â3

P b̂P 〉 on N is very weak. Together
with the assumption that âP b̂P is N independent, we conclude
that to a reasonable approximation we can take

〈
â2

P

〉 ∼ N0, (43)

in both two and three dimensions. We assume in the following
that all the â2

k have this N independence, without a systematic
dependence on the index k; i.e., 〈â2

k 〉 ∼ 〈â2
P 〉 ∼ N0.

Having established the scaling of â2, we next consider the
sum in Eq. (40). We begin with n = 1 and write this sum as
an integral over the density of plastic modes P (λ̂) given in
Eq. (28); then

∑
k

1

λ̂k

→ N

∫
N

− 1
1+θ

λ̂θK(λ̂)dλ̂

λ̂
. (44)
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FIG. 5. (Color online) The mean of the product of the contrac-
tions, â3

P b̂P , as a function of system size N . For the calculation, the
weak observed dependence is taken as no dependence: â2

P ∼ N 0.

Since θ ≈ 2.2 > 1, it is obvious that the low-lying plastic
modes do not lead to a singularity in the most singular term of
the first-order modulus D1.

For an odd n > 1, the sum in Eq. (40) becomes insensitive
to the alternating signs of âkb̂k:

∑
k

ân+1
k b̂n−1

k

λ̂2n−1
k

∼
∑

k

1

λ̂2n−1
k

. (45)

From here,∑
k

1

λ̂2n−1
k

→ N

∫
N

− 1
1+θ

λ̂θK(λ̂)dλ̂

λ̂2n−1
∼ N

2n−1
1+θ . (46)

For an even n, the sum in Eq. (40) consists of positive and
negative terms, and whether the sum diverges or converges
depends delicately on the exponents θ and 2n − 1. Since the
mean of the moduli with even n vanishes, we are interested
in their PDFs (which are always symmetric around zero). The
issue of convergence or divergence is dealt with in detail in the
Appendix, where we study the PDFs of the sum

Xn(N ) =
∑

k

(
g

(k)
±

)n−1

λ̂2n−1
k

, (47)

where g
(k)
± is +1 or −1 with equal probabilities. We show

that for the value θ ≈ 2.2 and n > 1 all these PDFs tend in
the thermodynamic limit to a form with power-law tails. The
result is the rescaled PDF

f

(
Xn(N )

N
2n−1
1+θ

)
→ f (y) ∼ |y|− 2n+θ

2n−1 , n even,|y| � 1, (48)

meaning that once the PDFs are rescaled by N
2n−1
1+θ they attain

a limit form.
We can now finally estimate the system size scaling of Dn.

Incorporating the results of the Appendix with Eqs. (40), (43),
and (46), we estimate

Dn ∼ 1

V
N

2n−1
1+θ ∼ N

2n−2−θ
1+θ . (49)

For n = 2, the prediction is

|D2| ∼ N−0.06. (50)

Note that with our numerical accuracy regarding the exponents
we cannot rule out that the exponent is actually zero. Therefore,
we expect the distributions of D2 to be either independent of
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FIG. 6. (Color online) Distributions of D1 measured for each
instance in our ensemble of quenched amorphous solids. As expected,
the width of these distributions decays with increasing system size.

system size or to decay very slowly to a delta function. For
n = 3, we calculate

D3 ∼ −N0.56. (51)

Consequently, 〈D3〉 is predicted to diverge in the thermo-
dynamic limit, leading to the divergence of the third-order
elastic coefficients B3. Needless to say, higher order coeffi-
cients display stronger divergences and do not exist in the
thermodynamic limit.

Turning again to the numerics, we measured the most
singular terms D1, D2, and D3 for each member of our
ensemble of quenched amorphous solids, in both two and three
dimensions. For each member of the ensemble, we computed
these objects directly from their definitions, Eqs. (17)–(19).
Due to the amorphous nature of our solid, each member
of the ensemble provides a different value to the measured
quantity. The distributions of D1 are displayed in Fig. 6; as
predicted, they show no anomalies, and their widths decay
with increasing system size, as expected from an intensive
thermodynamic variable.

Next, we present the distributions of D2 in Fig. 7. As
required from isotropy, the distributions are symmetric around
zero, and 〈D2〉 = 0. As predicted, the width of the distribution
remains N independent (or decreases extremely slowly),
meaning that the fluctuations over realizations of D2 do not
decay appreciably with increasing system size, despite the
intensive nature of the elastic coefficients.
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FIG. 7. (Color online) Distributions of D2 measured for each
instance in our ensemble of quenched amorphous solids. As expected,
the width of these distributions does not decay with increasing system
size.
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FIG. 8. (Color online) Distributions of D3 measured for each
instance in our ensemble of quenched amorphous solids.

In Fig. 8 we display the distributions of D3 measured in
our simulations. Indeed, we find that 〈D3〉 grows with system
size, in agreement with the estimate given here. In Fig. 9
we show the distributions of D3 rescaled by the expected N

dependence Nζ given by Eq. (51); the data collapse is in
very good support of the estimated exponents. We measured
approximately ζ2D ≈ 0.62 in two dimensions and ζ3D ≈ 0.56
in three dimensions. Note that all the elastic coefficients from
B3 and higher are expected to diverge in the thermodynamic
limit even faster.

VII. SUMMARY AND DISCUSSION

We have learned in this paper that in amorphous solids
of the type discussed above the elastic theory exists only
for infinitesimal strains in the thermodynamic limit. We have
found that the shear modulus exists in the thermodynamic
limits, but starting with B2 the PDFs of all the nonlinear
coefficients Bn do not converge to a delta function in the
thermodynamic limit. Starting with B3 all the coefficients
diverge with N . The final result can be summarized by the
prediction

Bn ∼ N
2n−2−θ

1+θ . (52)
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FIG. 9. (Color online) Distributions of D3 rescaled by the
estimated N dependence; cf. Eq. (51). The data collapse is in excellent
agreement with the predicted scaling behavior. We find the best
collapse with ζ2D ≈ 0.62 for the two-dimensional data and ζ3D ≈ 0.56
for the three-dimensional data.
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Note that the exponent θ is not expected to be universal since
it depends on the quenching protocol and other details of the
system. We expect, however, quite generally that θ � 2.2 Thus,
the shear modulus exists always, providing us with a small
linear regime where elasticity theory may remain useful.

We reiterate that the analysis presented here has nothing
to do with time scales. As long as our straining rate is slow
enough, γ̇ 
 L/c, the formation of an affine transformation
is cotemporal with the creation of forces on the particles that
result in a concurrent nonaffine transformation which is the
source of potential singularities in the theory. One cannot
“freeze” the nonaffine part of the transformation and go on
straining. The “velocity” v above is real, and it represents how
the nonaffine transformation occurs on the same time scale
that the strain is increased.

The upshot of the analysis presented above is that in
amorphous solids in the thermodynamic limit it is impossible
to separate elastic from plastic responses. They are mixed
together in an intimate way, defying the existence of a naive
nonlinear elastic theory in the form of a Taylor expansion.
It is possible that one needs to renormalize the theory in
order to obtain a well-posed expansion in another variable;
this possibility is explored in a forthcoming publication. At
this point, our feeling is that the results presented above
explain the surprisingly high degree of plasticity that was
found in recent experiments on metallic glasses [13], and that
macroscopic samples of metallic glasses cannot be maintained
in the elastoplastic steady state that is found in small sample
simulations [14,15]: they appear to break as soon as they
reach the yielding transition. Also, we point to the interesting
experiments [16,17] where it was shown that in nanosamples
of metallic particles one could reach the elastoplastic steady
state. While not mathematically related to the analysis shown
in this paper, we propose that all these observations are in
accordance with the theoretical conclusions presented here.
It may be worthwhile to examine systematically the system
size dependence of the existence of the yielding transition to a
steady elastoplastic state in metallic glasses and other systems
of the type presented here. In particular, it should be interesting
to examine the nonlinear elastic coefficients in small system,
like nanosamples of metallic glasses, and to attempt to confirm
the divergence of B3 and of higher order nonlinear elastic
coefficients.
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2For θ < 2 the system is mechanically unstable even at equilibrium,
with divergent probability to see zero energy barriers in the energy
landscape. For more details on this delicate point, cf. Ref. [12].
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APPENDIX: SYSTEM SIZE SCALING OF X(N)

The sum Xn(N ) was defined in Eq. (47); here we provide a
numerical analysis of the statistical problem, from which we
deduce the scaling of Xn with the system size N . For clarity,
we repeat the formulation of the problem: given a probability
distribution K(λ̂) ∼ λ̂θ for small λ̂, we draw O(N ) numbers
from this distribution and calculate

Xn =
∑

k

g
(k)
±

λ̂2n−1
k

, (A1)

where as before g
(k)
± = ±1 with probability 1/2 for each

possibility. Notice that here we only consider the case of even
integers n; then (g(k)

± )n−1 = g
(k)
± .

Following this formulation, we ran simulations of the above
statistics and extracted the PDFs of Xn for n = 2 and n = 4,
which are the cases of interest in Sec. VI. The PDFs for X2 and
X4 are plotted in semilog scales in Figs. 10 and 11. As expected
from the symmetry of the factors g

(k)
± , the distributions are

symmetric around zero. We confirm empirically the known

−30 −10 10 30

10
−3

10
−2

10
−1

X4N
− 7

1+θ

p
( X

4
N

−
7

1
+
θ

)

 

 

N = 101

N = 102

N = 103

N = 104

N = 105

N = 106

FIG. 11. (Color online) Distributions of X4/N
7

1+θ , calculated
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result [18] that the PDFs of Xn(N ) for various N ’s, when
plotted as a function of the rescaled argument Xn/N

2n−1
1+θ , attain

a limit distribution known as a Levy law [18]. Our simulations
were carried out using θ = 2.2; see Secs. IV and VI for the
origin of this exponent. We note that the extracted scaling

law does not apply to any choice of exponents θ and 2n − 1
(see review by Bouchaud and Georges [18] for further details).
According to Ref. [18], one expects the limiting distributions of
the sums Xn for higher orders n > 4 to obey the same scaling;
namely, they are given by a scaling function of Xn/N

2n−1
1+θ .
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