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We explore the Brownian dynamics in the quantum regime (by investigating the quantum Langevin and
Smoluchowski equations) in terms of an effective time-independent Hamiltonian in the presence of a rapidly
oscillating field. We achieve this by systematically expanding the time-dependent system-reservoir Hamiltonian
in the inverse of driving frequency with a systematic time-scale separation and invoking a quantum gauge
transformation within the framework of Floquet theorem.
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External time periodic driving of a Hamiltonian system
generates explicit time dependence of the parameters involved
in the dynamics. Applications range from the Paul trap [1] to
controlling particle bunching and dilution in particle acceler-
ators [2]. The properties of a classical parametric oscillator
have been recently investigated experimentally in optically
trapped water droplets [3]. When the parameter in question
oscillates, certain simplifications occur, as first demonstrated
by Kapitza [4]. To analyze Kapitza’s pendulum [4], namely, a
pendulum where the point of suspension is moved periodically,
one basically considers the dynamics of a classical particle
moving in one dimension under the influence of a force which
is time periodic. Typically, the solutions for time-dependent
problems can be attained numerically. However, when the
period of the force is small compared to the other time scales
of the problem, it is possible to separate the classical motion
of the particle into “slow” and “fast” parts. This simplification
is due to the fact that the particle does not have the time
to react to the periodic force before this force changes its
sign, namely, the contribution of the periodic force to the
acceleration in one period is negligible. The leading order (with
respect to 1/ω) of the dynamics was first computed by Kapitza
[4]. Kapitza’s treatment of the pendulum was generalized by
Landau and Lifshitz [5] for any forced bare classical system.
The treatment of Landau and Lifshitz was extended to the order
of ω−4 (where ω is the driving frequency) to demonstrate
that for rapidly driven Hamiltonian systems, it is possible
to obtain a time-independent Hamiltonian that controls the
slow motion [6]. Later, Rahav et al. [7] introduced friction
phenomenologically to the classical equation of motion and
showed that the motion of the slow part can be described by
a time-independent equation that is derived as an expansion
of the order of ω−1. In the present Rapid Communication, we
would like to address this problem for a quantum dissipative
system.

We consider a system-reservoir (SR) Hamiltonian where
the reservoir is modeled as a set of harmonic oscillators with
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characteristic frequencies ωj and masses mj and the system is
acted upon by a periodic field:

Ĥ = ĤS(x̂,p̂) + ĤB({q̂j },{p̂j }) + ĤSB (x̂,{q̂j })

= p̂2

2m
+ V̂0(x̂) + V̂1(x̂,ωt)

+
N∑

j=1

⎧⎨
⎩ p̂2

j

2mj

+ 1

2
mjω

2
j

(
q̂j − cj x̂

mjω
2
j

)2
⎫⎬
⎭ , (1)

where x̂ and p̂ are the coordinate and momentum operators of
the system and {q̂j ,p̂j } are the set of coordinate and momentum
operators for the bath oscillators. V̂1 is a periodic function of
ωt and its average over a period vanishes. In writing Eq. (1), we
have adopted the Zwanzig model [8] of the SR Hamiltonian.
The inclusion of coupling of the system with the reservoir
results in the irreversibility in the dynamics of the system by
introducing damping. The equation of motion for the system
that one obtains from the above Hamiltonian Eq. (1) is a
quantum Langevin equation [9]:

m ¨̂x +
∫ t

0
dt ′ γ (t − t ′) ˙̂x(t ′) + ∂V̂ (x̂,ωt)

∂x̂
= ξ̂ (t). (2)

Here, V̂ = V̂0 + V̂1 and the damping kernel is given by
γ (t − t ′) = 1

π

∫ +∞
−∞ dω[J (ω)/ω] cos ω(t − t ′), where J (ω) is

the spectral density of the bath. In the sequel, we focus on
the Ohmic regime where J (ω) = mγω and the parameter γ

denotes the friction coefficient. The fluctuating force operator
ξ̂ (t) is a zero-centered Gaussian random force and obeys the
fluctuation-dissipation relation (FDR)

〈ξ̂ (t)ξ̂ (t ′) + ξ̂ (t ′)ξ̂ (t)〉 = h̄

∫ +∞

−∞

dω

π
J (ω) coth

(
h̄ω

2kBT

)
× cos ω(t − t ′), (3)

where the average is taken over the initial bath degrees of
freedom. Equation (3) is exact and is derived under the
assumption that the initial density operator of the system
plus the reservoir factorizes. In what follows, we consider
that the external force F̂ (x̂,ωt) = −V̂ ′

1(x̂,ωt) varies in time
with “high” frequency ω. By high frequency, we mean one
such that ω � 1

T
, where T is the order of magnitude of the

period of motion which the system would execute in the field

060101-11539-3755/2011/83(6)/060101(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.060101


RAPID COMMUNICATIONS

SHIT, CHATTOPADHYAY, AND CHAUDHURI PHYSICAL REVIEW E 83, 060101(R) (2011)

V̂0 alone. The magnitude of F̂ is not assumed to be small in
comparison with the forces due to the field V̂0, but we shall
assume that the oscillation of the particle as a result of this
force is small.

As the Hamiltonian Eq. (1) is periodic in time, Ĥ (t + T ) =
Ĥ (t), one may resort to the Floquet theorem [10] to study
the dynamics associated with such a Hamiltonian. The time
translation symmetry of the Hamiltonian implies that the
solutions of the Schrödinger equation

ih̄
∂ψ

∂t
= Ĥψ (4)

are linear combinations of Floquet states Uε(x,ωt) of the
form ψε = exp(− i

h̄
εt)Uε(x,ωt) where ε is the Floquet or

quasienergy and Uε(x,ω(t + T )) = Uε(x,ωt), with ω = 2π
T

.
These states have a natural separation into a slow part
exp(−iεt/h̄) and a fast part Uε(x,ωt) that depends only on
the fast time τ = ωt . To have the equation of motion of
the slow part, following Ref. [11], we look for a unitary
transformation eiT̂ (t), where T̂ (t) is Hermitian in nature and
T̂ (t + T ) = T̂ (t) such that the transformed Hamiltonian does
not have explicit time dependence. In terms of the transformed
wave function χ = eiT̂ (t)ψ , Eq. (4) reads as ih̄

∂χ

∂t
= Ĥeffχ ,

where the time-independent effective Hamiltonian is

Ĥeff = eiT̂ (t)Ĥ e−iT̂ (t) + ih̄

(
∂eiT̂

∂t

)
e−iT̂ , (5)

or, in terms of fast time τ ,

Ĥeff = eiT̂ Ĥ e−iT̂ + ih̄ω

(
∂eiT̂

∂τ

)
e−iT̂ . (6)

At high frequency, T̂ is assumed to be small, of the order
of ω−1. We shall justify this assumption explicitly in the
following calculation. We expand Ĥeff and T̂ in powers of
1
ω

: Ĥeff = ∑∞
n=0

1
ωn Ĥ

e
n and T̂ = ∑∞

n=1
1
ωn T̂n; and choose T̂

such that Ĥeff is time independent in any order. To do so, we
compute Ĥ e

j in terms of T̂1,T̂2, . . . ,T̂j+1 and then choose T̂j+1,

so that Ĥ e
j is time independent. In what follows, to calculate

the terms in Eq. (5), we use the operator expressions

eiT̂ Ĥ e−iT̂ = Ĥ + i[T̂ ,Ĥ ] − 1

2!
[T̂ ,[T̂ ,Ĥ ]]

− 1

3!
[T̂ ,[T̂ ,[T̂ ,Ĥ ]]] + · · · (7)

and (
∂eiT̂

∂τ

)
e−iT̂ = i

∂T̂

∂τ
− 1

2!

[
T̂ ,

∂T̂

∂τ

]

− 1

3!

[
T̂ ,

[
T̂ ,

∂T̂

∂τ

]]
+ · · · . (8)

In the leading order O(ω0), Ĥ e
0 is given by

Ĥ e
0 = p̂2

2m
+ V̂0(x̂) + ĤB + ĤSB + V̂1(x̂,τ ) − h̄

∂T̂1

∂τ
. (9)

The terms V̂0, V̂1, ĤB , and ĤSB do not depend on p̂. To cancel
the time dependence, we choose

T̂1 = 1

h̄

∫ τ

dτ ′ V̂1(x̂,τ ′), (10)

where the constant of integration has been chosen to be zero
to avoid the secular terms. Substituting Eq. (10) into Eq. (9),
we have Ĥ e

0 = p̂2

2m
+ V̂0(x̂) + ĤB + ĤSB . This is the leading

order of the effective Hamiltonian. At the order ω−1, from
Eq. (6), we have Ĥ e

1 = i[T̂1,Ĥ ] − h̄ ∂T̂2
∂τ

− ih̄
2 [T̂1,

∂T̂1
∂τ

]. We note
that T̂1 as given by Eq. (10) depends only on the coordinate x̂

and hence it commutes with its time derivative and with V̂0,
ĤB , and ĤSB . Thus, Ĥ e

1 = i[T̂1,
p̂2

2m
] − h̄ ∂T̂2

∂τ
. A periodic T̂2 can

always be chosen so that ∂T̂2
∂τ

= i
h̄

[T̂1,
p̂2

2m
] and consequently

Ĥ e
1 vanishes. Using Eq. (10), one may easily see that T̂2 can

be chosen as

T̂2 = i

2m

∫ τ

dτ

∫ τ

dτ V̂ ′′
1 (x̂,τ )

+ i

m

∫ τ

dτ

∫ τ

dτ V̂ ′
1(x̂,τ )

∂

∂x
, (11)

where we have used the coordinate representation of the
operator p̂. Clearly, this choice makes Ĥ e

1 = 0. At the next
order ω−2, Ĥ e

2 can be calculated from

Ĥ e
2 = i[T̂2,Ĥ ] − 1

2
[T̂1,[T̂1,Ĥ ]] − h̄

∂T̂3

∂τ
− ih̄

2

[
T̂1,

∂T̂2

∂τ

]

− ih̄

2

[
T̂2,

∂T̂1

∂τ

]
+ h̄

6

[
T̂1,

[
T̂1,

∂T̂1

∂τ

]]
. (12)

Using Ĥ = Ĥ e
0 + h̄ ∂T̂1

∂τ
and ∂T̂2

∂τ
= [T̂1,

p̂2

2m
] = [T̂1,Ĥ ], we get

Ĥ e
2 = i

[
T̂2,Ĥ

e
0

] − h̄
∂T̂3

∂τ
+ ih̄

2

[
T̂2,

∂T̂1

∂τ

]
. (13)

We now choose a periodic T̂3 to balance the time dependence
of Ĥ e

2 . In doing so, we observe that Ĥ e
2 has some time-

independent part ih̄
2 [T̂2,

∂T̂1
∂τ

]. To make T̂2 periodic, T̂3 is chosen
so that (the overbar denotes the time average over one period)

∂T̂3

∂τ
= i

h̄

[
T̂2,Ĥ

e
0

] + i

2

[
T̂2,

∂T̂1

∂τ

]
− i

2

[
T̂2,

∂T̂1

∂τ

]
. (14)

Now, using Eqs. (10) and (11), T̂3 is found to be

T̂3 = − h̄

m2

∫ τ

dτ

∫ τ

dτ

∫ τ

dτ V̂ ′′
1 (x̂,τ )

∂2

∂x2

− h̄

m2

∫ τ

dτ

∫ τ

dτ

∫ τ

dτ V̂ ′′′
1 (x̂,τ )

∂

∂x

− h̄2

4m2

∫ τ

dτ

∫ τ

dτ

∫ τ

dτ V̂ (4)(x̂,τ )

− 1

mh̄
V̂ ′

0(x̂)
∫ τ

dτ

∫ τ

dτ

∫ τ

dτ V̂ ′
1(x̂,τ )

+ 1

2mh̄

∫ τ

dτQ̂(x̂,τ ) + Î (x̂,p̂), (15)
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where

Q̂(x̂,τ ) = imh̄

[
T̂2,

∂T̂1

dτ

]
− imh̄

[
T̂2,

∂T̂1

dτ

]

= V̂ ′
1(x̂,τ )

∫ τ

dτ

∫ τ

dτ V̂ ′
1(x̂,τ )

− V̂ ′
1(x̂,τ )

∫ τ

dτ

∫ τ

dτ V̂ ′
1(x̂,τ ), (16)

and Î (x̂,p̂) is the constant of integration which is a Hermitian
operator of x̂ and p̂ only. In the leading-order correction,
one need not calculate Î . For higher-order correction, one
requires knowledge of Î . Using Eq. (15) into Eq. (13), the
time dependence of Ĥ 2

e disappears and consequently Ĥ e
2 is

found to be

Ĥ 2
e = ih̄

2

[
T̂2,

∂T̂1

dτ

]
= 1

2m

[∫ τ

dτ V̂ ′
1 (x̂,τ )

]2

. (17)

Thus, with the nonvanishing leading-order contribution, the
time-independent effective Hamiltonian will be given by

Ĥeff = p2

2m
+ V̂eff + ĤB + ĤSB, (18)

where

V̂eff = V̂0(x̂) + 1

2mω2

[∫ τ

dτ V̂ ′
1(x̂,τ )

]2

. (19)

Equation (19) generates the equation of motion of the slow
variable, and instead of Eq. (2), the Langevin equation for the
slow variable reduces to

m ¨̂x +
∫ t

0
dt ′γ (t − t ′) ˙̂x(t ′) + V̂ ′

eff = ξ̂ (t). (20)

From the very mode of our development it is evident that the
SR interaction appears only in the leading-order Hamiltonian
Ĥ e

0 and possesses the same initial or original structure.
Consequently, the FDR [Eq. (3)] remains valid. Thus the
noise term does not enter into the effective Hamiltonian to the
leading order. Here we want to mention the works reported in
Ref. [12]. We consider the quantum Langevin equation (2) for
a harmonic oscillator with V̂ (x̂,τ ) = 1

2mω2(t)x̂2. The solution
of Eq. (2) can be written as x̂(t) = m ˙̂x0G1(t) + mx̂0G2(t) +
X̂(t), where x̂0 and ˙̂x0 are the initial position and velocity
of the quantum system and x̂(t) = ∫ t

0 dt ′ G(t − t ′)ξ̂ (t ′). By
introducing the two solutions y1(t) and y2(t) of the equation
ÿ(t) + [�2(t) − γ

4 ]y(t) = 0, the functions G1(t) and G2(t) are
obtained as Gi(t) = 1

m
exp(−γ t/2)yi(t), i = 1,2. The Green’s

function G(t,t ′) is then given by [13]

G(t,t ′) = 1

m
e

γ

2 (t−t ′)[y1(t)y2(t ′) − y1(t ′)y2(t)]. (21)

The evolution equation of the Wigner quasiprobability distri-
bution function W (q,p,t) for a harmonic oscillator coupled to
a harmonic bath is of the general form [14]

∂W

∂t
= − p

m

∂W

∂q
+ m�̃2(t)q

∂W

∂p
+ 2�(t)

∂

∂p
(pW )

+Dpp(t)
∂2W

∂p2
+ Dqp(t)

∂2W

∂q∂p
. (22)

In the development of Caldeira-Leggett [15], the term contain-
ing the mixed diffusion coefficient Dqp was absent as they had
dealt with high-temperature quantum dynamics. Later, keeping
in mind that quantum noise processes are non-Markovian,
this term was incorporated [14]. For the expression of the
time-dependent parameters �̃2, �(t), Dpp(t), and Dqp(t)
for a driven harmonic oscillator, the reader may consult
Ref. [16]. The diffusion coefficients Dpp(t) and Dqp(t) are

given by [16] Dpp(t) = m
2 〈 ˙̂X(t)ξ̂ (t) + ξ̂ (t) ˙̂X(t)〉 and Dqp(t) =

1
2 〈X̂(t)ξ̂ (t) + ξ̂ (t)X̂(t)〉. The above-mentioned diffusion coef-
ficients can be expressed further in terms of the noise correla-
tion function [13] Dpp(t) = m

2

∫ t

0 dt ′ ∂G
∂t

〈ξ̂ (t)ξ̂ (t ′) + ξ̂ (t ′)ξ̂ (t)〉
and Dqp(t) = 1

2

∫ t

0 dt ′G(t,t ′)〈ξ̂ (t)ξ̂ (t ′) + ξ̂ (t ′)ξ̂ (t)〉. A semi-
classical approximation of the diffusion coefficients can be
obtained by expanding the noise correlation Eq. (3) in powers
of h̄ and, in the Ohmic limit, we obtain

〈ξ̂ (t)ξ̂ (t ′) + ξ̂ (t ′)ξ̂ (t)〉 = 4γmkBT δ(t − t ′)

−h̄2

3

γm

kBT
δ′′(t − t ′) + O(h̄3). (23)

Using Eq. (23), one can eventually arrive at the semiclassical
diffusion coefficient up to second order in h̄ω/kBT ,

Dpp(t) = mγkBT + 2γm2kBT �[�2(t) − γ 2],
(24)

Dqp(t) = 2γ 2mkBT �,

where � = h̄2

24m(kBT )2 . At the high-temperature limit Dqp(t)
vanishes and Dpp(t) reduces to the original equation of
Caldeira-Leggett [15]. The above-mentioned � was first
introduced by Ankerhold et al. [17] to obtain the quantum
Smoluchowski equation (QSE) for arbitrary potentials. The
full-blown expression for � is given by � = ( h̄

πmγ
)ln( h̄βγ

2π
)

for γh̄β � 1 (where β = 1
kBT

), which reduces to h̄2

24m(kBT )2

in the high-temperature domain (γh̄β � 1) [18]. The mixed
diffusion coefficient is independent of frequency of the system
and is purely quantum mechanical in nature, i.e., Dqp −→ 0
as h̄ −→ 0, while the other diffusion coefficient Dpp has a
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FIG. 1. (Color online) Plot of diffusion coefficient as a function
of time with kBT = 1.0, ω0 = 1.0, h̄ = 1.0, ω = 10.0, and γ = 0.1.
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time-independent classical part and a time-dependent quantum
part.

If we now consider V̂0 = 1
2mω2

0x̂
2 and V̂1 = 1

2mx̂2 cos ωt

in Eq. (1), we get �2(t) = ω2
0 + cos ωt . This is an important

example of a driven quantum system known as the parametric
oscillator with a time-dependent frequency �(t) [19]. It is
an experimentally important case in view of the fact that it
describes the Paul trap [1]. The effective dynamics of the
slow variable, on the other hand, will be governed by V̂eff

given by Eq. (19). With the chosen V̂0 and V̂1, one may
easily get the effective potential as V̂eff = 1

2mω2
0x̂

2 + 1
4mω2 x̂

2.
Thus, the time-independent effective frequency would be
�2

e = ω2
0 + 1

2m2ω2 . With this effective frequency, one can
calculate the time-independent diffusion coefficient as Deff

pp =
mγkBT + 2γm2kBT �[�2

e − γ 2]. In Fig. 1, we plot the
diffusion coefficient as a function of t and observe that Dpp(t)
has small oscillations around Deff

pp, which bolsters our belief
regarding the validity of our present formulation. Following
Ankerhold et al. [17], we obtain the QSE in the presence of a
highly oscillating periodic force as follows:

∂P (q,t)

∂t
= 1

γm

∂

∂q

[
V ′

eff(q) + 1

β

∂

∂q
Deff

pp

]
P (q,t). (25)

The exact expression of the QSE is a subject of growing interest
[18] and a rigorous derivation for a driven quantum system is
still lacking. Recently, in Ref. [13], the authors considered

a driven quantum harmonic oscillator strongly coupled to a
heat bath and obtained the QSE under the condition of high
friction, high temperature, and moderate driving. On the other
hand, Eq. (25) is applicable for rapid oscillations and being
an equation with a time-independent effective potential and
diffusion coefficient, it is much easier to handle analytically
and numerically.

In summary, starting from a SR model where the system
is driven by a rapidly oscillating space-dependent force, we
derive the effective quantum Brownian motion in terms of
an explicit time-independent effective potential and diffusion
coefficient. Consequently, we derive the QSE for a driven
harmonic oscillator. We would like to conclude by mentioning
that the rapidly oscillating space-dependent fields where the
spatial variation of the field is smooth but otherwise arbitrary
have been applied successfully to cold atoms, where a very
high degree of control is possible. The exploration of the
dynamics of cold atoms in strong electromagnetic fields
has resulted in many unique and interesting experimental
observations [20]. We hope that our present development
provides room for explaining such contemporary and futuristic
experiments.
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