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Synchronization patterns in transient spiral wave dynamics
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Transient dynamics of spiral waves in a two-dimensional Barkley model is shown to be governed by pattern
formation processes resulting in regions of synchronized activity separated by moving interfaces. During the
transient the number of internally synchronized regions decreases as synchronization fronts move to the boundary
of the simulated area. This spatiotemporal transient dynamics in an excitable medium is detected and visualized
by means of an analysis of the local periodicity and by evaluation of prediction errors across the spatial domain.
During the (long) transient both analyses show patterns that must not be misinterpreted as any information about
(spatial) structure of the underlying (completely homogeneous) system.
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I. INTRODUCTION

Spatiotemporal systems in physics, biology, and other
fields may generate complex dynamics whose characterization
constitutes a major challenge in nonlinear dynamics and
data analysis. An important class of systems exhibiting
spatiotemporal dynamics is that of excitable media [1,2].
Excitable dynamics occurs mainly in chemical and biological
systems. For example, in cardiac tissue electrical excitation
waves are essential for proper contraction and pumping of the
heart, where spiral waves or spatiotemporal chaos may lead to
tachycardia or lethal fibrillation [3–5].

Relevant questions to be addressed when characterizing
spatiotemporal dynamics are, for example: Is the underlying
system spatially homogeneous or can it be divided into
different regions governed by (slightly) different dynamics?
Are there any “long-range interactions” connecting different
parts of the full system? Is the observed dynamics chaotic
or not, or is the system still in transient? A promising way
to answer such questions is network analysis [6–11]. There,
the system is observed (or measured) at different spatial
locations and the resulting time series are investigated with
respect to potential interrelations between different parts or
regions of the system. Here different measures of interrelation
may be employed, including linear cross correlation, (partial
directed) coherence [12,13], mutual information [14–16],
conditional entropy [17], transfer entropy [18], (cross) pre-
dictability [19–21] (similar to Granger causality [22]), or
(phase) synchronization [23,24]. If strong relations are found
this is often interpreted as being the result of structural
inhomogeneities, hidden connections, or other causalities. In
the following we shall present a numerical study showing
that such conclusions can be misleading. Our system is a
homogeneous excitable medium exhibiting periodic dynamics
in terms of (multiple) spiral waves. Time series of this system
are sampled on a (fine) grid of measurement points. To
characterize the dynamics we use cross prediction between
different locations (measurement grid points) by means of a
nearest-neighbor predictor. Since the system is homogeneous
with (global) periodic dynamics one would expect that all
pairwise predictions provide similar errors. However, this is
not the case. Instead we see some regions of low mutual
prediction errors separated by borders across which relatively

high prediction errors are obtained. The same patterns are
observed when using mutual information for characterizing
the network of measurements. The origin of these patterns is
a rather slow transient process during which regions of the
excitable medium adjust their dynamics by fine-tuning their
oscillation periods. Once this synchronization transient is over,
all patterns disappear and the network time series analysis
provides the expected result (homogeneous cross-prediction
errors). However, convergence to this asymptotic state is
very slow. Therefore, in particular in experiments it is very
likely that measurements are taken during the transient and
may lead to wrong interpretations, for example concerning
“inhomogeneity” of the underlying system or concerning
additional connections between remote regions.

II. THE BARKLEY MODEL

As a model for demonstrating the synchronization transient
and its implications for subsequent time series analysis we
use the Barkley model. This qualitative model of an excitable
medium was suggested in 1990 by Barkley et al. [25–27] and
consists of a fast variable u and a slow inhibitory variable v

described by partial differential equations,

∂u

∂t
= 1

ε
u(1 − u)

(
u − v + b

a

)
+ ∇2u, (1)

∂v

∂t
= u − v, (2)

with three parameters: ε = 0.02 determines the time scale
of the fast variable and a = 0.8 and b = 0.02 determine
the excitation threshold and the action potential duration,
respectively.

The Barkley model qualitatively describes various kinds
of spiral wave dynamics [1,3,27] and has, for example, been
used to demonstrate the unpinning mechanism upon far-field
pacing of cardiac tissue [4,5]. With the parameters chosen
here the system exhibits stable periodic spiral dynamics with
(asymptotically) fixed spiral tips [27]. We consider a quadratic
area of size L × L with L = 100. For numerically solving
the Barkley model a spatial discretization using 200 × 200
grid points (with a five-point approximation of the Laplacian
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FIG. 1. (Color online) Snapshot of the periodic spatiotemporal dynamics generated by the Barkley model Eqs. (1) and (2) from random initial
conditions at times (a) t = 1,000, (b) t = 20,000, and (c) t = 30,000. (d) Locations of spiral tips (phase singularities) for 1,000 < t < 50,000.
The circles indicate the position of phase singularities (open circles = clockwise rotation, filled circles = counterclockwise rotation).

operator) and Euler time steps of size �t = 0.02 were used in
combination with no flux boundary conditions.

When starting from different random initial conditions
various configurations of stable spiral waves occur, all rotating
with the same frequency. As an example for the resulting
dynamics, Figs. 1(a)–1(c) show for random initial conditions
snapshots at t = 1,000, t = 20,000, and t = 30,000. As can
be seen, a system of interacting spiral waves occurs. Spirals
rotate clockwise or counterclockwise, corresponding to the
sign of the topological charges of the phase singularities at the
spiral tips (indicate by filled and open circles in Fig. 1). For
times t > 1,000 the locations of the spiral cores do not change
any more, as can be seen in Fig. 1(d) where the positions (i.e.,
trajectories) of phase singularities are shown for the period of
time of 1,000 < t < 50,000. Figure 2 shows a typical example
of the signal s(t) = u(z,t) measured at location z = (40,42.5).

III. CROSS-PREDICTION DIAGRAMS

For characterizing the spatiotemporal dynamics we shall
evaluate now its cross predictability between different lo-
cations. More precisely, it is checked how well the dy-
namics at some point B in space can be predicted using
a time series from point A. Technically, this approach is
implemented in terms of nearest-neighbor prediction [19].
There, at point A a time series {xA(tn)} is sampled at times

tn = nTs and used to reconstruct d-dimensional states xA(tn) =
[xA(tn),xA(tn − τ ), . . . ,xA(tn − (d − 1)τ )] with delay time τ .
Then, for each time step tn the nearest-neighbor xA(pn)
of xA(tn) is determined with time index pn < tn (i.e., a
neighboring state occurring in the past). To predict the (current)
time series value yB(tn) at point B we use the (known) past
value yB(pn). This kind of nearest-neighbor prediction is
repeated over N time steps to compute the mean prediction
error:

E = 1

N

N∑
n=1

|y(tn) − y(pn)|.

FIG. 2. (Color online) Typical local signal s(t) = u(z,t) at spatial
location z = (40,42.5) in the medium. The dashed horizontal line
represents the mean value of the signal. Cross points of this line mark
the beginning and the end of a period Ti of the oscillation.
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FIG. 3. (Color online) Predictability charts of the Barkley model
at time t = 20,000. (a)–(c) Prediction error (color coded, see color
bar at bottom) of different spatial locations when using forecasts from
a given site indicated by +. (d) Boundary of the predictability regions
obtained by local averaging the prediction error from any reference
point to its 24 neighbors.

To normalize this error we estimate the forecasting error
obtained with randomly selected neighbors (reconstructed
state vectors):

ER = 1

N

N∑
n=1

|y(tn) − y(qn)|,

where qn ∈ {1, . . . ,N} is an integer random variable. The
resulting relative prediction error

e = E

ER

=
∑N

n=1 |y(tn) − y(pn)|∑N
n=1 |y(tn) − y(qn)| (3)

ranges between 0 (perfect prediction) and 1 (prediction not
better than random guessing).

Figure 3(a)shows the relative prediction errors from site A

(indicated by the + symbol) to all other locations on a
numerical grid with 100 × 100 sampling locations for τ =
Ts = 0.4, d = 3, and N = 250. As can be seen, there are
essentially two regions where the prediction error is small
or large, respectively. In Fig. 3(b) the same kind of diagram
is shown for another reference point, where the same two
regions occur as in Fig. 3(a). Figure 3(c) shows an example
where the reference location (indicated by +) lies in the “other”
region for which in Figs. 3(a) and 3(b) the prediction error was
relatively high. As can be seen by comparing Fig. 3(c) with
Figs. 3(a) and 3(b), regions of low predictability become more
predictable and vice versa. Boundaries between predictability
regions are clearly visible. To localize and plot the boundaries
between such regions we average for each point in space the
prediction error from this point to its 24 neighboring points on
the grid. This average is small as long as the point lies within
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FIG. 4. (Color online) Color-coded local mean periods T

at different times during the transient at times (a) t = 10,000,
(b) t = 11,000, (c) t = 20,000, and (d) t = 30,000. The (filled)
circles mark the locations of phase singularities (spiral tips), compare
Figs. 1 and 3.

a predictability region but increases when the 24 neighboring
grid points belong to different dynamical regions as can be
seen in Fig. 3(d). In all diagrams shown in Fig. 3 the locations
of spiral tips (phase singularities) are indicated by black and
white circles (compare Fig. 1). The same patterns as those
shown in Fig. 3 have also been obtained by computing the
mutual information [14–16] of a given reference point and
other locations in the square (where the mutual information is
maximized with respect to time shift).

A particular feature of the predictability diagrams in
Fig. 3 is the fact that the dark region in Figs. 3(a) and 3(b)
[corresponding to the bright (orange) region of low prediction
errors in Fig. 3(c)] consists of two separated parts. Without
any additional knowledge about the underlying system one
might conclude that there exists an additional (long-range)
link connecting both separated regions and providing in this
way the “remote” predictability shown in Fig. 3(c). Here we
know that this interpretation is wrong (because the Barkley
model is completely homogeneous) and may thus be viewed
as an example of a possible pitfall of network analysis.

IV. PERIODICITY AND SYNCHRONIZATION TRANSIENT

The patterns occurring in the prediction diagrams in Fig. 3
turn out to be due to a (long) transient toward the asymptotic
periodic dynamics. This transient is governed by a synchro-
nization process of periodic oscillations of neighboring areas
of the medium resulting in regions of synchronized activity
separated by (moving) boundaries.

To characterize the synchronization (transient) we com-
puted for each time series s(t) = u(z,t) [sampled at point
z = (z1,z2) on the measurement grid] its mean value s̄ and
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subtracted it from the time series. Then the zero crossings
of the resulting signal s̃(t) = s(t) − s̄ (with positive slope)
were detected and used to compute a (instantaneous) period
of the signal (at time t and location z), see Fig. 2. These
instantaneous periods were averaged for a time interval of
length 100 from t − 100 to t and provide momentary local
periods T = T (z,t) that slowly converge to the asymptotic
period of the full system. Figure 4 shows color-scaled charts of
the momentary periods of the periodic oscillations [obtained
from variable u(z,t)]. At this stage of the (synchronization)
transient essentially two regions with slightly different periods
(see color bar at the bottom of Fig. 4) exist. The dark (blue)
region grows in time and finally the full square has a period
of T ≈ 3.323 (for t > 39,000, not shown here). The growth
process is either continuous by means of a slowly moving
boundary or consists of a collective transition of some subarea
as visible in Figs. 4(a) and 4(b) (light blue/gray region).
Comparison of the period diagram Fig. 4(c) with the prediction
diagram Fig. 3 shows that regions and borders (considered at
the same time t , here t = 20,000) coincide. As can be seen,
minor variations of the (local) period (from T = 3.3246 to T =
3.323) result in a strong in- or decrease of the prediction error.

V. CONCLUSION

The main conclusions that one may draw from the presented
simulation results are as follows:

(i) Convergence to periodic spiral wave dynamics in
excitable media is governed by synchronized regions expand-
ing continuously (with moving boundaries) as well as by

transitions of extended regions [see, for example, the transition
from Fig. 4(a) to Fig. 4(b)].

(ii) During this transient, data analysis methods evaluating
interrelations of signals sampled at different spatial locations
reflect and visualize this dynamical pattern (but must not be
misinterpreted as information about the spatial structure of the
underlying system).

We expect that both aspects not only are relevant for
excitable media but also for other spatiotemporal systems
exhibiting transient periodic dynamics. For extended chaotic
systems, on the other hand, cross-prediction errors increase
with the distance between measurement points. There,
good predictability between two remote cites may indeed be
interpreted as an indicator for a direct connection between both
of those points due to an additional link. But still, differences
in predictability (or similar measures, like mutual information)
maybe due to dynamics only, without any inhomogeneity
of the underlying (physical) system. This difference in the
dynamics may be due to initial conditions (like with chimera
states [28–30], for example) and/or represent a temporary
phenomenon occurring during transients, only.
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