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This paper concerns a basic electrostatic problem: how to calculate generalized Coulomb and self-polarization
potentials in heterogeneous dielectric media. In particular, with simulations of ellipsoidal semiconductor quantum
dots and elongated biomacromolecules being its target applications, this paper extends the so-called three-layer
dielectric models for generalized Coulomb and self-polarization potential calculation from the spherical and the
spheroidal geometries to the triaxial ellipsoidal geometry. Compared to the simple steplike dielectric model,
these three-layer dielectric models can overcome the mathematical divergence in the self-polarization energy by
employing continuous radial dielectric functions. More specifically, in this paper, the quasiharmonic three-layer
dielectric model for the ellipsoidal geometry is discussed, and the explicit analytical series solutions of the
corresponding electrostatic problem are obtained in terms of the ellipsoidal harmonics. Then a robust numerical
procedure working for general three-layer dielectric models is developed. The key component of the numerical
method is to subdivide the transition layer of the underlying three-layer model into multiple sublayers and then
in each one of them approximate the select dielectric function of the transition layer by one of the quasiharmonic
functional form rather than simply by a constant value as one would normally do. As a result, the numerical
method has no numerical divergence.
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I. INTRODUCTION

As in [1], in this paper we are concerned with the calculation
of the generalized Coulomb potential energy Vc and the
self-polarization potential energy Vs involving a dielectric
object. The generalized Coulomb potential energy Vc between
two particles inside or outside a dielectric object with the
coordinates r and rs , and the charges e and es , respectively,
can be evaluated through Vc(r,rs) = e�(r,rs), where �(r,rs)
is the electrostatic potential that verifies the Poisson equation

∇ · ε(r)∇�(r,rs) = −4πesδ(r − rs). (1)

On the other hand, the self-polarization potential energy Vs of
the particle e can be calculated from Vc(r,rs) by taking r = rs

and e = es , excluding the direct Coulomb interaction from
�(r,rs), and dividing by 2 as it corresponds to a self-energy,
namely, Vs(r) = 1

2e�(r,r). In (1), ε(r) is the dielectric function
which in general could be spatially dependent, and δ(· · ·) is the
Dirac delta function. Two representative areas of application
of such an electrostatic problem include the simulation of
semiconductor quantum dots (QDs) with finite confinement
barriers [2–4], and the calculation of electrostatic interactions
in the so-called hybrid explicit/implicit solvation models for
biomolecular simulations [5].

For simplicity, in most theoretical studies of the underlying
applications, macroscopic dielectric constants εi and εo are
assigned for the object (a QD or the dielectric cavity in a
hybrid solvation model) and the surrounding medium (the QD
matrix or the implicit solvent in the hybrid solvation model),
respectively. In this case, explicit analytical series solutions
of the generalized Coulomb and the self-polarization potential
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energies exist for both the spherical and the spheroidal geome-
tries [6–9], but unfortunately, in addition to the unphysicality
of the sharp jump in the dielectric constant at the object surface,
there is also a major disadvantage of this steplike model. In
particular, all induced polarization charges will be localized
at the object surface of zero width so both the real and the
induced charges can coincide at the same location, giving
rise to a self-polarization energy that diverges at the object
surface.

To remove such mathematical divergence of the steplike
dielectric model, the so-called three-layer dielectric models
have been proposed in which the steplike dielectric function is
replaced by a radially dependent continuous dielectric function
ε(r) that changes smoothly from the object value εi to the
medium value εo within a thin transition layer around the
object surface. As a consequence of using such a three-layer
dielectric model, the induced charges are spread along the
transition layer and the mathematical divergence in the self-
polarization energy disappears. Moreover, in the case of the
spherical geometry, a three-layer dielectric model, called the
quasiharmonic model, has been proposed, the corresponding
electrostatic problem still admitting explicit analytical series
solutions [10,11], while for general three-layer dielectric
models several procedures have been developed for solving
the problem numerically [4,11–13]. Later, the quasiharmonic
three-layer dielectric model and the robust numerical pro-
cedure particularly developed in [11] were extended to the
spheroidal geometry [1,14].

In this paper, we further extend the quasiharmonic three-
layer dielectric model and the robust numerical method for
general three-layer dielectric models from the spheroidal
coordinates to one of the most general three-dimensional
coordinates in which the Laplace equation is separable [15], the
triaxial ellipsoidal coordinates [16–20]. This extension may
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be needed since, for example, realistic QDs might be neither
perfect spheres nor perfect spheroids, while it has been shown
that a small change in the external shape of a QD may strongly
influence the energy spectrum and other characteristics of
such a semiconductor structure [21–24]. On the other hand,
in the hybrid solvation models for biomolecular simulations,
for nonspherical or nonspheroidal biomacromolecules, from
a computational point of view, it may be more beneficial
to adopt ellipsoidal cavities that can conform closely to the
irregular shapes of the biomolecules. What makes the proposed
extension even more important is the fact that, among the
11 coordinate systems in which the Laplace equation (more
precisely, the Helmholtz equation) is separable, the other 10
coordinate systems can be considered as degenerate forms of
the ellipsoidal one [15].

The paper is organized as follows. In Sec. II, we briefly
review the ellipsoidal coordinates and the ellipsoidal har-
monics. In Sec. III, we present the analytical solution of the
electrostatic problem using the steplike dielectric model. Then
the analytical solution corresponding to the quasiharmonic
three-layer dielectric model is given in Sec. IV, and a
robust numerical method working for general three-layer
dielectric models is described in Sec. V. Finally, results
of some illustrative numerical experiments are presented
in Sec. VI, and a few concluding remarks are given in
Sec. VII.

II. LAPLACE EQUATION IN ELLIPSOIDAL
COORDINATES

In order to solve the Laplace equation in a domain
bounded (internally or externally) by a triaxial ellipsoidal
surface, it is convenient to formulate the problem in ellipsoidal
coordinates. Several definitions of these coordinates exist,
and we adopt here Hobson’s formalism [25], which appears
to have become dominant in problems involving ellipsoidal
boundaries [16–19,26,27]. The ellipsoidal coordinates (ξ,μ,ν)
corresponding to the point (x,y,z) in the rectangular coordi-
nates, generated by a reference ellipsoid

x2

a2
+ y2

b2
+ z2

c2
= 1, (2)

where a > b > c > 0 are its semiaxes, satisfy

x2

λ2
+ y2

λ2 − h2
+ z2

λ2 − k2
= 1, (3)

where λ stands for either ξ , μ, or ν. The two constants k and
h are determined by the semifocal distances of the reference
ellipsoid, namely, k = √

a2 − c2 and h = √
a2 − b2. Note that

every ellipsoidal coordinate has the physical dimension of
distance, each one being defined in the intervals 0 � ν2 �
h2 � μ2 � k2 � ξ 2 < ∞. The surface of ξ = constant is a
triaxial ellipsoid of semiaxes ξ ,

√
ξ 2 − h2 and

√
ξ 2 − k2;

in particular, ξ = a corresponds to the reference ellipsoid
(2). Recall that for spherical coordinates, a constant radius r

defines a single sphere. Therefore, analogously the variable
ξ in the ellipsoidal coordinate system is called radial and
assumes only positive values, namely, ξ ∈ [k,∞). The surface
of μ = constant is a hyperboloid of one sheet and that of

ν = constant a hyperboloid of two sheets. Unlike the radial
coordinate ξ , both angular coordinates μ and ν may also be
negative.

The transformation between the ellipsoidal and the Carte-
sian coordinates is [25]

x2 = ξ 2μ2ν2

k2h2
, (4a)

y2 = (ξ 2 − h2)(μ2 − h2)(h2 − ν2)

h2(k2 − h2)
, (4b)

z2 = (ξ 2 − k2)(k2 − μ2)(k2 − ν2)

k2(k2 − h2)
. (4c)

The Laplace equation is separable in the ellipsoidal coordi-
nates. As a matter of fact, each of the three ellipsoidal variables
satisfies the same Lamé differential equation

(λ2 − h2) (λ2 − k2)
d2E(λ)

dλ2
+ λ(2λ2 − h2 − k2)

dE(λ)

dλ

+[(h2 + k2)q − n(n + 1)λ2]E(λ) = 0, (5)

where q is an arbitrary constant to be fixed appropriately [15].
The solutions of (5), E

p
n , are called Lamé functions of the

first kind of degree n and order p. Here both indices n and
p are positive integers satisfying 2n + 1 � p � 1. For the
determination of the Lamé functions, see, for example, [15];
for a short list of the Lamé functions of the first kind, see,
for example, [19]; and for numerical computation of the
Lamé functions, see, for example, [26,28,29]. In particular,
Ref. [26] has all necessary details about computation of Lamé
functions, including discussions on potential problems for
accurate calculation and possible solutions, which greatly
helped the authors carry out this study successfully.

A general internal ellipsoidal harmonic which is a normal
solution of the Laplace equation and is regular at the origin
may be written in terms of the Lamé product as

Ep
n (r) = Ep

n (ξ )Ep
n (μ)Ep

n (ν). (6)

Similarly, an external ellipsoidal harmonic which is regular at
infinity is defined as

Fp
n (r) = Fp

n (ξ )Ep
n (μ)Ep

n (ν), (7)

where F
p
n (ξ ) is the Lamé function of the second kind of degree

n and order p, which is related to the corresponding Lamé
function of the first kind E

p
n (ξ ) by [25]

Fp
n (ξ ) = (2n + 1)Ep

n (ξ )

×
∫ ∞

ξ

dξ ′[
E

p
n (ξ ′)

]2√
(ξ ′2 − h2)(ξ ′2 − k2)

. (8)

Both the internal Ep
n (r) and the external Fp

n (r) ellipsoidal
harmonics are linearly independent and form a complete set
of functions. Moreover, there exists an orthogonality relation
of the Lamé functions of the first kind as [19,26]∫ h

0

∫ k

h

E
p
n (μ)Ep

n (ν)Ep′
n′ (μ)Ep′

n′ (ν)(μ2 − ν2)√
(μ2 − h2)(k2 − μ2)(h2 − ν2)(k2 − ν2)

dμdν

= γ p
n δnn′δpp′ , (9)
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where the Kronecker delta δij = 1 when i = j and is zero
otherwise and the normalization constant γ

p
n is

γ p
n =

∫ h

0

∫ k

h [
E

p
n (μ)Ep

n (ν)
]2

(μ2 − ν2)√
(μ2 − h2)(k2 − μ2)(h2 − ν2)(k2 − ν2)

dμdν.

(10)

A list of normalization constants γ
p
n of low orders can be found

in [19]. In particular, γ 1
0 = π/2 under the definition of (10).

Furthermore, as is well known, it is often essential in solving
harmonic boundary-value problems to have an expansion for
the reciprocal distance (the basic potential given by the Green’s
function). Using the orthogonality relation (9), the expansion
for the reciprocal distance in the ellipsoidal coordinates can
also be constructed [19], namely,

1

|r − rs | =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∞∑
n=0

2n+1∑
p=1

KnpEp
n (rs)Fp

n (r), if ξ � ξs,

∞∑
n=0

2n+1∑
p=1

KnpFp
n (rs)Ep

n (r), if ξ � ξs,

(11)

where the coefficient Knp is

Knp = π

2(2n + 1)γ p
n

. (12)

It is noteworthy that the orthogonality relation, the nor-
malization constants, and accordingly the expansion of the
reciprocal distance all are given in a slightly different way
in [16,18,30], where the double integral involved is carried over
the whole surface of the ellipsoid ξ = a (rather than

∫ h

0

∫ k

h
). As

the consequence, the corresponding normalization constants
are eight times those given by (10) [31], with γ 1

0 = 4π . There-
fore, if the normalization constants presented in [16,18,30] are
used, then

Knp = 4π

(2n + 1)γ p
n

. (13)

The Lamé functions E
p
n (ξ ) and the products E

p
n (μ)Ep

n (ν)
are analogous to the radial functions Rm

l (r) and the surface
spherical harmonics Ym

l (θ,φ) in the spherical harmonic theory.
For this reason, products of the form E

p
n (μ)Ep

n (ν) are
called surface ellipsoidal harmonics through this paper. It
may also be noted that when ξ → ∞, E

p
n (ξ ) ∼ c0ξ

n and
F

p
n (ξ ) ∼ E

p
n (ξ )/ξ 2n+1 ∼ c0/ξ

n+1, which corresponds to the
r−(n+1)-potential term in the spherical system [19].

To conclude this section, we introduce some shorthand
notations in order to make later formulations easier. We
denote the summation

∑∞
n=0

∑2n+1
p=1 simply by

∑̂
. Also, for

n = 0,1, . . . , and p = 1,2, . . . ,2n + 1, we let unp(ξ ) and
vnp(ξ ) be the ratios of the Lamé functions of the first and
the second kinds, namely,

unp(ξ ) = E
p
n (ξ )

F
p
n (ξ )

and vnp(ξ ) = F
p
n (ξ )

E
p
n (ξ )

, (14)

ε
o

ε
i

x

y ξ=ξ
b
=a

a

b

FIG. 1. Schematic illustration of the steplike dielectric model.
The dielectric constants of an ellipsoid and the surrounding medium
are εi and εo, respectively. The surface of the ellipsoid is ξ = ξb = a.
The graph shown represents the xy cross section of the ellipsoid.

and Ẽ
p
n (ξ ) and F̃

p
n (ξ ) be the logarithmic derivatives of the

Lamé functions, namely,

Ẽ
p
n (ξ ) = E

p
n

′(ξ )

E
p
n (ξ )

and F̃
p
n (ξ ) = F

p
n

′(ξ )

F
p
n (ξ )

. (15)

III. ANALYTICAL SOLUTION FOR THE STEPLIKE
DIELECTRIC MODEL

The three-dimensional solution of the Poisson equation (1)
is quite complicated to find even by assuming the ellipsoidal
geometry and only the radial ξ dependence of ε(r). Never-
theless, it can be solved analytically if the radial dependence
of ε(r) corresponds to the simple steplike model, as shown in
Fig. 1, in which two constant dielectric permittivities εi and
εo are assigned for the ellipsoidal object and the surrounding
medium, respectively. Let the dielectric ellipsoid be centered
at the origin and defined by (2). In terms of the ellipsoidal
coordinates (ξ,μ,ν) defined in Sec. II, the surface of the
ellipsoid is given by ξ = ξb = a. Then the steplike dielectric
model is defined by

ε(ξ ) =
{

εi, if ξ � ξb,

εo, if ξ > ξb.
(16)

The explicit analytical solution of the corresponding electro-
static problem (1) is discussed first for the completeness of the
paper.

Let us begin by considering the case where the point charge
es is located at the point rs = (ξs,μs,νs) inside the ellipsoid.
In this case, the electrostatic potential must be finite at infinity
so the potential �o outside the ellipsoid (ξb � ξ ) shall be
expanded in terms of the external harmonics Fp

n (r). On the
other hand, the potential �i inside the ellipsoid (k � ξ � ξb)
due to the point charge es alone is es/(εi |r − rs |). We must
superimpose on this direct Coulomb potential a finite reaction
potential due to the polarization of the dielectric, which shall
be expanded in terms of the internal harmonics Ep

n (r). In short,
the electrostatic potential �o or �i at a field point r = (ξ,μ,ν)
outside or inside the ellipsoid, respectively, due to a point
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charge es at the point rs inside the ellipsoid (so ξb > ξs � k)
takes the form

�o(r,rs) = es√
εiεo

∑̂
A(1)

np · KnpEp
n (rs)Fp

n (r), (17a)

�i(r,rs) = es

εi |r − rs | + es

εi

∑̂
B(1)

np · vnp(ξb)KnpEp
n (rs)Ep

n (r).

(17b)

Note that here factors such as KnpEp
n (rs), es/εi , and

es/
√

εiεo are extracted from expansion coefficients of the
ellipsoidal harmonics explicitly so that A(1)

np and B(1)
np , the

remaining parts of the expansion coefficients, depend neither
on the source charge nor on the particular dielectric values of
εi and εo. Rather, as is shown below, they depend only on the
ellipsoidal surface ξ = ξb and the dielectric mismatch ratio
εr = εi/εo and thus only need to be calculated once even
if there are many source charges present and the positions
of these charges change over time, a typical situation in
hybrid-solvation biomolecular simulations.

The unknown constant expansion coefficients A(1)
np and B(1)

np

in (17) can be determined by the boundary condition on
the ellipsoidal surface ξ = ξb which, under the ellipsoidal
coordinates, is

�o|ξ=ξb
= �i |ξ=ξb

and εo

∂�o

∂ξ

∣∣∣∣
ξ=ξb

= εi

∂�i

∂ξ

∣∣∣∣
ξ=ξb

, (18)

the orthogonality relation of the surface ellipsoidal har-
monics (9), and the known expansion of the reciprocal
distance in the ellipsoidal coordinates (11). Omitting all
details, for n = 0,1, . . ., and p = 1,2, . . . ,2n + 1, we can
obtain⎡⎣√

εr , −1

F̃
p
n (ξb), −√

εrẼ
p
n (ξb)

⎤⎦⎛⎝A(1)
np

B(1)
np

⎞⎠ =
(

1
√

εr F̃
p
n (ξb)

)
.

(19)

Similarly, if the source charge es is located at the point
rs = (ξs,μs,νs) outside the ellipsoid (so ξs � ξb > k), the
electrostatic potential �o or �i takes the form

�o(r,rs) = es

εo|r − rs | + es

εo

∑̂
A(2)

np · unp(ξb)KnpFp
n (rs)Fp

n (r),

(20a)

�i(r,rs) = es√
εiεo

∑̂
B(2)

np · KnpFp
n (rs)Ep

n (r), (20b)

where the expansion coefficients A(2)
np and B(2)

np are given
by⎡⎣√

εr , −1

F̃
p
n (ξb), −√

εrẼ
p
n (ξb)

⎤⎦⎛⎝A(2)
np

B(2)
np

⎞⎠ =
(−√

εr

−Ẽ
p
n (ξb)

)
. (21)

Recall that the self-polarization potential energy Vs(r) of
the particle e is calculated from the generalized Coulomb
potential energy Vc(r,rs) = e�(r,rs) by taking r = rs and
e = es , excluding the direct Coulomb interaction from �(r,rs ),

ε
o

ε
i

x

yξ=ξ
b

ξ=ξ
b
−δ

ξ=ξ
b
+δ

ε(ξ)

FIG. 2. Schematic illustration of a three-layer dielectric model.
The inner layer (ξ � ξb − δ) has a dielectric constant of εi , while the
outer layer (ξ � ξb + δ) has a dielectric constant of εo. The inter-
mediate transition layer (ξb − δ < ξ < ξb + δ) assumes a continuous
dielectric permittivity profile ε(ξ ) that connects εi and εo. The graph
shown represents the xy cross section of the ellipsoid.

and then dividing by 2, namely, Vs(r) = 1
2e�(r,r). From (17b)

and (20a), we obtain

Vs(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e2

2εo

∑̂
A(2)

np · unp(ξb)KnpFp
n

2(r), if ξ � ξb,

e2

2εi

∑̂
B(1)

np · vnp(ξb)KnpEp
n

2(r), if ξ < ξb.

(22)

IV. ANALYTICAL SOLUTION FOR THE
QUASIHARMONIC DIELECTRIC MODEL

The major problem of employing the steplike dielectric
model and the corresponding analytical solution (22) to
calculate the self-polarization energy lies in the fact that it
diverges at the ellipsoidal surface ξ = ξb. In order to overcome
such mathematical divergence, a natural consideration is to in-
troduce a thin transition layer of finite width in the ξ direction,
say 2δ, centered at ξ = ξb with a continuous radial dielectric
profile, say ε(ξ ), separating the two dielectric continua εi

and εo, leading to a three-layer dielectric model, as shown in
Fig. 2. For the inner layer of ξ � ξb − δ, the dielectric constant
takes the value εi , while for the outer layer of ξ � ξb + δ,
the dielectric constant takes the value εo. Between them, for
the intermediate transition layer of ξb − δ < ξ < ξb + δ, one
can choose any analytical and physically plausible continuous
profile for ε(ξ ) to connect these two extreme values. Two
natural choices of ε(ξ ) include the linear profile defined
by

ε(ξ ) =

⎧⎪⎪⎨⎪⎪⎩
εi, if ξ � ξI ,

εi + εo

2
+ εi − εo

2δ
(ξb − ξ ), if ξI < ξ < ξO,

εo, if ξ � ξO,

(23)

and the cosinelike profile given by

ε(ξ ) =

⎧⎪⎪⎨⎪⎪⎩
εi, if ξ � ξI ,

εi + εo

2
+ εi − εo

2
cos

(
ξ − ξI

2δ
π

)
, if ξI < ξ < ξO,

εo, if ξ � ξO,

(24)
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ξ
b
−δ

b
+δk ξ ξ

b

ε
i

ε
o

FIG. 3. (Color online) Illustration of several three-layer dielectric
models together with the steplike model, assuming εi < εo. Dot-
dashed line, the steplike model; dotted line, the linear model; dashed
line, the cosinelike model; and solid line, the quasiharmonic model.
This particular graph is for a = 4, b = 3, c = 2, δ = 0.2, εi = 2, and
εo = 80.

respectively, where ξI = ξb − δ and ξO = ξb + δ represent
the inner and the outer boundaries of the transition layer,
respectively.

As indicated earlier, for general three-layer dielectric
profiles ε(ξ ) including the linear and the cosinelike ones, it
does not seem feasible to find an explicit analytical solution
for the Poisson equation (1) since it is a second-order
differential equation with a variable coefficient. However, an
explicit analytical solution can be obtained for the following
quasiharmonic three-layer dielectric profile:

ε(ξ ) =

⎧⎪⎪⎨⎪⎪⎩
εi, if ξ � ξI ,[
α + βF 1

0 (ξ )
]2

, if ξI < ξ < ξO,

εo, if ξ � ξO,

(25)

where

α = c
√

εo − d
√

εi

c − d
and β =

√
εi − √

εo

c − d
, (26)

with

c = F 1
0 (ξI ) and d = F 1

0 (ξO) . (27)

The reason why ε(ξ ) defined in (25) is called “quasiharmonic”
is because it is not harmonic by itself but

√
ε(ξ ), being a

linear combination of two harmonic eigenfunctions E1
0(ξ ) ≡

1 and F 1
0 (ξ ), is harmonic. The three three-layer dielectric

models mentioned so far together with the steplike model are
illustrated in Fig. 3. Note that in terms of the Jacobi elliptic
function sn(· · ·), we have [15]

F 1
0 (ξ ) =

∫ ∞

ξ

dξ ′√
(ξ ′2 − k2)(ξ ′2 − h2)

= 1

k
sn−1

(
k

ξ
,
h

k

)
.

(28)

Also note that

F 1
0

′
(ξ ) = − 1√

(ξ 2 − k2)(ξ 2 − h2)
. (29)

Before we proceed, it should be emphasized that, while
similar potential problems in the ellipsoidal geometry have
been investigated in many different realms by many different
researchers, and the basic techniques to be used in this paper
are no different from those used to solve many other problems,
to the best of the authors’ knowledge, most of the works in
the literature either assume the steplike dielectric profile or
consider problems involving multiple homogeneous confocal
ellipsoidal shells. In this paper, however we consider potential
problems in general heterogeneous media by employing
three-layer dielectric models in the ellipsoidal geometry.
While there is nothing special about the linear and the
cosinelike three-layer models, an advantage of using the
quasiharmonic three-layer dielectric model lies in the fact that
the resulting Poisson equation (1) admits explicit analytical
series solutions. Moreover, as to be described in Sec. V, based
on the proposed quasiharmonic three-layer dielectric model,
a robust numerical method can be developed that essentially
can be used to solve the Poisson equation (1) with any radially
dependent dielectric function.

The explicit analytical series solution to the Poisson
equation (1) corresponding to the above quasiharmonic di-
electric model is easy to find. First, let us consider the case
when the point charge es is located inside the inner layer
(ξs � ξI = ξb − δ). Accordingly, the Poisson equation (1)
becomes

∇ · εi∇�i(r,rs) = −4πesδ(r − rs), if ξ � ξI , (30a)

∇ · ε(ξ )∇�t (r,rs) = 0, if ξI < ξ < ξO, (30b)

��o(r,rs) = 0, if ξ � ξO, (30c)

where �i , �t , and �o stand for the electrostatic potential in
the inner, the transition, and the outer layers, respectively.

At the two boundaries of the transition layer, the continuity
of the potential and the normal flux requires that

�i |ξ=ξI
= �t |ξ=ξI

and
∂�i

∂ξ

∣∣∣∣
ξ=ξI

= ∂�t

∂ξ

∣∣∣∣
ξ=ξI

, (31)

�o|ξ=ξO
= �t |ξ=ξO

and
∂�o

∂ξ

∣∣∣∣
ξ=ξO

= ∂�t

∂ξ

∣∣∣∣
ξ=ξO

. (32)

The key in finding the analytical solution for the Poisson
equation (1) corresponding to the quasiharmonic model is the
following important observation [10,32].

Theorem 1. If the variable coefficient ε(r) in the quasihar-
monic equation

∇ · [ε(r)∇φ(r)] = 0 (33)

satisfies �
√

ε(r) = 0, then

�[
√

ε(r)φ(r)] = 0. (34)
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Similarly, if the variable coefficient ε(r) in the quasielliptic
equation

∇ · [ε(r)∇φ(r)] = ρ(r) (35)

satisfies �
√

ε(r) = 0, then

�[
√

ε(r)φ(r)] = ρ(r)/
√

ε(r). (36)

Since by construction, �
√

ε(ξ ) = 0 in the transition layer,
the Poisson equation (30b) can be rewritten as a Laplace
equation,

�[
√

ε(ξ )�t (r,rs)] = 0, (37)

whose solution
√

ε(ξ )�t (r,rs) shall be expanded in terms of
both the internal and the external harmonics. Consequently,
the potential �t can be expressed as

�t (r,rs) = es√
ε(ξ )

∑̂[
CnpEp

n (r) + DnpFp
n (r)

]
, (38)

or, when the charge es is also located inside the transition layer,
as

�t (r,rs) = es√
εsε(ξ )|r − rs |

+ es√
ε(ξ )

∑̂[
CnpEp

n (r) + DnpFp
n (r)

]
, (39)

where εs = ε(ξs) and Cnp and Dnp are undetermined constant
expansion coefficients.

For the purpose of simplifying mathematical formulations,
now we actually write the potentials in the three layers
as

�o(r,rs) = es√
εiεo

∑̂
A(1)

np · KnpEp
n (rs)Fp

n (r), (40a)

�i(r,rs) = es

εi |r − rs| + es

εi

∑̂
B(1)

np · KnpEp
n (rs)Ep

n (r),

(40b)

�t (r,rs) = es√
εiε(ξ )

∑̂
KnpEp

n (rs)
[
C(1)

np Ep
n (r) + D(1)

npFp
n (r)

]
.

(40c)

Here the constant expansion coefficients A(1)
np , B(1)

np , C(1)
np ,

and D(1)
np can be determined by the boundary conditions (31)

and (32), together with the orthogonality relation (9), and the
expansion of the reciprocal distance (11). Omitting all details,
we have

M ×

⎛⎜⎜⎜⎜⎜⎝
A(1)

np

B(1)
np

C(1)
np

D(1)
np

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
−F

p
n (ξI )

0

−F
p
n

′(ξI )

0

⎞⎟⎟⎟⎟⎠ , (41)

where

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0, E
p
n (ξI ), −E

p
n (ξI ), −F

p
n (ξI )

F
p
n (ξO), 0, −E

p
n (ξO), −F

p
n (ξO)

0, E
p
n

′(ξI ), −E
p
n

′(ξI ) + βF 1
0

′
(ξI )√
εi

Ep
n (ξI ), −F

p
n

′(ξI ) + βF 1
0

′
(ξI )√
εi

F p
n (ξI )

F
p
n

′(ξO), 0, −E
p
n

′(ξO) + βF 1
0

′
(ξO)√
εo

Ep
n (ξO), −F

p
n

′(ξO) + βF 1
0

′
(ξO)√
εo

Fp
n (ξO)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (42)

Similarly, if es is located inside the outer layer (ξs � ξO =
ξb + δ), we can write

�o(r,rs) = es

εo|r − rs| + es

εo

∑̂
A(2)

np · KnpFp
n (rs)Fp

n (r),

(43a)

�i(r,rs) = es√
εoεi

∑̂
B(2)

np · KnpFp
n (rs)Ep

n (r), (43b)

�t (r,rs) = es√
εoε(ξ )

∑̂
KnpFp

n (rs)
[
C(2)

np Ep
n (r) + D(2)

npFp
n (r)

]
,

(43c)

where the constant expansion coefficients A(2)
np , B(2)

np , C(2)
np , and

D(2)
np can be calculated by

M ×

⎛⎜⎜⎜⎜⎜⎝
A(2)

np

B(2)
np

C(2)
np

D(2)
np

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0

−E
p
n (ξO)

0

−E
p
n

′
(ξO)

⎞⎟⎟⎟⎟⎠ . (44)

Finally, when es is located inside the transition layer (ξI <

ξs < ξO), we can write

�o(r,rs)= es√
εsεo

∑̂
Knp

[
A(3)

npFp
n (rs) + A(4)

npEp
n (rs)

]
Fp

n (r),

(45a)
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�i(r,rs)= es√
εsεi

∑̂
Knp

[
B(3)

np Fp
n (rs) + B(4)

np Ep
n (rs)

]
Ep

n (r),

(45b)

�t (r,rs) = es√
εsε(ξ )|r − rs |

+ es√
εsε(ξ )

∑̂
Knp

{[
C(3)

npFp
n (rs)

+C(4)
np Ep

n (rs)
]
Ep

n (r) + [
D(3)

npFp
n (rs)

+D(4)
npEp

n (rs)
]
Fp

n (r)
}
. (45c)

Here the constant expansion coefficients A(3)
np , B(3)

np , C(3)
np ,

and D(3)
np are determined by

M ×

⎛⎜⎜⎜⎜⎝
A(3)

np

B(3)
np

C(3)
np

D(3)
np

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
E

p
n (ξI )

0

E
p
n

′(ξI ) − βF 1
0

′
(ξI )√
εi

Ep
n (ξI )

0

⎞⎟⎟⎟⎟⎟⎠ , (46)

while A(4)
np ,B(4)

np ,C(4)
np , and D(4)

np are determined by

M ×

⎛⎜⎜⎜⎜⎝
A(4)

np

B(4)
np

C(4)
np

D(4)
np

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0

F
p
n (ξO)

0

F
p
n

′(ξO) − βF 1
0

′
(ξO)√
εo

Fp
n (ξO)

⎞⎟⎟⎟⎟⎟⎠ . (47)

Likely, it should be mentioned that in the above equations,
all constant expansion coefficients depend only on the two
ellipsoidal boundaries ξ = ξI and ξ = ξO of the transition
layer as well as the dielectric mismatch ratio εr = εi/εo.
Therefore, once the width of the transition layer is chosen,
these coefficients have to be calculated only once even when
there are many charges present and they move over time.

The practical implementation of the above analytical
series solution additionally requires truncating the infinite

summation at a finite n value, say N , which could be very
large in order to reach convergence or high accuracy. Also, the
magnitude of the Lamé functions may increase exponentially
with the argument ξ and easily exceed the capacity of a
computer especially when their orders are high. Therefore, to
avoid potential overflow and computer cutoff errors, we further
carry out more convenient rewritings of the previous solution
so that the matrices of the resulting systems for the expansion
coefficients involve only the ratios of the Lamé functions and
the logarithmic derivatives of these functions. To this end, in
addition to (14) and (15), we let

γnp = unp(ξI )vnp(ξO). (48)

Then, when the charge es is located inside the inner layer,
the potentials in the three layers are rewritten as

�o(r,rs) = es√
εiεo

∑̂
A(1)

np · KnpEp
n (rs)Fp

n (r), (49a)

�i(r,rs) = es

εi |r − rs | + es

εi

∑̂
B(1)

np · vnp(ξI )KnpEp
n (rs)Ep

n (r),

(49b)

�t (r,rs) = es√
εiε(ξ )

∑̂
KnpEp

n (rs)

×[
C(1)

np vnp(ξO)Ep
n (r) + D(1)

npFp
n (r)

]
, (49c)

where the expansion coefficients A(1)
np , B(1)

np , C(1)
np , and D(1)

np are
now calculated by

M(1) ×

⎛⎜⎜⎜⎜⎜⎝
A(1)

np

B(1)
np

C(1)
np

D(1)
np

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
−1

0

−F̃
p
n (ξI )

0

⎞⎟⎟⎟⎟⎠ , (50)

with

M(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0, 1, −γnp, −1

1, 0, −1, −1

0, Ẽ
p
n (ξI ),

[
−Ẽ

p
n (ξI ) + βF 1

0
′
(ξI )√
εi

]
γnp, −F̃

p
n (ξI ) + βF 1

0
′
(ξI )√
εi

F̃
p
n (ξO), 0, −Ẽ

p
n (ξO) + βF 1

0
′
(ξO)√
εo

, −F̃
p
n (ξO) + βF 1

0
′
(ξO)√
εo

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (51)

Similarly, when the charge es is located inside the outer
layer, the potentials are rewritten as

�o(r,rs)= es

εo|r − rs | + es

εo

∑̂
A(2)

np · unp(ξO)KnpFp
n (rs)Fp

n (r),
(52a)

�i(r,rs) = es√
εoεi

∑̂
B(2)

np · KnpFp
n (rs)Ep

n (r), (52b)

�t (r,rs) = es√
εoε(ξ )

∑̂
KnpFp

n (rs)

× [
C(2)

np Ep
n (r) + D(2)

np unp(ξI )Fp
n (r)

]
, (52c)

where the expansion coefficients A(2)
np , B(2)

np , C(2)
np , and D(2)

np are
now determined by

M(2) ×

⎛⎜⎜⎜⎜⎜⎝
A(2)

np

B(2)
np

C(2)
np

D(2)
np

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0

−1

0

−Ẽ
p
n (ξO)

⎞⎟⎟⎟⎟⎠ , (53)

with
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M(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0, 1, −1, −1

1, 0, −1, −γnp

0, Ẽ
p
n (ξI ), −Ẽ

p
n (ξI ) + βF 1

0
′
(ξI )√
εi

, −F̃
p
n (ξI ) + βF 1

0
′
(ξI )√
εi

F̃
p
n (ξO), 0, −Ẽ

p
n (ξO) + βF 1

0
′
(ξO)√
εo

,

[
−F̃

p
n (ξO) + βF 1

0
′
(ξO)√
εo

]
γnp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (54)

Finally, when the charge es is located inside the transition
layer, we can write

�o(r,rs) = es√
εsεo

∑̂
Knp

× [
A(3)

npunp(ξI )Fp
n (rs) + A(4)

npEp
n (rs)

]
Fp

n (r),

(55a)

�i(r,rs) = es√
εsεi

∑̂
Knp

× [
B(3)

np Fp
n (rs) + B(4)

np vnp(ξO)Ep
n (rs)

]
Ep

n (r),

(55b)

�t (r,rs) = es√
εsε(ξ )|r − rs |

+ es√
εsε(ξ )

∑̂{
Knp

× [(
C(3)

np γnpFp
n (rs) + C(4)

np vnp(ξO)Ep
n (rs)

)
Ep

n (r)

+ (
D(3)

np unp(ξI )Fp
n (rs) + D(4)

np γnpEp
n (rs)

)
Fp

n (r)
]}

.

(55c)

Here the expansion coefficients A(3)
np , B(3)

np , C(3)
np , and D(3)

np

are now determined by

M(1) ×

⎛⎜⎜⎜⎜⎜⎝
A(3)

np

B(3)
np

C(3)
np

D(3)
np

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1

0

Ẽ
p
n (ξI ) − βF 1

0
′
(ξI )√
εi

0

⎞⎟⎟⎟⎟⎟⎟⎠ , (56)

while the expansion coefficients A(4)
np , B(4)

np , C(4)
np , and D(4)

np are
now determined by

M(2) ×

⎛⎜⎜⎜⎜⎜⎝
A(4)

np

B(4)
np

C(4)
np

D(4)
np

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0

1

0

F̃
p
n (ξO) − βF 1

0
′
(ξO)√
εo

⎞⎟⎟⎟⎟⎟⎟⎠ . (57)

Accordingly, from (49b), (52a), and (55c), the self-
polarization potential energy of a charged particle e at the
location r can be arrived at as follows:

Vs(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

e2

2εo

∑̂
A(2)

np · unp(ξO)KnpFp
n

2(r), if ξ � ξO,

e2

2εi

∑̂
B(1)

np · vnp(ξI )KnpEp
n

2(r), if ξ � ξI ,

e2

2ε(ξ )

∑̂
Knp

[
γnp

(
C(3)

np + D(4)
np

)
Ep

n (r)Fp
n (r) +vnp(ξO)C(4)

np Ep
n

2(r) + unp(ξI )D(3)
npFp

n
2(r)

]
, if ξI < ξ < ξO.

(58)

V. NUMERICAL METHOD FOR GENERAL
THREE-LAYER DIELECTRIC MODELS

The Poisson equation (1) corresponding to a general three-
layer dielectric model does not admit an easy explicit analytical
solution and thus needs to be solved numerically. One could
develop a numerical procedure similar to that proposed by
Bolcatto and Proetto in [4] for the spherical geometry. First,
the transition layer is subdivided into multiple sublayers, and
then in each one of them the select dielectric function is
approximated by a constant value such as the mean value
of the dielectric function in this sublayer. As a result, the
original continuous radial dielectric profile is approximated

by a piecewise constant one, and consequently, the original
Poisson equation with the continuous radial dielectric profile
reduces to one in layered dielectric ellipsoids, whose solution
can then be found in the same way as for the Poisson equation
in layered spheres [4,13,33–36]. However, this approach
has a fundamental limitation: As it discretizes a continuous
dielectric function ε(ξ ) into a piecewise constant one within the
transition layer, and the ultimate effect of such discretization is
to approximate a continuous self-polarization potential energy
by one with divergence at every interface between those
sublayers, new numerical divergence emerges.

Therefore, as in [1,11], we employ an ideally only
slightly more complicated but computationally much more
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robust numerical procedure. Basically, the procedure first
still divides the transition layer, ξb − δ < ξ < ξb + δ, into
multiple, say L − 1, sublayers, [ξl−1,ξl],l = 1,2, . . . ,L − 1,

with ξ0 = ξb − δ and ξL−1 = ξb + δ. For convenience, also set
ξ−1 = k and ξL = ∞. For each index l = −1,0, . . . ,L, denote
by el the dielectric constant at ξ = ξl , namely, el = ε(ξl).
Note that e−1 = e0 = εi and eL−1 = eL = εo. Then in each
sublayer [ξl−1,ξl], l = 0,1, . . . ,L, the dielectric function ε(ξ )
is approximated by a quasiharmonic one of the form (25) that
connects el−1 and el , namely, by

εl(ξ ) = [
αl + βlF

1
0 (ξ )

]2
, ξl−1 � ξ � ξl, l = 0,1, . . . ,L,

where

αl = cl

√
el − dl

√
el−1

cl − dl

and βl =
√

el−1 − √
el

cl − dl

, (59)

with

cl = F 1
0 (ξl−1) and dl = F 1

0 (ξl) . (60)

Note that now the approximating dielectric profile remains
continuous. As a result, the self-polarization potential energy
has no numerical divergence, and, as the number of sublayers
used to discretize the transition layer increases, the numerical
solution shall converge to the exact solution of the Poisson
equation.

Next, in each sublayer the solution of the Poisson equation
is expressed as

�l(r,rs) = es√
εl(ξ )

∑̂ [
C(l)

npEp
n (r) + D(l)

npFp
n (r)

]
,

if ξl−1 � ξ � ξl. (61)

Finally, by using a recursive method in analogy to the anal-
ysis of transmission lines [1,4,11,13,33–36], those constant
expansion coefficients C(l)

np and D(l)
np can be determined from

the following interface conditions for l = 1,2, . . . ,L:

�l−1|ξ=ξ−
l−1

= �l|ξ=ξ+
l−1

and
∂�l−1

∂ξ

∣∣∣∣
ξ=ξ−

l−1

= ∂�l

∂ξ

∣∣∣∣
ξ=ξ+

l−1

.

As a result of the above procedure, explicit numerical
formulas for solving the Poisson equation (1) for general
three-layer dielectric models can be obtained. More precisely,
the generalized Coulomb potential at a point r in the lth
sublayer due to a point charge es at another point rs in the
kth1 sublayer can be calculated by

�lk(r,rs) = es√
εl(ξ )εk(ξs)

∑̂
KnpY p

n (μs,νs)Y
p
n (μ,ν)

× Wnp,lk(ξ,ξs)

(1 − pnp,kkqnp,kk)
, (62)

where the functions Wnp,lk(ξ,ξs) are given by

Wnp,lk(ξ,ξs) = [
pnp,kkE

p
n (ξ>) + Fp

n (ξ>)
]

× [
Ep

n (ξ<) + qnp,lkF
p
n (ξ<)

]
Ĉl

np (63)

1To be consistent with previous publications, here we have used k

as an index although it is also used to represent
√

a2 − c2 in the paper.

if l < k,

Wnp,lk(ξ,ξs) = [
pnp,kkE

p
n (ξ>) + Fp

n (ξ>)
]

× [
Ep

n (ξ<) + qnp,kkF
p
n (ξ<)

]
(64)

for l = k, and

Wnp,lk(ξ,ξs) = [
pnp,lkE

p
n (ξ>) + Fp

n (ξ>)
]

× [
Ep

n (ξ<) + qnp,kkF
p
n (ξ<)

]
D̃l

np (65)

when l > k. Here ξ< (ξ>) is the smaller (greater) between ξ

and ξs ,

pnp,lk = T k
npvnp(ξl) and qnp,lk = Rk−1

np unp(ξl−1), (66)

and

Ĉl
np =

k−1∏
j=l

Tnp,j+1

1 − Rnp,j+1R
j−1
np γnp,j

, (67a)

D̃l
np =

l∏
j=k+1

Tnp,j

1 − Rnp,jT
j
npγnp,j

. (67b)

In the previous formulations, γnp,l = unp(ξl−1)vnp(ξl), l =
0,1, . . . ,L. In particular, γnp,0 = γnp,L = 0. Rnp,l and Tnp,l ,
identified as the interface parameters associated to the interface
ξ = ξl−1, are given by

Rnp,l = (βl − βl−1)F 1
0

′
(ξl−1)/�np,l, (68a)

Tnp,l = √
el−1

[
F̃

p
n (ξl−1) − Ẽ

p
n (ξl−1)

]
/�np,l, (68b)

�np,l = √
el−1

[
F̃

p
n (ξl−1) − Ẽ

p
n (ξl−1)

]
−(βl − βl−1)F 1

0
′
(ξl−1). (68c)

On the other hand, Rl
np and T l

np, identified as the interface
reflection and the transmission coefficients associated to the
interface ξ = ξl−1, are given through the following recursive
expressions

Rl−1
np = Rnp,l + T 2

np,lR
l−2
np γnp,l−1

1 − Rnp,lR
l−2
np γnp,l−1

with R−1
np = 0,

(69)

T l−1
np = Rnp,l + T 2

np,lT
l
npγnp,l

1 − Rnp,lT l
npγnp,l

with T L
np = 0. (70)

Consequently, the self-polarization energy of a charged
particle e at a point r in the lth sublayer where 0 � l � L,
denoted by V l

s (r), can be calculated by V l
s (r) = 1

2e�ll(r,r). In
accordance with (62), the self-energy reads

V l
s (r) = e2

2εl(ξ )

∑̂{
KnpE

p
n

2(μ)Ep
n

2(ν)

(1 − pnp,llqnp,ll)

×[
pnp,llE

p
n

2(ξ ) + pnp,llqnp,llE
p
n (ξ )Fp

n (ξ )

+ qnp,llF
p
n

2(ξ )
]}

. (71)

056709-9



CHANGFENG XUE AND SHAOZHONG DENG PHYSICAL REVIEW E 83, 056709 (2011)

0 10 20 30 40
−50

−40

−30

−20

−10

0

10

r (A)

V
s (

eV
)

o
x

y

−20 0 20

−20

−10

0

10

20

(a) (b)

FIG. 4. (Color online) (a) Self-polarization energy Vs of unit charges along the line segment OP , and (b) the contour graph of the
electrostatic potential distribution on the x-y plane due to a unit point charge at rs = (10,7.5,5) inside the ellipsoidal QD, corresponding to the
steplike model.

VI. ILLUSTRATIVE NUMERICAL EXPERIMENTS

In this section, we apply the analytical solution for the
proposed quasiharmonic dielectric model as well as the
proposed numerical solution for general three-layer dielectric
models to the calculation of the self-polarization energy of
a triaxial ellipsoidal QD in which the dielectric constant
inside the dot is typically higher than that of the surrounding
matrix. In particular, we consider the ellipsoidal QD given by
x2/a2 + y2/b2 + z2/c2 = 1 with a = 20 Å, b = 15 Å, c =
10 Å, and εi = 12.6 (GaAs) and assume that it is embedded
in vacuum (εo = 1). In all simulations, the imposed upper
limit of n is set to N = 100. Unless otherwise specified,
all analytical results and illustrative plots are based on the
calculation of the self-polarization energies of 1000 unit
charges (in atomic units) uniformly distributed (in terms of the
ξ -dependent distance) along the line segment OP with two
end points O = (0,0,0) and P = (26,24,18). Furthermore,
when the numerical solution is involved, the number of
sublayers used to discretize the transition layer is set to
L = 1000.

A. Self-energy for the steplike dielectric model

Figure 4(a) shows the self-polarization energy profile and
Fig. 4(b) shows the contour graph of the electrostatic potential
distribution on the x-y plane due to a unit point charge
inside the QD at the point rs = (10,7.5,5), respectively,
corresponding to the simple steplike model. It is well known
that under the steplike model, when the source charge is placed
in the region with a lower dielectric constant, the induced
charges have the opposite sign as the source charge and then
the interaction between the source and the induced charges
is attractive. On the contrary, if the source charge is located
in the region with a higher dielectric constant, the induced
charges have the same sign as the source charge and then
the interaction is repulsive. Here εi > εo, so as shown in
Fig. 4(a), the self-polarization energy is positive inside the
dot but negative outside. Moreover, as the source charge
moves to the QD boundary, the self-energy increases rapidly

in magnitude, leading to divergence at the QD boundary. On
the other hand, Fig. 4(b) clearly shows that, under the steplike
model, the resulting electrostatic potential is continuous but
its normal derivative is discontinuous across the boundary, as
required by the boundary condition (18).

B. Self-energy for the quasiharmonic dielectric model

Figure 5(a) shows the self-polarization energy profile and
Fig. 5(b) shows the contour graph of the electrostatic potential
distribution on the x-y plane due to a unit point charge inside
the QD at the point rs = (10,7.5,5), respectively, correspond-
ing to the proposed quasiharmonic model with δ = 2 Å. As can
be seen from Fig. 5(a), under the quasiharmonic model, as the
source charge moves from the center to the outside of the dot
along the line segment OP , the self-polarization energy first
increases and reaches its maximum value at the inner boundary
of the transition layer. Then it gradually decreases from
positive to negative (but with higher and higher rate) within
the transition layer. Once the self-energy reaches its minimum
value at the outer boundary of the transition layer, it gradually
increases to zero (but with lower and lower rate). As a result,
the mathematical divergence present in the steplike model is
overcome. Also, although the quasiharmonic dielectric model
leads to singularity in the self-polarization potential energy
at both boundaries of the transition layer, precisely where
the derivative of ε(r) is discontinuous, fortunately this kind
of singularity is integrable. On the other hand, Fig. 5(b)
clearly shows that, under the quasiharmonic model, both the
electrostatic potential and its normal derivative are continuous
across the boundaries of the transition layer, as required by the
boundary conditions (31) and (32).

Figure 6 shows the self-polarization energy profile of unit
charges along the line segment OP corresponding to the
quasiharmonic model with several different thickness of the
transition layer, namely, δ = 2, 1, and 0.5 Å, respectively.
Clearly, it is observed that, as the transition layer decreases
in size, the self-polarization energy given by the analytical
solution for the quasiharmonic model reduces to that for the
steplike model.
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FIG. 5. (Color online) (a) Self-polarization energy Vs of unit charges along the line segment OP , and (b) the contour graph of the
electrostatic potential distribution on the x-y plane due to a unit point charge at rs = (10,7.5,5) inside the ellipsoidal QD, corresponding to the
quasiharmonic model with δ = 2 Å. Note that in this case, rs = (10,7.5,5) is actually inside the transition layer.

C. Convergence of the proposed numerical method as L → ∞
To investigate the convergence of the proposed numerical

method in terms of L, the number of sublayers to discretize
the transition layer in a three-layer dielectric model, here we
consider its application to the linear and the cosinelike dielec-
tric models with δ = 2 Å. We calculate the self-polarization
energies of 1000 unit charges equally spaced along the line
segment OP , and the numerical results are compared to those
obtained by the proposed numerical method using L = 3000 to
calculate the L2-relative errors in the self-polarization energy,
which are displayed in Fig. 7. More precisely, the L2-relative
error E in the self-polarization energy is defined as

E =

√√√√√√√√
∑

1�i�1000

(
V

(L)
s (ri) − V

(3000)
s (ri)

)2

∑
1�i�1000

(
V

(3000)
s (ri)

)2 , (72)

where V (L)
s (ri) denotes the computed self-polarization energy

of a unit charge at ri by using the numerical method with L

sublayers. As can be seen, the results clearly demonstrate the
convergence of the proposed numerical method as L → ∞.
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FIG. 6. (Color online) Self-polarization energy Vs of unit charges
along the line segment OP corresponding to the quasiharmonic
model with δ = 2, 1, and 0.5 Å, respectively.

Based on this, it is reasonable to believe that, for general three-
layer dielectric models, the proposed numerical method should
be able to recover the exact solution of the corresponding
Poisson equation as L → ∞.

Next, in Fig. 8 we show the self-polarization energy for the
QD corresponding to the foregoing three three-layer dielectric
models with δ = 2 Å, respectively. It is evident that the choice
of different dielectric permittivity profiles for the dielectric
transition layer modifies both the strength and the functional
form of the potentials, although all three forms of ε(ξ ) can
eliminate the mathematical divergence present when δ = 0.
However, since the derivative of ε(ξ ) in both the quasiharmonic
and the linear models is discontinuous at the both boundaries of
the transition layer, the self-polarization energy corresponding
to these two models exhibits differential singularity at these
locations as well.

D. The dielectric ellipsoid approaches a sphere

Finally, let us examine the case where the dielectric
ellipsoid approaches a sphere for the sake of further validation
of the results obtained in the present paper. While it may be

10
1

10
2

10
3

10
−4

10
−2

10
0

L

E

 

 

Cosinelike
Linear

FIG. 7. (Color online) L2-relative error E in the self-polarization
energy corresponding to the linear and the cosinelike models with
δ = 2 Å, respectively, using the proposed numerical method with
various L values.
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FIG. 8. (Color online) Self-polarization energy Vs as a
function of r for several three-layer dielectric models with
δ = 2 Å. Solid line, the quasiharmonic model with using the analytical
solution; dashed and dot-dashed lines, the cosinelike and the linear
models, respectively, using the proposed numerical method.

possible to theoretically prove that (58) will reduce to Eq. (11)
of Ref. [11] and (71) to Eq. (46) of Ref. [11], we shall compare
these equations numerically in order to avoid long, tedious
mathematics. To this end, we consider a spherical QD given
by x2 + y2 + z2 = 102 but still assume εi = 12.6 and εo = 1.
We calculate the self-polarization energies of 200 unit charges
(in atomic unit) uniformly distributed along the line segment
with two end points (0,0,0) and (0,0,20) corresponding to
the quasiharmonic and the cosinelike three-layer dielectric
models, respectively. The results are displayed in Fig. 9. In all
of these simulations, the width of the transition layer is fixed
with δ = 5 Å, and when the numerical methods are involved,
the number of sublayers used to discretize the transition layer
is set to L = 1000. However, the imposed upper limit of n

is set to N = 4000 when the QD is regarded as a sphere
and N = 62 as an ellipsoid, respectively. Also, it should be
pointed out that, when treating the spherical QD as a limiting
case of an ellipsoid, we actually use x2/10.012 + y2/102 +
z2/9.992 = 1 so that the two semifocal distances k and h do
not become zero; otherwise, the formulas obtained for the
ellipsoidal geometry cannot be used directly. As can be seen,
the numerical results obtained by treating the spherical QD as
a limiting case of an ellipsoid, and thus applying the formulas
presented in the present paper, are in excellent agreement with
those obtained by directly using the formulas developed in
Ref. [11] for the spherical geometry, suggesting once again
the correctness of the analytical solution for the quasiharmonic
three-layer model as well as the robustness of the numerical
method for general three-layer models presented in this paper
for the ellipsoidal geometry.

VII. CONCLUDING REMARKS

A quasiharmonic three-layer dielectric model for calculat-
ing generalized Coulomb and self-polarization potentials in
heterogeneous dielectric media has been extended to the el-
lipsoidal geometry. The explicit analytical series solutions for
the corresponding Poisson equation in terms of the ellipsoidal
harmonics have been developed. The quasiharmonic dielectric
model can overcome the inherent mathematical divergence
in the self-polarization energy that exists in the simple
steplike dielectric model. Furthermore, a robust numerical
procedure working for general three-layer dielectric models
has been presented. The key component of this numerical
method is to subdivide the transition layer of the underlying
three-layer model into multiple sublayers, and then in each
one of them approximate the select dielectric function of
the transition layer by one of the quasiharmonic functional
form. The results presented in this paper can find their
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FIG. 9. (Color online) Self-polarization energy Vs of unit charges along the line segment with two end points (0,0,0) and (0,0,20) when a
spherical QD given by x2 + y2 + z2 = 102 is considered. The dash-dotted lines are the results calculated by directly using the analytical solution
of the quasiharmonic three-layer model and the robust numerical method for general three-layer models in the spherical geometry developed
in Ref. [11], while the solid lines are the results obtained by treating the spherical QD as a limiting case of an ellipsoid, and thus applying
the formulas presented in the present paper. In the latter case, a small perturbed spherical QD given by x2/10.012 + y2/102 + z2/9.992 = 1 is
actually used in order that the two semifocal distances k and h of the resulting ellipsoid do not become zero. δ = 5 Å. (a) Analytical solutions
for the quasiharmonic three-layer models in the spherical and the ellipsoidal geometries. (b) Numerical solutions for the cosinelike three-layer
models in these two geometries.

056709-12



THREE-LAYER DIELECTRIC MODELS FOR GENERALIZED . . . PHYSICAL REVIEW E 83, 056709 (2011)

applications in many areas that involve the calculation of the
generalized Coulomb potential, such as simulations of ellip-
soidal semiconductor QDs, molecular dynamics simulations of
elongated, nonspherical or nonspheroidal biomacromolecules,
etc.
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