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The quest for high thermal conductivity materials has led to nanocomposites incorporating macromolecular
materials with excellent thermal conductivity, such as carbon nanotubes and graphene nanoribbons, in a matrix of
poorer thermal conductivity. To minimize the interface thermal resistance the stiff, incorporated materials can be
chemically functionalized with various side chains. We report here an efficient theoretical method using normal
modes to calculate the thermal conductivity of such systems and show how the participation ratio of these modes
can be used to evaluate different choices for functionalization. We use this method to examine how effective
different alkane chains improve the heat flux through a graphene nanosheet.
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I. INTRODUCTION

The thermal conductivity of single wall carbon nanotubes
(CNTs) at room temperature is about 6000 W/mK and that
of multiwall carbon nanotubes is about 3000 W/mK [1–3].
Graphene also displays a number of remarkable properties
including extremely high electron mobility (up to ∼ 2 × 105

cm2/Vs [4,5]), and extremely high thermal conductivity
(ranging from (4.84 ± 0.44) × 103 to (5.30 ± 0.48) × 103

Wm−1K−1 [6]). The thermal conductivity of graphene and
few-layer graphene depends strongly on the size of the
graphene flakes [7] and the thickness of the few-layer graphene
[8]. The outstanding thermal performance of these materials
suggests their use in thermal management applications in
electronics and optoelectronics [9–12].

However, the incorporation of CNTs and graphene into
polymers has not produced the high thermal conductivity
composites because of the constituents’ interface thermal
resistance. “Kapitza resistance” occurs at the boundary of two
dissimilar materials [13,14] and produces a temperature drop
across the interface that is proportional to the heat flux. The
effect is large when the two materials have a large difference in
elasticity so that there is only a weak coupling of phonon modes
at the interface. If this resistance could be minimized then
polymer composites could be used in radiators and other heat
exchangers replacing heavier, costlier metallic components.

To this end, in the graphene system two strategies have
been proposed. The first is based on the fabrication of
graphene strips with reduced lateral size [known as graphene
nanoribbons (GNRs)] [15]. GNRs with width(s) from several
tens of nanometers down to 2 nm have been fabricated either
by plasma etching [16] or by means of chemical treatment
of graphite [17]. Alternatively, chemical functionalization of
graphene-based materials is a promising strategy and does
not require aggressive ribbon width reduction. Nevertheless
this method may induce severe disruption of the otherwise
good conducting properties of graphene. Optimizing the
thermal conduction to the graphene appears then to be a
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major challenge, and constructing models to simulate the heat
conduction to the graphene tend to be helpful.

In this paper we introduce a new technique to calculating
thermal conductivity of functionalized molecules in general
and use graphene nanosheets as a case study. We show by
linearizing the interatomic interactions, and by numerically
calculating the normal modes, that the total heat flux, through-
out the functionalized macromolecule is a function of the
temperature difference of the hot and cold baths. Even more
interestingly, we show that we can control the heat transport
throughout the system by varying the functionalized chains.

It may be objected that linearizing interactions dramatically
changes the dynamics of the system. However, we are
interested in determining the major bottlenecks to thermal
conductivity at the interface and these are present even in
the linear approximation. Nonlinear corrections may alter the
magnitude of our results, but not the essential principles for
optimization.

This paper is divided into three major parts. In the first, we
introduce the analytical technique used to solve for the thermal
heat flux of a system of interacting particles the first and last
of which are in contact with thermal heat baths. Next, we
numerically apply this technique to two systems: an idealized
one-dimensional chain and a more realistic functionalized
graphene nanosheet. We further analyze the effect of changing
the length of the chains on the overall conduction of heat
throughout the functionalized graphene and we verify the
validity of these results by calculating the participation
ratio. In the final section we conclude with a summary and
discussion.

II. THE ANALYTICAL TECHNIQUE

A. Site displacement

In this section, we shall develop the general Langevin
formalism that we apply to a specific system in Sec. III. We
shall present this general case first and then indicate briefly
how the results will simplify for our special cases.

Consider a system made of N particles connected by
springs. We will apply a driving random force to the first
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and last particles. Each particle obeys the equation of motion:

miẌi = −
∑

j

KijXj + [γiẊi + Fi(t)](δi,1 + δi,N ), (1)

where mi , Xi , respectively, are the mass and displacement of
particle i, Kij is the spring constant between particles i and
j , γi the damping force given by Stokes’s law, Fi(t) is the
Langevin force on particle i, the overhead dot refers to time
derivative, and δij is the Kronecker delta function restricting
the driving and damping to the first and last particles.

We can write the set of N coupled differential equations as

M̃ �̈X + �̃ �̇X + K̃ �X = �F (t), (2)

where M̃ , �̃, K̃ are, respectively, the mass, damping, and
spring constant matrices and �F (t) is the random Langevin
force vector.

The statistics of the Langevin sources [18] are defined by

〈Fi(t)〉 = 0, (3)

〈Fi(t1)Fj (t2)〉 = 2γikBTiδij δ(t1 − t2), (4)

where Ti is the temperature of the source i, kB is the Boltzman
constant, and 〈 〉 stands for temporal average.

Consider the homogeneous form of Eq. (2),

M̃ �̈X + �̃ �̇X + K̃ �X = 0. (5)

We search for a solution to Eq. (5) of the form �X = �aeλt , where
�a is independent of the time t . Plugging this solution in Eq. (5)
gives

M̃λ2�a + λ�̃�a + K̃ �a = 0. (6)

This is a quadratic eigenvalue problem for λ. To solve this
eigenvalue problem we introduce a second set of coefficients,

�b = λ�a, (7)

and Eq. (6) becomes

λM̃ �b + �̃�b + K̃ �a = 0, (8)

producing an eigenvalue equation of the form,(
0̃ 1̃

K̃ �̃

)( �a
�b

)
= λ

(̃
1 0̃

0̃ −M̃

)(�a
�b

)
, (9)

where 1̃ is the unity matrix. Thus we see that even in the
presence of dissipation, we can find normal, uncoupled modes
for the system.

In general we generate complex eigenvalues λk and com-
plex eigenvectors �ak . However, if λk and �ak are solutions to
the eigenvalue problem then their complex conjugates λ∗

k and
�a∗
k are solutions as well. Let

λk = −ηk + iωk, (10)

and

�ak = �uk + i�vk, (11)

then

�ake
λkt = (�uk + i�vk)e−ηkt+iωkt (12)

is a solution to the homogenous equation of motion [Eq. (5)]
and so is

�a∗
k e

λ∗
k t = (�uk − i�vk)e−ηkt−iωkt . (13)

Thus we can define the real solutions χ
(1)
k (t) and χ

(2)
k (t), where

χ
(1)
k (t) = e−ηkt [�uk cos (ωkt) − �vk sin (ωkt)], (14)

χ
(2)
k (t) = e−ηkt [�uk sin (ωkt) + �vk cos (ωkt)], (15)

and from that the general solution to the homogenous
problem is

�χ (t)hom =
∑

k

B
(1)
k χ

(1)
k (t) + B

(2)
k χ

(2)
k (t), (16)

where B
(1)
k and B

(2)
k are constants that depend on the boundary

conditions.
The solution to the driven problem of Eq. (2) is

�χ (t) = �χ(t)hom +
∫ t

0
G̃(t,t ′) �F (t ′)dt ′, (17)

where G(t,t ′) is the Green function solution to the differential
equation,

M̃
∂2G̃

∂t2
+ �̃

∂G̃

∂t
+ K̃G̃ = 1̃δ(t − t ′). (18)

Normally we need to specify the boundary conditions at
t = 0. However, we are interested in the steady-state solution
to the problem so the initial conditions are irrelevant. We can
choose any initial condition that is convenient. In particular,
we can choose �χ (0) = 0 and �̇χ (0) = 0. With these conditions,
the homogeneous term is zero, and our steady-state solution is

�χ (t) =
∫ t

0
G̃(t,t ′) �F (t ′) dt ′. (19)

We look for a solution to the Green function of the form,

G̃(t,t ′) = (C̃(1)χ̃ (1)(t − t ′) + C̃(2)χ̃ (2)(t − t ′))η(t − t ′), (20)

where C̃(1) and C̃(2) are matrices to be determined, η(t − t ′) is
the Heaviside step function, and

χ̃
(1)
ij = (

χ
(1)
i

)
j

and χ̃
(2)
ij = (

χ
(2)
i

)
j
, (21)

particularly (χ (α)
i )j is the j th component of the i th solution χ

(α)
i

to the homogeneous equation of motion [Eq. (5)], and αε{1,2}.
We introduce the operator �̃ such that

�̃ = M̃
∂2

∂t2
+ �̃

∂

∂t
+ K̃. (22)

Equation (18) reduces to

�̃G̃ = 1̃δ(t − t ′), (23)
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inserting Eq. (20) in Eq. (23) produces

�̃G(t,t ′)
= η(t − t ′)�̃[C̃(1)χ̃ (1)(t − t ′) + C̃(2)χ̃ (2)(t − t ′)]

+ 2M̃
∂

∂t
[C̃(1)χ̃ (1)(t − t ′) + C̃(2)χ̃ (2)(t − t ′)]δ(t − t ′)

+ M̃[C̃(1)χ̃ (1)(t − t ′) + C̃(2)χ̃ (2)(t − t ′)]δ′(t − t ′)
+�[C̃(1)χ̃ (1)(t − t ′) + C̃(2)χ̃ (2)(t − t ′)]δ(t − t ′)

= 1̃δ(t − t ′). (24)

At (t − t ′ = 0) we want this to equal the identity matrix 1̃.
This will happen if

C̃(1)χ̃ (1)(0) + C̃(2)χ̃ (2)(0) = 0,
(25)

(C̃(1)˜̇χ (1)
(0) + C̃(2)˜̇χ (2)

(0))ij = 1
2δij M̃

−1
ij .

This is a set of 2N2 variables C̃α
ij where αε{1,2} and 2N2

separate equations. This problem is solvable and the solution
can be found numerically. Once these coefficients are found,
the displacement of particles as a function of time can be
constructed out of the solution in Eq. (19).

B. Thermal heat flux

In this section we develop an expression of the thermal
heat flux as a function of the hot and cold bath temperatures
using the steady-state solution to the displacements found
in Sec. II A; Eq. (19). We will use the result derived in
Appendix A; Eq. (A7) as an expression of the heat flux jij

between particles i and j .

ajij = ∂Vij

∂xi

ẋi + ∂Vij

∂yi

ẏi + ∂Vij

∂zi

żi − ∂Vij

∂xj

ẋj

− ∂Vij

∂yj

ẏj − ∂Vij

∂zj

żj , (26)

where

Vij = (xi,yi,zi)

⎡
⎢⎣

K3i−2,3j−2 K3i−2,3j−1 K3i−2,3j

K3i−1,3j−2 K3i−1,3j−1 K3i−1,3j

K3i,3j−2 K3i,3j−1 K3i,3j

⎤
⎥⎦

⎛
⎜⎝

xj

yj

zj

⎞
⎟⎠ ,

(27)

and (xi,yi,zi) and (xj ,yj ,zj ) are the components of the
displacements of particles i and j , respectively. The K’s are
the elements of the K matrix involving the displacements of
particles i and j .

ajij = K3i−2,3j−2(xj ẋi − xi ẋj ) + K3i−1,3j−1(yj ẏi − yi ẏj )

+K3i,3j (zj żi − zi żj ) + K3i−2,3j−1(yj ẋi − xi ẏj )

+K3i−1,3j−2(xj ẏi − yi ẋj ) + K3i−2,3j (zj ẋi − xi żj )

+K3i,3j−2(xj żi − zi ẋj ) + K3i−1,3j (zj ẏi − yi żj )

+K3i,3j−1(yj żi − zi ẏj ). (28)

Now that we have a working expression of the thermal heat
flux jij , the next step is to replace the site displacement and
velocities, by the steady-state solution Eq. (19) and its time
derivative. In fact all the terms in parentheses in Eq. (28) are

of the form Iij = ( �̇χ )3i−l( �χ)3j−s − ( �̇χ)3j−s( �χ)3i−l , where (s,l)
are integers between 1 and 3, which is also expressed as

I3i−l,3j−s =
∑
mn

,

∫ t

0
dt1

∫ t

0
dt2

˙̃G3i−l,m(t − t1)G̃3j−s,n(t − t2)

×Fm(t1)Fn(t2) −
∫ t

0
dt1

∫ t

0
dt2G̃3i−l,m(t − t1)

× ˙̃G3j−s,n(t − t2)Fm(t1)Fn(t2), (29)

using Eq. (4), and noting that we are only applying a driving
force to the first and last particles. Equation (29) reduces to

I3i−l,3j−s = 2γNkTN

3∑
n=1

∫ t

0
dt1G̃3i−l,3N−n(t − t1)

× ˙̃G3j−s,3N−n(t−t1)−2γ1kT1

3∑
m=1

∫ t

0
dt1G̃3i−l,m

× (t − t1) ˙̃G3j−s,m(t − t1), (30)

and Eq. (28) becomes

jij =
3∑

l=1

3∑
s=1

K3i−l,3j−s

a
I3i−l,3j−s . (31)

Let Sij and S ′
ij be the coefficients of T1 and TN in Eq. (30),

S ′
ij = 2γNk

3∑
n=1

∫ t

0
dt1G̃i3N−n(t − t1) ˙̃Gj3N−n(t − t1),

(32)

Sij = 2γ1k

3∑
m=1

∫ t

0
dt1G̃im(t − t1) ˙̃Gjm(t − t1).

Equation (31) reduces to

jij = TN

3∑
l=1

3∑
s=1

K3i−l,3j−s

a
S ′

3i−l,3j−s

− T1

3∑
l=1

3∑
s=1

K3i−l,3j−s

a
S3i−l,3j−s . (33)

The coefficients of T1 and TN in Eq. (33) can be calculated
numerically using the expression of the Green functions found
in Sec. II A; Eq. (20). In principle we can apply the Langevin
driving force to any of the atoms in the system. In order to
estimate the thermal conductivity we choose to couple to atoms
at the furthest extremes of the chain. The rationale is that they
are furthest from the stiffer incorporated molecule and thus
best connected to the fluctuating heat bath.

The localized heat flux ji is the sum of all the individual
contributions from the sites j nearest to i:

ji =
∑

j

jij . (34)

The total heat flux is the sum of the localized contribution,

j =
∑

i

ji =
∑
ij

jij = DhTN − DcT1, (35)
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where

Dh =
∑
ij

3∑
sl=1

K3i−l,3j−s

a
S ′

3i−l,3j−s ,

(36)

Dc =
∑
ij

3∑
sl=1

K3i−l,3j−s

a
S3i−l,3j−s .

We will numerically show in Sec. III that the total heat flux
j in Eq. (35) is proportional to the temperature difference of
the hot and cold baths (i.e., Dh = Dc).

C. Participation ratio

In order to better understand how to optimize structures we
find it useful to calculate the participation ratio (P ) [19]. This
quantity is commonly used in electronic problems to describe
the degree to which an electron is localized in space [20]. The
participation ratio is defined as

P =
(∑n=N

n=1 ψn
2
)2

Ld
∑n=N

n=1 ψn
4

, (37)

where N is the total number of modes, | ψ〉 is the eigenvector
describing the normal mode, L the system linear size, and d is
the Euclidean dimension of the system, giving the total number
of atoms Ld = N .

The participation ratio is in the order of 1 for extended
modes and ≈1/N for localized modes. The intuition is that
systems with more low-energy, high-participation ratio modes
will be better at conducting heat.

III. APPLICATION

In this section we shall present the application of the results
of Sec. II for two special cases, a one-dimensional linear chain
and a small two-dimensional functionalized sheet of graphene.

A. One-dimensional chain

Consider a linear chain of N coupled atoms, the first
and the last of which interact with thermal heat baths. The
schematic diagram of this setup is drawn in Fig. 1 for N = 4.
For simplicity only nearest neighbor interactions will be
considered and it is assumed that adjacent atoms are coupled
with springs of spring constant K . Let xl be the displacement
of the lth particle. The Hamiltonian of this system is

H =
∑

i

pi
2

2m
+ 1

2
K(xi+1 − xi)

2, (38)

T- T+

FIG. 1. A pictorial representation of a linear chain of N = 4 mu-
tually coupled oscillators in interaction with two thermal reservoirs
working at different temperatures. Here T1 = T+ and TN = T−.

where m is the mass of the particles. We set m = a = 1, where
a is the lattice constant, and K = 1.

In this one-dimensional case Eqs. (26) and (30) reduce to

jij =
(

K

a

)
(xj ẋi − xi ẋj ) =

(
K

a

)
Iij , (39)

where

Iij = 2γNkTN

∫ t

0
dt1G̃iN (t − t1) ˙̃GjN (t − t1)

− 2γ1kT1

∫ t

0
dt1G̃i1(t − t1) ˙̃Gj1(t − t1). (40)

The total heat flux is

j =
∑
ij

jij =
(

K

a

) ∑
ij

Iij = DhTN − DcT1, (41)

where

Dh = 2γNk

(
K

a

)∑
ij

∫ t

0
dt1G̃iN (t − t1) ˙̃GjN (t − t1),

(42)

Dc = 2γ1k

(
K

a

) ∑
ij

∫ t

0
dt1G̃i1(t − t1) ˙̃Gj1(t − t1).

Figure 2 is a plot of the coefficients of TN and T1 in Eq. (41)
as a function of time for a chain of four atoms. As illustrated,
these coefficients converge to the same value. This means that
in the steady-state regime the total heat flux j is proportional
to the temperature difference of the hot and cold baths, the
proportionality constant is the thermal conductance of the
chain λc, and

j = λc(TN − T1). (43)

B. Two-dimensional sheet of graphene

In this application we consider a hexagonal sheet of
graphene made of 36 carbon atoms bonded together in a
honeycomb structure. We attach two alkane chains to opposite

0 20 40 60 80
0.00

0.02

0.04

0.06

0.08

t
k

m

D
m

a5
K

5

FIG. 2. (Dh = K

a

∑
ij S ′

ij ) and (Dc = K

a

∑
ij Sij ) as a function of

time (t) for a chain of four atoms. As expected these factors converge
to the same value. This means that in the steady-state regime the total
heat flux j is proportional to the temperature difference of the hot
and cold baths.
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T+

T-

FIG. 3. A pictorial representation of a functionalized sheet of
graphene. The number of atoms in the graphene sheet is 36. The
alkane chains are n-pentane. The end of the chains interact with two
thermal reservoirs working at different temperatures.

boundaries of the graphene sheet and to the heat baths as shown
in Fig. 3. The alkane chains are n-pentane. The Tersoff-Berner
(TB) force field is used to describe the interactions among the
atoms in the graphene sheet. The Nath, Escobedo, and Pablo
revised (NERD) potential is used to describe the interactions in
the chains and the bond between the chains and the graphene.

We relax the system by minimizing the site potential in
the functionalized graphene sheet; this is done by using a
multiobjective optimization technique [22]. Additional infor-
mation about the (TB) and (NERD) force fields is found in
Appendix B.

The next step to solving the problem of heat conduction in
the functionalized graphene is to find the normal modes of the
structure. At this point we assume that the site displacements
are very small and approximate the potential (E) by a second-
order Taylor expansion around the site equilibrium positions,

E = 1

2

∑
ij

∂2V

∂ζi∂ζj

ζiζj . (44)

The second derivatives of the potential energy are the elements
of the K̃ matrix that was introduced in Sec. II,

K̃ij = ∂2V

∂ζi∂ζj

. (45)

We then proceed as described in Sec. II and solve for the
Green function and the particle displacement in the stationary
regime. We numerically calculate the heat flux from Eqs. (26),
(30), (34), and (35) as a function of the hot and cold bath
temperatures.

0 5000 10 000 15 000 20 000

0.1

0.0

0.1

0.2

0.3

t ns

D λ
g

Dc

λg

Dh

λg

FIG. 4. (Color online) (a) Time evolution (Dh/λg) and (Dc/λg).
As expected (Dh/λg) and (Dc/λg) converge to the same value.
This means that in the steady-state regime the total heat flux
is proportional to the temperature difference of the hot and
cold baths.

1. Numerical results of thermal heat flux
in functionalized graphene

The total heat flux in the functionalized graphene sheet
was numerically calculated. Figure 4 represents the time
evolution of the ratio of the hot and cold temperature
coefficients (Dh) and (Dc) in Eq. (35) and the thermal
conductance of the graphene (λg) calculated using the same
technique by taking the chains off the graphene and attaching
two opposite sites to hot and cold baths. As expected,
in the steady-state regime these factors converge to the
same value. This confirms as in the previous case of linear
chains that the heat flux is proportional to the temperature
difference of the hot and cold baths. The proportionality
constant is the thermal conductance of the functionalized
grapehene.

2. Effect of changing the length of the chains
on the thermal conduction

In this section we shall use the technique just developed
to investigate the effect of changing the length of the chains
on the thermal conduction of heat throughout the function-
alized graphene. Figure 5 summarizes the results of thermal
conductance for chain lengths between N = 3 and N = 11. In
each case we connect two identical chains on opposite sides
of the boundaries to the graphene sheet. The opposite ends of
each chain are connected to two heat baths at temperatures

2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

N

λ f λ
g

Odd chain

Evenchain

FIG. 5. The ratio of the thermal conductance of functionalized
graphene λf to the thermal conductance of graphene λg as a function
of chain length.
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(a)

(b)

FIG. 6. Pictorial representation of a high-participation ratio mode
(P = 0.86) (a), and a low-participation ratio mode (P = 0.13).

T + and T −. Based on these results, functionalized graphene
with odd alkane chains perform better in terms of thermal
conductance than with even alkane chains. For each type
of chains, the thermal conductance increases with the chain
length for smaller alkane chains but then decreases with longer
chains.

To understand the underlying causes of this result, we calcu-
lated the participation ratio (P ) for each normal mode in each
configuration. The extended modes, the main contributor to the
heat transport, can be identified by their higher participation
ratios. In contrast, low-participation ratio modes contribute
less to the heat transport. Figure 6 is a pictorial representation
of the site displacements of a high- and low-participation ratio
mode for the structure in Fig. 3; notice the larger magnitude of
the site displacement, and the extent of the mode with larger
participation ratio. Figure 7 represents the total number of
modes with increasing participation ratio for configurations
similar to the structure in Fig. 3 with five, six, and eight chain
sites (N = 5,6,8); notice that the number of extended modes
with high-participation ratios decreases with the increase in the
size of the chains. This is fairly noticeable for longer chains,
and in fact explains the longer chains’ smaller thermal conduc-
tance. Particularly for even and odd chains as shown in Fig. 7(a)
this pattern also includes some of the low-participation
ratio modes. Odd chains perform better than even chains in
conducting heat because of their larger number of moderate-
and high-participation ratio modes contributing to the heat
transport.

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150 Evenchain N 5

Evenchain N 8

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150 Evenchain N 6

Evenchain N 8

(b)

N
um

be
r

of
M

od
es

N
um

be
r

of
M

od
es

P

P

FIG. 7. (Color online) Number of modes with increasing partic-
ipation ratios for functionalized graphene configurations with five,
six, and eight chain sites.

3. Effect of the noise

Our approach is entirely classical. This is, in part, by design,
since we produce systems of equations that are rapidly and
easily soluble. However, the Langevin equation is well known
to produce equipartition [18]. This means that all modes, even
those with extremely high frequency, will have a nonzero
occupation. This probably results in an overestimate of the
thermal conductivity since some high-participation modes may
have too high an energy to have any occupation at room
temperature. Mathematically, this arises from the assumption
of a delta-function correlation in time for the driving forces,
since all frequencies must be included to have zero correlation
time. Possible solutions include using a more complicated set
of driving forces that are explicitly quantum mechanical [22],
and inserting a fictitious correlation time into the driving
force (Ornstein-Uhlenbeck noise) that is itself chosen to be
temperature dependent to mimic the effect of a Bose-Einstein
suppression of high-energy modes [23].

IV. CONCLUSION

Improving heat transport in functionalized graphene is
important to a large number of systems. In this paper we
have demonstrated an efficient and straightforward method for
calculating the thermal heat flux. The results of this simulation
can be used to design and test different configurations and
to find the one that conveys the largest amount of heat. As
an application of this method, we investigated the effect of
changing the length of the chains on the overall thermal
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conduction. The numerical results showed that odd alkane
chains perform better than even alkane chains. In addition,
very long alkane chains deteriorate the overall heat transport.
This can be seen as the limit of simply embedding the stiff
material in a very soft, infinite matrix.

There are many ways this approach can be expanded. For
ease of application we chose to only drive the outermost ends
of the functionalized chains. This can easily be expanded to
include driving many or all of the atoms in the system. How-
ever, the Langevin approach assumes complete incoherence
between all the driving forces. This will not be true on an
atomic level since the local phonon environment will have
some nonzero coherence length. The physical details of the
local environment and its coherence are interesting in their
own right, but should not profoundly change results found
in this approach: Systems in which the external chains are
well-coupled to the main structure will still have superior
thermal conductivity to those that do not.

APPENDIX A: FLUX

The goal of this section is to give a definition of the heat flux
in terms of quantities we can calculate. The heat flux �j (�r,t)
at time t in the spatial position �r is nothing but the energy
current, implicitly defined by the continuity equation,

dh(�r,t)
dt

+ �∇ · �j = 0, (A1)

where h(�r,t) is the energy density.
With reference to an ensemble of interacting particles, we

can write the microscopic energy density as the sum of the
isolated contributions located in the instantaneous position of
each particle.

h(�r,t) =
∑

i

hiδ(�r − �ri), (A2)

where δ(�r) is the Dirac distribution and

hi(�r,t) = p2
i

2mi

+ 1

2

∑
j 
=i

Vij (A3)

is the energy contribution of the i th particle. The first term
correspond to the kinetic energy. The last term amounts to half
of the potential energy of the pairwise interactions with the
neighboring particles. In a similar way we can write the heat
flux as the sum of the localized contributions,

�j (�r,t) =
∑

i

�jiδ(�r − �ri), (A4)

the problem amounts therefore to give a definition of the local
heat flux ji(�r,t).

In the limit of small oscillations around the equilibrium
position, density fluctuation can be neglected and hi(�r,t) is
proportional to the energy density.

The time derivative of hi(�r,t) is

dhi(�r,t)
dt

= −1

2

∑
j 
=i

(
∂Vij

∂xi

ẋi + ∂Vij

∂yi

ẏi + ∂Vij

∂zi

żi

)

+ 1

2

∑
j 
=i

(
∂Vij

∂xj

ẋj + ∂Vij

∂yj

ẏj + ∂Vij

∂zj

żj

)
. (A5)

This equation can in turn be written as

dhi

dt
= −

∑
j

jij

a
, (A6)

where a is the distance to the nearest neighbor. The local heat
flux jij is such that

ajij = ∂Vij

∂xi

ẋi + ∂Vij

∂yi

ẏi + ∂Vij

∂zi

żi − ∂Vij

∂xj

ẋj

− ∂Vij

∂yj

ẏj − ∂Vij

∂zj

żj . (A7)

The total heat flux j is the sum of all the isolated contributions
located in the instantaneous positions of each particle in the
system,

j =
∑
ij

jij . (A8)

APPENDIX B: EXPLICIT FORM OF THE POTENTIALS

1. The Tersoff-Brenner potential

The Tersoff-brenner (TB) potential was employed to de-
scribe the interactions among the atoms in the graphene sheet.
In the TB force field, the potential energy is modeled as a sum
of pairlike interactions, where the coefficient of the attractive
term in the pairlike potential depends on the local environment,
yielding an effective many-body potential.

The interatomic potential is taken to have the form,

E =
∑

i

Ei = 1

2

∑
i 
=j

V ij,

(B1)
Vij = fc(rij )[fR(rij ) + bijfA(rij )].

Here E is the total energy of the system, which is
decomposed into a site energy Ei and a bond energy Vij .
The indices i and j run over the atoms of the system, and rij

is the distance from atom i to atom j .
The function fR represents a repulsive pair potential which

includes the orthogonalization energy when atomic wave
functions overlap, and fA represents an attractive pair potential
associated with bonding. The extra term fc is merely a
smooth cutoff function, to limit the range of the potential,
since for many applications like the one we are running
short-ranged functions permit a tremendous reduction in
computational effort.

The function bij represents a measure of the bond order.
All these functions are taken to be of the following form:

fR(rij ) = A exp(−λrij ),

fA(rij ) = B exp(−μrij ),

bij = (
1 + βnζ n

ij

)−1/2n
, (B2)

ζij =
∑
k 
=i,j

fc(rij )g(θijk) exp
[
λ3

3(rij − rik)3
]
,

g(θ ) = 1 + c2

d2
− c2

[d2 + (h − cos(θ ))2]
,
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TABLE I. TB parameters for carbon.

TB parameters for carbon

A (eV) 1.3936 × 103

B (eV) 3.467 × 102

λ (Å
−1

) 3.4879

μ (Å
−1

) 2.2119
β 1.5724 × 10−7

n 7.2751 × 10−1

c 3.8049 × 104

d 4.384 × 100

h −5.7058 × 10−1

R (Å) 1.95
S (Å) 0.15

where θijk is the bond angle between bond ij and ik. The cutoff
function is taken to be a step-down function so to include only
the first and next nearest neighbors to each site.

Parameters and more details necessary to implement the
TB force field are listed in Table I.

2. The NERD potential

A united atom representation of the alkanes is adopted
throughout this work. The alkanes considered were n-pentane,
n-heptane, and n-nonane. Within the united atom description,
an n-alkane molecule is described as a flexible linear chain of
methylene (CH2) pseudoatoms terminating at both ends with
methyl (CH3) pseudoatoms. The parameters were taken from
the NERD force field [24,25]. In this simulation we ignore the
potential due to interactions between sites, which are separated
by more than three bonds as well as interactions between sites

TABLE II. Intramolecular potential energy parameters.

Bond stretching potential beq (Å) kr/kB (K/Å
2
)

CHx − CHy 1.54 96 500
Bond bending potential

θ0(o) kθ/kB (K)

CHx − (CH2) − CHy 114.0 625 00
CHx − (CH ) − CHy 109.47 62 500
CHx − (C) − CHy 109.47 62 500

Torsional potential
(K) Vo/kB V1/kB V2/kB V3/kB

C − C − C − C 0 355.04 −68.19 791.32

that belong to different molecules. A complete listing of all of
the intermolecular potential parameters for saturated alkanes
in the NERD force field is given in Table II.

The potential in the branched alkane chains is divided
between bond stretching potential Ur , bond bending potential
Uθ and a torsional potential Uφ where

Ur = 1
2kr (r − ro)2,

(B3)
Uθ = 1

2kθ (θ − θo)2,

and ro and θo denote the equilibrium bond length and bond
angle, respectively.

Uφ = Vo + V1[1 + cos(φ)] + V2[1 − cos(2φ)]

+V3[1 + cos(3φ)]. (B4)
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