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Dipartimento di Chimica, Università degli Studi di Sassari and Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei
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Understanding the behaviors of molecules in tight confinement is a challenging task. Standard simulation tools
like kinetic Monte Carlo have proven to be very effective in the study of adsorption and diffusion phenomena
in microporous materials, but they turn out to be very inefficient when simulation time and length scales are
extended. In this paper we have explored the possibility of application of a discrete version of the synchronous
parallel kinetic Monte Carlo algorithm introduced by Martı́nez et al. [J. Comput. Phys. 227, 3804 (2008)] to the
study of aromatic hydrocarbons diffusion in zeolites. The efficiency of this algorithm is investigated as a function
of the number of processors and domain size. We show that with an accurate choice of domains size it is possible
to achieve very good efficiencies thus permitting us to effectively extend space and time scales of the simulated
system.
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I. INTRODUCTION

Zeolites are crystalline microporous aluminosilicates that
have found a large number of uses in the chemical industry
[1,2]. Their crystal structure consists of a definite channel
and cage network extending in one, two, or three dimensions.
The presence of regular micropores provides an environment
where the adsorbed molecules no longer move freely, but
are restricted to reduced spatial dimensions where peculiar
many-body effects make zeolites behave as solid solvents [3].
The diverse physical phenomena occurring in these systems
embrace heterogeneous catalysis, percolation, and even a
dramatic change of the phase diagram [4]. All of them are
ruled by the dimensionality resulting from the specific network
of channels and cages that largely determines the nature of
the local interactions and of the long-range order. Moreover,
the molecular mobility is strongly influenced by the topology
of the surrounding medium, which provides the energy land-
scape through the multifarious interplay between adsorbent-
adsorbate and adsorbate-adsorbate interactions. Ranging from
electronic transitions to slow molecular migration, a hierarchy
of time scales and distances are involved in the many processes
happening in the interior of the crystal, whose consequences
are at the same time essential and difficult to quantify. These
phenomena are still far from being understood, and despite
a great deal of effort in theory and computation [5], a
fundamental description of the confinement effect in zeolites
is not yet available. In recent years a growing research in
multiscale modeling and simulation schemes simple enough
to be analyzed and able to capture the essential features of
the real physical systems has been reported [6,7]. Effective
and efficient multiscale modeling that bridge the gap between
molecular-level interactions and macroscopic properties are
essential to advance zeolite science and technology [8]. In
this spirit this study investigates the efficacy and potential
of using a parallel kinetic Monte Carlo (kMC) algorithm
for multiscale zeolites modeling, and addresses some of the
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challenges involved in designing competent algorithms that
solve hard problems quickly, reliably, and accurately.

This paper is organized as follows. Section II shortly
summarizes the standard kMC method and outlines the
most significant challenges in improving its performance. In
Secs. III and IV we introduce the basis of the architecture and
the design limits of a parallel version of the algorithm on a
discrete system, and in Sec. V we discuss an application to a
selected system.

II. THE MODEL

In a kMC simulation [9,10] a state of the system is
represented by a configuration of molecules in a discrete
network of sites, and a random walk is performed from state
to state [11]. The most widely adopted kMC algorithm is
rejection-free, meaning that at every step the system makes
a transition from one state to another and the time t is
advanced by extracting an interevent time from an exponential
distribution, that is, t = − ln(u)/Rtot, where u is a uniform
(pseudo) random number in (0,1) and Rtot = ∑n

i ri is the sum
of the rates ri of all possible events n. The standard kMC
method scales badly with the size of the system (i.e., with the
number of events) because of two factors, namely (i) the time
spent in generating, searching, and updating the list of events,
and (ii) the proportionality of the interevent time to 1/Rtot

which implies that, given the same number of iterations, the
trajectory length decreases with increasing system size.

In a large system it is a fair hypothesis to assume that distant
regions do not interact significantly with each other. This is
the ground for a parallel kinetic Monte Carlo algorithm able
to improve the standard method by overcoming its limitations.
The underlying idea in parallelizing kMC is the partitioning
of the system in domains, where it is possible to execute a
sequential algorithm. The domains are independent of each
other, consequently by assigning each domain to a different
processor the number of events will be reduced, along with the
value of Rtot. This in turn will raise the efficiency and lengthen
the trajectory.
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The major problem in parallelizing kMC is the complete
asynchronicity of the algorithm. In the rejection-free kMC,
at every time step an event is selected and realized. The
corresponding time depends on the rates of all the possible
events. This implies that a parallel approach consisting only of
executing serial kMC algorithms independently of each other
is correct only if the noninteraction condition between domains
is rigorously respected. In real systems this is unachievable
since interactions or transfers of matter at the boundaries
between domains cannot be avoided. Moreover, each domain
has its own timeline and in order to avoid causality errors it is
necessary to synchronize and correct them. Despite that, many
methods were developed to rigorously treat these problems
(see, for example, [12,13]) thus permitting us to have a parallel
kMC procedure able to solve the same master equation of
a sequential one. The major drawback of these methods is
that they can be highly expensive and complicated to be
implemented. The work of Martı́nez et al. [14] shows that
ignoring the interaction between domains introduces an error
that can be controlled through a careful choice of the domain
size. This leads to a great simplification of the algorithm
and improves the efficiency. Moreover, this method avoids
causality errors by synchronizing the time across domains
through the introduction of a null event.

III. PARALLEL ALGORITHM

Our parallel algorithm is a manipulation of the continuous
synchronous kMC introduced by Martı́nez et al. [14] adapted
to a discrete lattice. The first step is the spatial decomposition
of the lattice in K domains (where K is equal to the
number of processors) named �k , k = 1, . . . ,K . The domain
shape is arbitrary and the optimal choice, aimed to minimize
the communication between domains, is strictly problem
dependent. In principle, domains do not necessarily have
to be equivalent. They can be assigned heterogeneous sizes
and shapes to attain the best optimization possible. In the
present case the domains are chosen to be (all equivalent)
parallelepiped shaped (see Sec. V B). The simulation proceeds
as follows.

(1) In each domain, say �k , a list of the possible events nk

and relative rates rik (i = 1, . . . ,nk) is generated. Rates can be
summed to give a total rate Rk for each of the K domains:

Rk =
nk∑
i

rik. (1)

It is worth noting that if the system was not subdivided into
domains, the value of Rk would be simply equal to the sum of
the rates of all the events as in the sequential case. This implies
that the subdivision does not alter the set of states the system
can reach.

(2) The synchronicity of time horizon between domains is
ensured by selecting the greatest among all values of Rk:

Rmax = max
k=1,...,K

{Rk}, (2)

and introducing in each domain for which Rk < Rmax the
possibility of a null event, that is an event in which no particle

moves. The rate of the null event in the kth domain is defined
as

rk0 = Rmax − Rk. (3)

As a consequence, the domain having the greatest relative
total rate equal to Rmax will have no null event. Introducing
null events is necessary to align the interevent time for the
entire system on the time of the fastest evolving domain: this
way the same interevent time can be chosen for all the domains
as a function of only the maximum rate Rmax and a random
number. Despite the presence of null events in every of the
K − 1 domains having Rk < Rmax, globally the algorithm is
still rejection-free since inside the domain with Rk = Rmax

there is no null event, so that at each time step at least one
molecule movement is realized.

(3) In each domain an event is selected out of the list
of nk events available to the kth domain, and realized with
probability pik = rik/Rmax.

(4) If the outcoming configurations of two or more domains
conflict with each other at their shared boundary, they are
subjected to a correction procedure. Section IV is devoted to
this topic.

(5) Interevent time is extracted from an exponential distri-
bution:

τ = − ln(u)

Rmax
with u random number ∈ (0,1). (4)

(6) The entire procedure is iterated until final time is
reached.

IV. CONFLICTING SITUATIONS AT THE DOMAIN
BOUNDARIES IN DISCRETE SYSTEMS

In a continuous system a boundary conflict can arise if at
a given time step the global outcoming configuration contains
at least a pair of particles extremely close to each other. In
discrete systems where a strict exclusion principle holds this
translates to the much more likely situation where two or more
particles are attempting to occupy the same lattice site.

There are basically two possible strategies for solving such
a conflict: (i) the synchronous sublattice method [15] and
(ii) a rollback procedure (see, for example, [13]). In the former
every domain is further divided into sublattices having a size
larger than the range of interactions. Conflicts are avoided by
executing moves only in a randomly selected sublattice. In
the latter instead conflicts are treated only when they occur.
Indeed, rollbacks have a high computational cost. To speed
up the simulation, Martı́nez et al. [14] avoided rollbacks
by simply ignoring the conflicts. We have instead chosen
to implement them anyway to avoid loss of synchronicity,
and then to minimize their number by properly choosing the
domains shape, thus compensating for the consequent slowing
down of the simulation. The full time-horizon synchronicity
of the domains allows the use of that procedure only when a
violation of the exclusion principle occurs. In that case one
proceeds as follows.

(1) Check for conflicting events across boundaries.
(2) For each conflicting pair of domains, the move to be

undone is chosen through random selection of one of the two
domains.
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(3) Undo the chosen move, that is, restore the previous state
of the list of rates.

(4) By using the same random number we have used for the
realization of the conflicting event, a new move is performed
[16] and the simulations goes on.

In other synchronous methods [13,17] each domain has its
own history and time. At a fixed time interval one has to check
the boundary events in order to verify if the generated timeline
is consistent, then correct possible problems and eventually
assign the proper time to obtain synchronicity. This procedure
can lead to a certain number of moves to be undone, and
its implementation is rather complicated. On the contrary,
the method presented in this work looks very simple since
the time horizon has been set up to be flat. This permits
boundary events to be communicated immediately, and the
maximum number of moves to be undone at each time step to
be just one. Moreover, no causality error can arise. The main
drawback is the increased communication cost, but this can be
minimized by properly choosing the shape and the dimension
of the domains. Even though the best domain choice is problem
dependent, in general the ideal shape is the one that minimizes
the number of communicating domains, and the ideal size is
the largest possible in order to reduce the probability of a
boundary event while still benefiting from the use of multiple
processors in parallel, as we will show in Sec. V B.

The method is not rigorous for interacting particles where
when a move happens to change the configuration at the
boundaries then performing a rollback may not lead back
to the starting configuration. This changes the value of Rmax

due to the addition of a particle in the selected domain, thus
introducing an error. Nevertheless, the range of values the
change in Rmax might fall in is limited and independent of the
size of the domains. Therefore a domain size can be found that
minimizes such a range (e.g., enlarging the domain reduces the
overall effect of the change). Moreover, such situations will
happen with a relatively low frequency during the simulation
if the domain size is chosen large enough so that the number of
nonboundary sites is much greater than the number of sites at
the boundaries, thus making the effect of conflicts negligible.

As its major strength and main advantage with respect
to more complicated procedures, the nonrigorous approach
presented here enables the error to be easily controlled thus
allowing the same results of a rigorous method to be obtained
[14], but with a simpler implementation and a faster execution.

V. APPLICATION TO A SELECTED SYSTEM:
BENZENE IN NaX

Aromatic hydrocarbons are among the crucial ingredients
of many plastic and allied materials. With the increase in
the prices of crude oil, there is an urgent need to reduce the
processing costs of aromatics while increasing the efficiency.
This makes it necessary to bring about new technologies. The
proposed [18] high activity for alkylation reactions of benzene
with ethylene of Faujasite (FAU)-type zeolites to make styrene,
one of the most relevant industrial monomers, offers the
advantage of a high selectivity toward the desired product
due to the shape-selective properties of their microcrystalline
pore structures. In these applications the diffusive molecular
transport through zeolites needs to be described accurately for

a predictive design of the processes. However, the number of
fundamental studies that investigate aromatics diffusion and
adsorption in porous solids is limited due to the complexity
of the system, the sluggish motion of aromatics in zeolites
caused by the strong interactions between π electrons and
extra framework cations and the large size of the aromatic
species. Adsorption properties of aromatics in zeolites and
other porous solids have been relatively less investigated as
compared to alkanes in zeolites. This is particularly true if we
consider only theoretical or computational studies. Demontis
et al. were the first who investigated diffusion of benzene in
NaY belonging to the FAU-type zeolites [Fig. 1(a)]. Their
simulations suggest that benzene is frequently localized near
the sodium cation and the 12-ring windows [19], in excellent
agreement with the neutron diffraction study of Fitch et al.
[20]. Auerbach et al. [21–25] studied the jump motion of the
guest benzene molecules in a lattice site model of NaY, proving
that cost-effective modeling techniques to simulate diffusive
phenomena across multiple space and time scales lead to a
significant gain, even if the price is loosing information at the
intermediate scales. As a consequence, a multiscale modeling
approach seems to be the proper choice to deal with this
problem. It is our purpose in this paper to test the parallel
synchronous kMC method with the aim of extending the
modeling to the micro-millisecond time (and corresponding
length) scales.

FIG. 1. (Color online) (a) Molecular structure of FAU-type
zeolites. The three-dimensional framework of zeolites is constituted
by a network of cages (b) connected by windows. The cages can
accommodate a number of guest molecules adsorbed in well-defined
binding sites. In NaX zeolite there are two types of these sites: four
SII (yellow/light gray spheres) inside the cage and four SIII′ located
in the window W connecting two cages (red/dark gray rings). In
kMC simulations these sites are mapped on a detailed lattice (c) but
it is possible to coarse grain the inner sites by stacking it on the
center of the cage (d). Each particle can move from there to one
of the four W sites (red/dark gray spheres). W to W moves are also
possible. A move from SII to SII is possible but it produces no position
change. (e) Schematic representation of zeolite FAU framework.
Spheres represents coarse-grained SII sites, while sticks represents
W sites (for details refer to Sec. V). Distances are proportional to the
real distances among cages. Different colors correspond to different
domains.
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TABLE I. Activation energies and preexponential factor at infinite
dilution for benzene in NaX [26].

Jump Activation Energy (eV) Preexp. Factor (s−1)

SII → SII 0.15 0.8 × 1013

SII → W 0.25 0.8 × 1013

W → SII 0.10 1.1 × 1012

W → W 0.10 2.4 × 1011

A. Sequential Algorithm

We applied our method to the study of benzene diffusion in
NaX, belonging to the FAU-type zeolites.

The diffusion of benzene in this type of system can be
represented in the framework of the rare events dynamics, since
residence times are much longer than travel times between
adsorption sites. This implies that kMC is best suited to study
it.

To test the parallel algorithm we first developed a model
based on a previous work on this subject [26]. The zeolite
framework is represented by a three-dimensional lattice of
binding sites in bi-univocal correspondence with real ad sites.
In the case of NaX and NaY there are two types of sites, SII

located over the Na+ cation inside the cage [Fig. 1(b)] and W

located on each window connecting two adjacent cages. NaY
and NaX zeolites differ in the Na content, but the same lattice
can be used for both zeolites [26]. Although it is difficult to
determine the exact distribution of cations in NaX, experiments
show that benzene is adsorbed at the SII and SIII′ sites [27]
[Fig. 1(b)]. The latter is very close to the 12-term oxygen
ring, thus permitting this site to be viewed like the W site
of zeolite Y. Assuming an Arrhenius behavior the dynamics
of benzene is represented by jumps from site to site, with
the rate constant calculated through considerations about the
difference in energetic and geometric features of the two types
of sites (see Table I).

The Hamiltonian for this lattice is [26]

H (�s,�σ ) =
MW∑
i=1

sifW + 1

2

MW∑
i,j

siJ
WW
i,j sj +

MW∑
i=1

MSII∑
j=1

siJ
WSII
i,j σj

+ 1

2

MSII∑
i,j=1

σiJ
SIISII
i,j σj +

MSII∑
i=1

σifSII . (5)

In this equation �s and �σ are the number of particles adsorbed in
W and SII sites, respectively (occupation numbers), fi = εi −
T s̃i (Table II) is the free energy associated with the site i (εi is
the adsorption energy and s̃i is the entropy), J is the interaction
energy between nearest neighbor particles, and MW = 2MSII

are the number of W and SII adsorption sites, respectively. It
is a common choice to ignore attractive interactions between
particles leading to a simple site blocking model, but in the
present case this cannot be done due to the critical temperature

TABLE II. Adsorption energies and entropies [26].

εW (eV) εSII
(eV) s̃W (eV/K) s̃SII

(eV/K)

−0.63 −0.78 1.7 ×10−4 0

of benzene being 560 K [28]. To account for these interactions
a parabolic jump model is adopted [26,29] where the change
in the activation energy caused by the interactions is calculated
as a function of the configuration in the neighboring sites. It
assumes the transition state for a jump being located at the
intersection of two parabolas, which is chosen to represent the
minimum energy path among each pair of sites. The new value
for the activation energy is obtained by [26]

Ea(i,j ) = E(0)
a (i,j ) + �Ei,j

(
1

2
+ δE

(0)
ij

kij a
2
ij

)

+�E2
ij

(
1

2kij a
2
ij

)
. (6)

E(0)
a (i,j ) is the activation energy at the limit of infinite dilution.

�Eij represents the variation in adsorption energy between
sites i and j due to interactions �Eij = δEij − δE

(0)
ij = (Ej −

Ei) − (εj − εi). In this equation Ek = εk + ∑M
l=1 Jklnl for a

given configuration �n. Finally aij is the distance between two
sites and kij is the harmonic force constant [26]

kij =
(

2

aij

)2{1

2

[
E(0)

a (i,j ) +E(0)
a (j,i)

]+
√
E

(0)
a (i,j )E(0)

a (j,i)

}
.

(7)

Previous works of our group with cellular automata models
applied to the study of zeolites [30–32] have shown that it
is possible to coarse-grain space and time scales by treating
adsorption sites inside a cage as one single site. This leads
for large systems to improving the efficiency without losses
of physical information. Application of this coarse-graining
paradigm to the model presented here leads to a lattice where
all the SII sites competing to each cage are grouped into a
multiple-occupancy site placed at the cage center. The correct
time evolution is guaranteed through the use of kMC rates for
all the possible jumps between the various sites making up the
central multiple-occupancy site, which is the scenario for all
the intracage motions, while every intercage move requires the
passage through a W site (Fig. 1).

Our sequential kMC was validated first by running several
simulations to obtain self-diffusion coefficients to be compared
with the experimental results [33]. We stress that the purpose
of this comparison is to verify the correctness of the sequential
algorithm and not to get new insight on the physical behavior
of the system. The accomplishment of this task is postponed
to a future work through the application of the parallel kMC
method presented here and validated.

The simulations were carried out in a system containing
256 SII-type sites and 128 W -type sites, corresponding to
eight unit cells of NaX. As one can see in Fig. 2 (where
the self-diffusivity Dself is plotted vs the coverage θ which is
the number of molecules divided by the number of sites) the
diffusion isotherms are in good qualitative agreement with
the experimental data. The difference in the shape between
the model and the experiments are expected due to the coarse
graining of the SII sites.

After that, other simulations were carried out to check
the correctness of the parallel algorithm implementation. All
calculation were executed on a cluster with Intel Xeon E5420
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FIG. 2. (Color online) Diffusion coefficient as a function of
coverage. Interaction parameter J = −0.03 eV. Experimental values
(red solid lines, taken from Germanus et al. [33]) are multiplied by a
factor of 10 and are shown only for a qualitative comparison with the
simulation data (black dashed lines).

2.50 GHz processors and Infiniband communication link. For
communications we made use of the MPI libraries. In Fig. 3
diffusion isotherms obtained by simulating a system of 4096
cages with an increasing number of processors are reported. As
one can see from the plot, reducing the dimension of domains
causes a slight shift in the value of the diffusion coefficient.
The origin of this behavior is the error introduced with the
parallel algorithm that can be easily controlled by choosing
appropriate dimension for the domains. The choice is strictly
problem dependent and must be assessed in each case.

B. Efficiency

To determine the efficiency of the method we made use of
two definitions in order to better quantify the factors involved.
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FIG. 3. (Color online) Diffusion isotherm for various number of
processors on the same system size. Differences between sequential
and parallel simulations are always small even for a relatively large
number of processors (relative to the size of the system), and tend to
converge for small numbers of processors.

In the first one η̃ each processing unit involved in the parallel
runs simulates a portion of the system having the same size as
the system simulated in the single-processor runs. This way the
definition quantifies the efficiency on the basis of the cost of
communications between processing elements, holding fixed
the size factor [14,17]

η̃ = tS,n

tK,nK

× 100%, (8)

where tS,n and tK,nK are, respectively, the time spent in execut-
ing the serial algorithm with n particles and the time spent in
executing the parallel version with K processors on a system
containing nK particles. Clearly the ideal efficiency of 100% is
obtained when the time required to run the parallel code is the
same as that required to execute the sequential one. This cannot
be achieved in a real simulation because of the additional time
required by the processors to communicate. In this particular
implementation of the algorithm the major limitation is the
need of global communications for updating the value of
Rmax. It is important to note that despite this limitation, the
impact of communication time over the global efficiency can
be minimized by tuning the communication/calculation ratio.
This is an easy task since almost every kMC algorithm scales
with the size of the simulated system [34,35], so that it can be
achieved by just finding the optimal value for the size of each
domain.

The second definition is the speedup [17]:

S = tS

tK
, (9)

where tS is the time required to execute the serial code
and tK the time required to execute the parallel code on K

processors. Here the simulated system is assumed to be exactly
the same (i.e., same size and same number of iterations)
for both the serial and the parallel simulation. With this
definition the speedup plot depends essentially on the scaling
law the algorithm obeys [17] (in the present case the algorithm
scales with the total number of particles) when the number of
processors is low, and on the communication cost for higher
numbers of processors.

Two sets of simulations were performed (see Table III) to
study systematically the behavior of the parallel algorithm,
starting with executing the sequential algorithm (used as a
reference), and then increasing both the domain size and
the number of processors (e.g., when using two processors
the system consists of two identical replicas of the reference
system and so on).

All the simulations have been carried out at a temperature
of 468 K and a value of −0.02 eV for J (the nearest neighbor
interaction energy). As one can expect the effect of increasing
the size of the domains is an improved efficiency. This is
because the communication/calculation ratio decreases. The
possibility of modifying the system size to change this ratio is
limited by the efficiency of the sequential algorithm adopted,
that is the maximum system size that one can simulate with the
parallel algorithm without reducing the length of the trajectory
can be estimated as K times the maximum size attainable
with a standard simulation (we recall that K is the number of
processors).
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TABLE III. The simulation sets considered in this work to estimate the importance of the communication/calculation ratio on the efficiency.
Every subset spans several simulations at the same system size but different loadings starting from 1 (θ = 0.17) up to 5.5 (θ = 0.92) molecules
per cage. The average number of sites per cage is six.

Set A Set B

Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 Subset 6

No. cages 64 128 512 1024 2048 512 1024 4096 8192 163 84 327 68
No. processors 1 2 8 16 32 1 2 8 16 32 64

A determining factor of the efficiency is the domain shape.
The domains must be chosen carefully on the basis of the
system topology rather than the geometry. In the present case
the node-to-node connections of the diamond-lattice topology
of the FAU zeolite can be easily mapped onto a cubic grid.
At this point it is straightforward to notice that such a grid
can be better partitioned into slices rather than cubes [13],
so that every domain (i.e., every slice) does communicate
with two neighboring domains instead of six (see Fig. 4).
Anyway, since the main reason of efficiency loss is the
global communication caused by the need of synchronizing
the domains, the choice of a cubic or a parallelepiped
decomposition does not significantly affect the overall value
of the efficiency η̃, but the cubic shape presents as one can
expect a greater number of conflicting events.

The behavior of the efficiency is similar to that of the
original method [14] and some others given in the literature
[17] with a fit of the form

η̃ = 1

1 + a(ln K)b
, (10)

where a and b are two constants. For the first set of simulations
a ranges from 0.020 to 0.268 and b ranges from 2.177 to 4.472,
while for the second set the values range from 0.038 to 0.152
and from 1.889 to 2.743 for a and b, respectively. Differences
in the value of b among different simulations can be related
to the different values of the communication/calculation ratio.
In the A set (see Table III) this ratio is greater than in the
B set because domains are smaller, whereas the information

z

(a)

z

(b)

y
x

z

y
x

z

FIG. 4. (Color online) A comparison between (a) cubic domains
and (b) slices. Each slice is a parallelepiped-shaped portion of the
system spanning its whole extension in the y direction. This way,
since with periodic boundary conditions each slice has no domain
boundaries in the y direction, it does communicate with two domains
only against the six of the cubic domain case.

exchanged between domains is the same (with a fixed number
of processors), therefore the efficiency decays more steeply.
Within each set the efficiency is influenced also by the
communication/calculation ratio, which in this case, however,
results from the combination of two opposite effects depending
on the change of the total number of molecules adsorbed
in the system. By increasing that number there can be
more moves between domains that require more information
exchanges and more rollbacks, thus increasing the ratio. On
the other hand, increasing the number of molecules leads the
number of events to increase as well, requiring then more
computation. The balance between the different weights of
these two effects causes the value of the parameters a and b

to fluctuate. Moreover, these values differ from that obtained
by Martı́nez and Merrick [14,17] mainly because of technical
and algorithmic differences.

In Fig. 5(a) the parallel efficiency η̃ [Eq. (10)] is reported as
a function of the number of processors (K) for the simulation
set A. A comparison with Fig. 5(b), where the same data
are reported for the set B, makes clear the importance of
the communication/calculation ratio which favors the B-set
simulations (where the computation is much more expensive
than in the A set). This leads to a greater efficiency of the
algorithm when applied to set B in all the cases studied here. As
expected, differences in the efficiency are more pronounced for
numbers of processors greater than eight, since the increased
cost of communication is not compensated by an equal increase
in the computation cost. Finally, in Fig. 6 the speedup is
reported. As stated before, its value is determined by a
combination of two contributions, the cost of communications
and the scaling law of the algorithm implemented. If we do
not take into account the communication cost we would get
the same computing time for both the serial and the parallel
algorithm only if the algorithm were not scaling with the
system size. Therefore the parallel implementation of our
algorithm gives a substantial gain in the execution time, for
example, a simulation of the set B3 (Table III) requires 59 h
when using the serial algorithm and 8 h when using the parallel
one on eight processors.

The only factor that may reduce the speedup is the number
of rollbacks, since each roughly doubles the time spent for the
current cycle. Anyway, this does not represent a problem in the
present case where the number of rollbacks is kept relatively
low (Fig. 7) by the particular topology of the system.

As a consequence, its influence over the efficiency of the
method is limited and we obtain speedup values really close
to the ideal efficiency of 100% (dashed line in Fig. 6, however
we remark that the speedup is expected to decrease for a very
large number of processors).
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FIG. 5. (Color online) Parallel efficiency for simulation set
(a) A and (b) B as a function of the number of processors at
different loadings. For the parallel runs only, the system size
increases linearly with the number of processors. On the top plot
the ratio between the system size in the parallel runs and the
system size in the serial, single processor run is shown. The ideal
efficiency of 100% would be obtained only if the time required
by the single-processor simulation of a system of a given size
were the same as the time required by a parallel simulation
on K processors of a system K times larger. Best results are
obtained in set B because of the more favorable communica-
tion/calculation ratio. Dashed lines have been drawn to guide
the eye.
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FIG. 6. (Color online) Speedup S [defined in Eq. (9)] of the
parallel algorithm with respect to the sequential one shown as a
function of the number of processors. This plot refers to the B3
system (Table III), other simulations show similar behavior and were
not reported.

The number of null events is small as well (Fig. 7) and
can be controlled through a proper choice of the system size.
Consequently, during a simulation of set B approximately 90%
of the possible moves are performed with no need of redefining
the domain shape. The boost in the number of events per cycle
is reported in the inset of Fig. 7.
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FIG. 7. (Color online) Fraction of null events and rollbacks for
parallel simulations of systems A5 and B5 (Table III) on 32 processing
units. The fraction of null events decreases with increasing the system
size (leading to a 90% of effective moves), whereas the fraction of
rollbacks is always negligible, even for a small system. Discrepancies
among different coverages reflect the change in the relative number
of possible events. Other simulations showing analogous behavior are
not reported. The inset shows the average number of moves realized
for every kMC step. The maximum of those values equals the number
of processors, which is 32 in this case.
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VI. CONCLUSIONS

A parallel kinetic Monte Carlo algorithm, originating from
the synchronous algorithm of Martı́nez et al. [14], has been
applied to the study of benzene diffusion in zeolite NaX.
We have shown that, despite the presence of a rollback
procedure in the algorithm, high efficiencies can be reached
by exploiting the local nature of the molecule-molecule
interactions inside the zeolite, allowing the need of rollbacks
to be minimized through a proper spatial decomposition. In the
present form the algorithm is still approximate, but the correct
tuning of the domains size leads to obtaining results with
the desired accuracy. We believe that the algorithm outlined
here is applicable in general with little modification to other
types of zeolites. Even better performances are expected to
be found for other zeolites like the Linda Type A (LTA)
family, ZSM5 [36], or for zeolitic imidazolate frameworks
(ZIF) [37] because of the absence of shared sites between
communicating cages. Adsorbate-adsorbate interactions does

not extend significantly outside the cages, thus permitting an
ideal domain decomposition. As for other similar methods
[14,17], the efficiency of the algorithm is very sensitive to
the value of the communication/calculation ratio that can be
easily controlled by changing the size or the shape of the
domains.
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