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I. INTRODUCTION

This paper continues the study of localized time-periodic
solutions of the parametrically driven damped nonlinear
Schrödinger equation,

iψt + ψxx + 2|ψ |2ψ − ψ = hψ∗ − iγψ. (1)

(Here h,γ > 0). Equation (1) is an archetypal equation for
small and slowly varying amplitudes of waves and patterns
in spatially distributed parametrically driven systems. It was
employed to model intrinsic localized modes in coupled mi-
croelectromechanical and nanoelectromechanical resonators
[2], solitons in dual-core nonlinear optical fibers [3], and
dissipative structures in optical parametric oscillators [4]. The
discrete version of (1) was studied as a prototype for the energy
localization in nonlinear lattices [5]. (More contexts are listed
in [1].)

In the previous publication [1], the authors proposed
obtaining the time-periodic solitons as solutions of the
two-dimensional boundary-value problem with the boundary
conditions

ψ(x,t) → 0 as x → ±∞; ψ(x,t + T ) = ψ(x,t). (2)

In the present paper, we apply this approach to the analysis of
complexes of solitons.

Complexes (also known as molecules) are stationary or
oscillatory associations of two or more solitons; they can be
stable or unstable. Stable solitonic complexes, or bound states,
were detected in a variety of soliton-bearing partial differential
equations [6–15]. One mechanism of complex formation
is the trapping of the soliton in a potential well formed
by the undulating tail of its partner [7,8]. This mechanism
is not accessible [7] to the parametrically driven damped
solitons though, as their tails are decaying monotonically. The
exchange of resonant radiation can also serve as a binding
formula in nondissipative systems [7,9], but in the damped-
driven equation (1) the radiation is nonresonant. A different
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mechanism was shown to operate here, which relies on the
phase-stimulated growth or decay of the soliton’s mass [10].

Bound states serve as long-term attractors in situations
where there is more than one soliton present in the initial
condition. For example, two like-polarity surface solitons in
a vertically driven water tank attract each other and form a
stable bound state [11]. Unstable complexes do not have the
same experimental visibility and can appear only as transients
in numerical simulations. However, unstable complexes have
a mathematical role to play: They work as the phase-space
organizers [12].

The formation of complexes with an increasing number
of elementary constituents [13] gives rise to a higher degree
of spatial complexity in the system, in the same way as
the binding of shorter molecules into longer ones produces
chemical compounds with increasingly complex properties.
Previous analyses were confined to stationary [10] and steadily
moving [14,15] associations of the parametrically driven
solitons. In the present paper we extend these studies to
time-periodic complexes, thereby increasing the temporal
complexity of the localized structures.

We consider time-periodic complexes as “stationary” solu-
tions of Eq. (1) on a two-dimensional domain −∞ < x < ∞,
0 � t � T . This allows us to determine both stable and
unstable complexes. Solutions of the boundary-value problem
(1), (2) are path-followed in the parameter space—in the same
way as freestanding periodic solitons were continued in the
previous publication [1].

An outline of this paper is as follows. In the next section we
describe bifurcations of the static two-soliton complexes. Of
particular importance here are the Hopf bifurcations; these give
birth to time-periodic solutions. We establish that the values of
the damping coefficient are divided into two ranges. Namely,
for γ larger than a certain threshold, the complex suffers one
or more Hopf bifurcations as h is varied. Below the threshold
γ , no Hopf bifurcations occur.

In Sec. III, the Hopf-bifurcation points of the stationary
complexes are exploited as the starting points of the T (h)
curves for the time-periodic complexes. These curves are
traced as we continue the periodic bound states in a parameter.
Depending on the number of the Hopf bifurcations suffered
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by the static complex, we have one, two, or more branches
of the periodic solutions emanating out of it. Complexes
resulting from different Hopf bifurcations follow different
transformation routes.

In the concluding section (Sec. IV) the results on stationary
and time-periodic complexes are summarized in the form of a
two-soliton attractor chart. Included in this chart are also some
quasiperiodic attractors.

II. STATIONARY TWO-SOLITON COMPLEXES

The two freestanding stationary soliton solutions to Eq. (1)
are distinguished by the subscripts + and −:

ψ±(x) = A± exp(−iθ±) sech(A±x),
where

A± =
√

1 ±
√

h2 − γ 2, θ+ = 1
2 arcsin γ

h
,

and θ− = π/2 − θ+. The ψ− soliton is unstable for all h and
γ . The soliton ψ+ is stable when the difference h − γ is small
but loses its stability to a time-periodic soliton when h exceeds
a certain limit hHopf(γ ).

The solitons ψ+ and ψ− can form a variety of bound
states, or complexes [10,14,15]. (For example, in the previous
paper [1] we mentioned a complex ψ(−+−), that is, a symmetric
stationary association of two solitons ψ− and one ψ+.)
All complexes involving the ψ− solutions are, expectably,
unstable; however two ψ+ solitons can form a stable bound
state [10].

Previously, the two-soliton complex ψ(++) was known to
exist only for sufficiently large values of damping [10,15].
We have now established that this complex exists for all γ �
1.5 × 10−8. Its domain of existence on the (γ,h) plane is not
bounded from above except that for h greater than

hcont =
√

1 + γ 2,

the complex is unstable to the continuous-spectrum perturba-
tions (as any other solution decaying to zero at the infinities).
Reducing h from hcont for the fixed γ , we obtain one of two
possible types of bifurcation diagrams on the (h,E) plane,
where the energy E is defined by

E =
∫ ∞

−∞

[
|ψx |2 + |ψ |2 − |ψ |4 + h

ψ2 + ψ∗2

2

]
dx. (3)

(The energy is not an integral of motion when γ �= 0; however,
E is obviously a constant for time-independent solutions and
can be used as a physically meaningful bifurcation measure.)

The diagram of the first type [Fig. 1(a)] arises when h is
decreased for a fixed small γ (γ � 0.292). In this case, there
is only one turning point, h = hsn, with hsn = hsn(γ ) > γ .
[For the parameter value γ = 0.01 which we used to create
Fig. 1(a), hsn = 0.02972; for γ = 0.1, the turning point is at
hsn = 0.25, and for γ = 0.25, hsn = 0.49.] As h approaches
hsn along the top branch, the two-soliton solution ψ(++)

develops a third hump halfway between the two humps that
are already there, with the distance between the lateral humps
remaining unaffected by this development. The complex
obtained by the continuation of this solution to the bottom
branch can be identified as a three-soliton bound state ψ(−+−).
As we continue away from hsn along the bottom branch in

FIG. 1. Energy of the stationary two-soliton complex and station-
ary multisoliton solutions obtained from this complex by continuation
in h for the fixed γ . (a) γ = 0.01; (b) γ = 0.4. Solid curves show
stable and the dashed ones unstable solutions. Note two intervals of
stability of the ψ(++) complex in (b).

Fig. 1(a), the ψ− solitons bound in this complex (the two side
solitons) diverge to the infinities on the x axis.

All branches in the diagram of the first type consist of
unstable solutions. (Our approach to the stability analysis of
stationary solutions has been outlined in [1].)

A somewhat different diagram arises for larger values of γ

(γ > 0.292), see Fig. 1(b). This bifurcation diagram has been
described in [10] for a particular γ (γ = 0.565); here, we
reproduce it for a different value of the damping coefficient.
Reducing h from hcont for the fixed γ , the branch resulting from
the two-soliton solution ψ(++) develops two turning points
instead of one. As we pass the first turning point, the ψ(++)

complex transforms into the ψ(−−) solution. Moving away
from this turning point along the bottom branch, the ψ(−−)

complex acquires a third hump. This branch does not continue
all the way to hcont but turns again, into a branch with even a
lower energy. On this branch, the three-hump solution can be
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FIG. 2. (Color online) The existence and stability domains of
the stationary two-soliton complex ψ(++). The region of existence
of the complex is bounded from below by the dotted line; in the
upward direction it extends beyond the value hcont, without bound.
The complex is stable only in a small part of this region [tinted
yellow (light gray)]. The stability domain is bounded by the curve
h = hcont(γ ) on the top and by the lines of four Hopf bifurcations
(4, 3, 2, and 1) on other sides. The dashed curve is the line of the
Hopf bifurcation of the single soliton ψ+. (The soliton is unstable
above this line.)

identified as ψ(−+−). The lowest branch continues to the point
h = γ . This point defines the lower boundary of the domain
of existence of the stationary complexes which result from
the path-following of the two-soliton solution ψ(++). As we
approach the point h = γ , the distance between the two side
solitons in the ψ(−+−) complex tends to infinity.

For γ just above 0.292, all solution branches in the diagram
of the second type are unstable. However, as γ exceeds 0.34, a
stability window opens in the ψ(++) branch. The existence and
stability domains of the two-soliton complexes on the (γ,h)
plane are shown in Fig. 2.

We were not able to obtain a symmetric two- or three-soliton
complex for γ = 0. If we fix h and continue in γ toward γ = 0,
the separation distance between the solitons in the complex
grows without bounds; hence we conjecture that symmetric
multisoliton complexes do not exist for γ = 0. (There are
nonsymmetric complexes with γ = 0 though; see [14].)

The shape of the E(h) curve corresponding to γ = 0.4
[Fig. 1(b)] looks similar to that of the E(h) curve for γ = 0.565
[10]. The main difference between the diagrams pertaining to
these two values of γ is that when γ = 0.565, the stability
region of the two-soliton solution is seamless, i.e., does not
have instability gaps in it, whereas in the γ = 0.4 case, the
stability region consists of two segments of the curve separated
by an interval of instability. This difference is reflected by the
shape of the stability domain on the (γ,h) plane (note the
“instability bay” on the northwest coast of the stable region in
Fig. 2).

Each point of the “coastline” of the tinted “stability
continent” in Fig. 2 corresponds to a Hopf bifurcation of
the stationary complex [except for points along the curve

h = hcont(γ )]. The “coastline” consists of four segments
(marked 1, 2, 3, and 4 in Fig. 2). Continuing in h along a
vertical line γ = const one crosses one, two, or four of these;
accordingly, for a given γ , the complex may undergo one, two,
or four Hopf bifurcations.

III. TIME-PERIODIC COMPLEXES

The first segment (marked 1 in Fig. 2) is defined as the
“south coast” of the tinted continent. It extends from γ = 0.34
to larger γ without a visible bound—presumably all the way
to γ = ∞. The line of the second Hopf bifurcation (marked 2)
represents the “north coast of the southern peninsula” in Fig. 2;
it is bounded by γ = 0.34 on the left and γ = 0.413 on the
right. The “south coast of the northern peninsula” corresponds
to the third Hopf bifurcation (marked 3); this extends from γ =
0.39 to γ = 0.413. Finally, the top, fourth Hopf bifurcation
arises for γ between 0.39 and 0.445 (marked 4). When γ

is greater than 0.445, the complex undergoes just one Hopf
bifurcation as h varies (the one marked 1).

A. The first Hopf bifurcation

In this subsection, we path-follow time-periodic complexes
born in the lowest Hopf bifurcation (i.e., detaching from the
south coast of the tinted “continent” in Fig. 2). We take γ =
0.565 as a representative value of damping in the region where
the stationary two-soliton complex undergoes only one Hopf
bifurcation and γ = 0.35 and 0.38 in the region where there
is more than one Hopf point.

When γ = 0.565, the (only) Hopf bifurcation is at hH1 =
0.94. Using this value as a starting point in our continuation
process results in the bifurcation diagram shown in Fig. 3(a).
In order to articulate details of the diagram, we supplement the
graph of the period T (h) with a plot of the averaged energy,
defined by

E = 1

T

∫ T

0
E(t) dt, (4)

where E(t) is given by Eq. (3). We also evaluate Floquet
multipliers as described in [1].

At the starting point hH1 = 0.94, the Floquet spectrum
includes three unit eigenvalues and two complex-conjugate
pairs with moduli smaller than 1. As h is decreased from h =
0.94, two unit eigenvalues remain in the spectrum while the
third one moves inside the unit circle along the real axis. This
positive eigenvalue decreases in modulus until it passes to the
negative semiaxis at h = 0.92; once the eigenvalue has become
negative, it starts growing in absolute value. Eventually, as h

reaches the value of 0.897, the negative real eigenvalue crosses
through μ = −1. A period-doubling bifurcation occurs at this
point; as h drops below 0.897, the periodic complex becomes
unstable but a stable double-periodic solution is born. Note
that the destabilization occurs not at the turning point of the
E(h) curve (which is at h = 0.89665) but for a slightly larger
h, i.e., before the turning point is reached. Figure 3(b) shows
a representative solution on the lower, “horizontal” branch of
the E(h) curve.

As for the two complex pairs, the eigenvalues constituting
one of these grow in absolute value as we move along the
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FIG. 3. (Color online) (a) The average energy (main panel) and
the period (inset) of the periodic solution arising for γ = 0.565. The
solid curve shows the stable and the dashed one unstable branch. The
point of the period-doubling bifurcation is marked by a vertical arrow.
(b), (c) Representative solutions on the lower branch in panel (a).
(b) h = 0.92, T = 13.973; shown is the absolute value of ψ .
(c) h = 0.90, T = 32.729; shown are the level curves of |ψ |. The time
interval covered by (b) and (c) includes three periods of oscillation.

“horizontal” branch toward smaller h. At the same time,
the imaginary parts of these eigenvalues decrease and the
pair converges on the positive real axis—just before crossing
through the unit circle. The two real eigenvalues cross through
μ = 1 almost simultaneously, as the curve turns back at
h = 0.89665; after that, they remain outside the unit circle.

The other complex pair also converges on the real axis but
remains inside the unit circle along the entire curve.

As h is decreased and we approach the turning point in
Fig. 3(a), the amplitude of temporal oscillations grows and
the solution transforms into a sequence of soliton fusions and
fissions. Two solitons merge into one entity which then breaks
into two constituents, and this process continues periodically;
see Fig. 3(c).

The whole of the “vertical” branch of the E(h) curve is
unstable. The branch ends at the stationary ψ(+++) solution
(here h = 0.901). As we approach the end point of this branch,
the two real (positive) eigenvalues with μ < 1 and one of the
two eigenvalues with μ > 1 move closer to 1. At the end
point, the spectrum includes three unit eigenvalues and two
real eigenvalues close to 1. This corresponds to the spectrum of
a stationary three-soliton complex near its Hopf boifurcation.

Proceeding to the region with more than one Hopf point, we
consider γ = 0.35. Here, the “lower” Hopf bifurcation occurs
at hH1 = 0.805. Like in the case of γ = 0.565, this bifurcation
is supercritical; as h drops below hH1, the stationary two-
soliton bound state loses its stability to a periodic two-soliton
complex which is born at this point. At the bifurcation point,
the spectrum of the Floquet multipliers includes three unit
eigenvalues and two complex-conjugate pairs inside the unit
circle — one with Re μ < 0 and the other with Re μ > 0.
As we continue the periodic complex toward smaller h,
the negative-real-part pair converges on the real axis inside
the unit circle, after which one of the resulting negative
eigenvalues grows in absolute value and, at h = 0.79, crosses
through μ = −1. The periodic complex loses its stability to a
double-periodic bound state of two solitons. As we continue
the unstable branch, it makes a number of turns [Fig. 4(a)]; the
spatiotemporal complexity of the solution increases [Fig. 4(b)]
but it never regains its stability.

Another representative value of γ with two Hopf bifurca-
tions is 0.38. Here, the continuation of the two-soliton complex
from the lower Hopf point results in the T (h) curve similar
to the γ = 0.35 case [Fig. 4(a)]. As in the γ = 0.35 case,
the solution loses stability in a period-doubling bifurcation.
We did not path-follow the unstable branch far beyond the
bifurcation point.

Summarizing the results of continuation from the first,
“lowest” Hopf bifurcation in Fig. 2, we note that the bifurcation
is supercritical—both for large and small γ . Another common
feature is the loss of stability resulting from a Floquet
multiplier crossing through μ = −1. Since this bifurcation
occurs before the first turn of the T (h) curve, it always gives
rise to a stable double-periodic solution. It is also fitting to
note that all time-periodic complexes emerging in the first
Hopf bifurcation are symmetric in space (i.e., invariant under
the reflection x → −x).

B. The second and the third Hopf bifurcations

When γ lies between 0.34 and 0.39, the stationary two-
soliton complex suffers two Hopf bifurcations, at hH1 and hH2,
with hH2 > hH1. (These are marked 1 and 2 in Fig. 2.) In this
subsection, we describe the continuation of periodic solutions
detaching at hH2 (the second of the two bifurcations) for several
representative values of damping.
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FIG. 4. (Color online) The first branch of the two-soliton time-
periodic complex for γ = 0.35 and γ = 0.38. (a) The period of
the solution. The solid curves show the stable and the dashed
ones unstable branches. The circles mark the starting points of
the continuation (the stationary complex ψ(++)). (b) A two-soliton
periodic solution with complex temporal behavior arising at the end
point of the γ = 0.35 curve in (a). (Here h = 0.741, T = 15.9.) The
figure shows just one period of oscillation.

The second Hopf bifurcation is subcritical: The emerging
periodic branch is unstable and coexists with the stable
stationary branch. That is, the periodic branch initially extends
down in h; see the γ = 0.35 and γ = 0.38 curves in Fig. 5. At
some point the branch turns back after which h grows without
any further U-turns; notably, it grows beyond the interval of
the stable stationary bound states (Fig. 5).

The periodic branch ends at an unstable stationary complex.
The end point corresponds to the “concealed” Hopf bifurcation
of the stationary solution where a pair of complex-conjugate
eigenvalues crosses from one half of the complex plane to
the other but the solution remains unstable due to additional
unstable eigenvalues.

When γ is set on 0.35, the whole periodic branch is
unstable but for γ as close as 0.36 a narrow stability window
appears inside it. As γ grows from 0.36, the stability window
expands—see the γ = 0.38 curve in Fig. 5 which features
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FIG. 5. The second branch of the periodic two-soliton solution.
The empty circles mark the starting points of the continuation—the
points h = hH2 where the stationary two-soliton complex suffers the
second Hopf bifurcation. The full circles mark the end points. The end
point of the γ = 0.41 curve corresponds to the third Hopf bifurcation
(hH3); the end points of the γ = 0.35 and γ = 0.38 curves lie inside
the instability domain of the stationary complex. The solid curves
show the stable and the dashed ones unstable branches. The inset
zooms in on a fragment of the top curve in the main frame, near its
starting and turning points.

a sizable stability interval h1 < h < h2, with h1 = 0.9415
and h2 = 1.015. Within this stability window, the periodic
complex has two complex-conjugate pairs of Floquet mul-
tipliers μ4 = μ∗

3 and μ6 = μ∗
5, with |μ| < 1 (in addition to

two unit eigenvalues). As h is decreased below h1, the first
pair (μ3,4) moves outside the unit circle, with the second
pair remaining inside; when h is raised above h2, the unit
circle is crossed by the second pair (μ5,6), with the first pair
remaining inside. Thus the stability interval is bounded by the
Neimark-Sacker bifurcation on each side. This observation
suggests that a quasiperiodic two-soliton complex should be
born on the crossing of either stability boundary, h1 and h2—
the conclusion confirmed by direct numerical simulations of
Eq. (1). (Quasiperiodic solutions can obviously not be captured
by the periodic boundary-value problem; the direct numerical
simulation remains the only feasible way of determining
them.)

It is worth mentioning here that the periodic two-soliton
complexes coexist with periodic one-soliton solutions. (For
example, for γ = 0.35, the periodic freestanding soliton exists
between h = 0.75 and h = 1.02; see Fig. 2 in [1].) However
the one- and two-soliton branches are not connected.

When γ is between 0.39 and 0.413, the stationary complex
undergoes four Hopf bifurcations, hH1 < hH2 < hH3 < hH4

(marked 1, 2, 3, 4 in Fig. 2). This is the interval of γ that
contains the top “peninsula” in Fig. 2. Choosing γ = 0.41 as a
representative value of damping, we path-followed the periodic
complex which is bifurcating off at the point hH2 (hH2 =
0.955). As in the case 0.34 < γ < 0.39 discussed above, the
bifurcation is subcritical: The emerging periodic branch is
unstable and initially extends down in h. As in the previously
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discussed case, the T (h) curve turns (at h = htn = 0.9447) and
the entire subsequent continuation proceeds in the direction of
increasing h (Fig. 5).

To describe the motion of the Floquet multipliers, it is
convenient to start somewhere within the “upper” part of the
γ = 0.41 branch, e.g., at h = 0.99. At this point, the spectrum
of linearization includes two pairs of complex-conjugate
multipliers μ4 = μ∗

3, μ6 = μ∗
5, both with |μ| < 1. However, in

contrast to the previously discussed scenario, neither of these
two pairs crosses through the unit circle as h is increased or
decreased and so the periodic complex with this γ does not
experience any Neimark-Sacker bifurcations.

As h is decreased from 0.99, the multipliers μ3,4 converge
on the real axis and, at the turning point htn, cross through
μ = 1 (almost simultaneously). The other complex pair, μ5,6,
remains inside the unit circle. Therefore, the turning point
corresponds to a saddle-node bifurcation of limit cycles. If
we, instead, increase h starting at h = 0.99, it is the μ5,6 pair
that converges on the real axis, just before μ5 becoming equal
to 1. At this point the periodic branch rejoins the branch of
stationary complexes; this value of h is nothing but hH3, the
point of the third Hopf bifurcation of the stationary two-soliton
bound state. At h = hH3 (hH3 = 1.01), the Floquet spectrum
includes three unit eigenvalues, a real eigenvalue μ6 close to
(but smaller than) 1, and a complex-conjugate pair μ3,4 inside
the unit circle. Thus the periodic complex remains stable in
the whole range between the turning point htn and the point
hH3 where it rejoins the (stable) stationary branch.

Since the saddle-node bifurcation point htn lies below hH2,
there is an interval htn � h � hH2 where we have bistability
between the stationary and time-periodic two-soliton com-
plexes.

In summary, the second Hopf bifurcation is always
subcritical; the continuation connects it either to the third
(supercritical) Hopf bifurcation, or to a concealed bifurcation
of unstable two-soliton complexes. All time-periodic solutions
arising in these bifurcations are symmetric in space.

C. The fourth, symmetry-breaking Hopf bifurcation

The locus of the fourth Hopf bifurcation is a stretch of
the northwest coast of the “continent” of stable stationary
complexes in Fig. 2 (marked 4). The “northwestern coastline”
extends from γ = 0.39 to the point γ = 0.445, where it meets
the continuous-spectrum instability curve h = hcont(γ ). At the
bifurcation point a pair of complex eigenvalues λ,λ∗ of the
eigenvalue problem

(H − γ J )p(x) = λJp(x)

cross through the imaginary axis. Here H − γ J is the operator
of linearization about the stationary solution (see [1] for
details). The bifurcation is symmetry breaking: Unlike three
other Hopf bifurcations, the corresponding eigenfunctions
p(x) and p∗(x) are odd (antisymmetric): p(−x) = −p(x).
Accordingly, the time-periodic solutions which are born in this
bifurcation describe out-of-phase oscillations of two identical
solitons making up the complex [see Fig. 6(b)].

The fourth Hopf bifurcation is supercritical: The emerging
periodic branch is stable and extends up in h. For γ = 0.41
which we take as a representative value of damping, this

FIG. 6. (Color online) (a) The branch of periodic two-soliton
complexes oscillating out of phase with each other. The empty circle
marks the starting point of the continuation—the point h = hH4 where
the stationary two-soliton complex suffers the symmetry-breaking
Hopf bifurcation. The full circle marks the end point. The short solid
segment near the beginning of the curve represents the stable solution;
the rest of the branch (dashed) is unstable. (b) A representative
solution on the stable part of this branch. Here h = 1.0493 and
T = 1.991; several periods of oscillation are shown.

bifurcation occurs at hH4 = 1.037. At the bifurcation point,
the Floquet spectrum includes three eigenvalues μ1,2,3 = 1,
two real positive multipliers μ4,5 < 1, and several complex-
conjugate pairs with |μ| < 1. As h grows from hH4, one of
the unit eigenvalues moves inside the unit circle, but as h

is further increased, it reverses and moves out. At this point
(h = 1.049), a saddle-node bifurcation of limit cycles occurs;
the periodic solution loses its stability and the branch turns
back [Fig. 6(a)]. As we continue it further, the real and complex
eigenvalues move back and forth through the unit circle; some
pairs converge on the real axis—but the solution never regains
its stability.

After a lengthy excursion into the (h,T ) plane [Fig. 6(a)],
the periodic branch rejoins the branch of (unstable) stationary
complexes ψ(++) (at hcnc = 1.082). The spectrum of the end
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FIG. 7. (Color online) Two-soliton attractor chart. The chart is
still under construction; the outer boundaries of the purple (dark
gray) area (populated by quasiperiodic two-soliton attractors) are
still to be refined. The black mark (pointed to by the arrow) initiates
the periodic/stationary bistability region. The dashed curve is the line
of the Hopf bifurcation of the ψ+ soliton, shown just for the reference
purposes.

point stationary solution includes three unit eigenvalues, a
positive eigenvalue μ4 < 1, and two complex-conjugate pairs,
with |μ5,6| < 1 and |μ7,8| > 1. The value h = hcnc pertains
to the concealed Hopf bifurcation of the unstable stationary
complex ψ(++).

IV. THE TWO-SOLITON ATTRACTOR CHART
AND OPEN PROBLEMS

Figure 7 summarizes our results on the stationary and
periodic two-soliton attractors. This diagram complements the
single-soliton attractor chart compiled in the first part of this
project [1]. The two-soliton chart is in qualitative agreement
with results of direct numerical simulations [16].

In Fig. 7, we have included stable quasiperiodic com-
plexes [highlighted in purple (dark gray)]. The boundaries
between the stable-periodic and stable-quasiperiodic domains
are defined by the Neimark-Sarker bifurcations of the periodic
complexes; these admit an accurate demarcation using our
method (i.e., by monitoring the Floquet multipliers along the
periodic branches). On the other hand, in order to determine
where the stable quasiperiodic solution ceases to exist, we
had to relinquish our continuation approach in favour of direct
numerical simulations of Eq. (1). We have performed only a
few runs and hence Fig. 7 gives only a schematic position of
the outer boundary of the quasiperiodic stability domain. In
order to demarcate this boundary more accurately, one would
need to perform numerical simulations more extensively. This
is beyond the scope of our present study.

The region of bistability of stationary and periodic com-
plexes also needs to be accurately delimited. So far, we have
only demarcated a small portion of it; see the black mark in
Fig. 7.

Finally, it would also be interesting to continue periodic
solutions bifurcating from the stationary complexes in the
“concealed” Hopf bifurcations, where the stationary solution
remains unstable on both sides of the bifurcation due to addi-
tional eigenvalues with positive real parts. In our continuation
process bifurcations of this sort would typically arise as the
end points of the periodic branches starting at the proper
Hopf bifurcations of the stationary complexes. Starting at the
concealed bifurcations would produce an additional wealth of
periodic branches some of which may have stable segments.

ACKNOWLEDGMENTS

We thank Nora Alexeeva for providing us with the sim-
ulation code for Eq. (1). An instructive conversation with
Alexander Loskutov is gratefully acknowledged. I.B. was
supported by the NRF of South Africa (Grants UID 65498,
68536, and 73608). E.Z. was supported by a DST grant
under the JINR/RSA Research Collaboration Programme and
partially supported by RFBR (Grant No. 09-01-00770).

[1] I. V. Barashenkov, E. V. Zemlyanaya, and T. C. van Heerden,
Phys. Rev. E 83, 056609 (2011).

[2] E. Kenig, B. A. Malomed, M. C. Cross, and R. Lifshitz, Phys.
Rev. E 80, 046202 (2009); M. Syafwan, H. Susanto, and S. M.
Cox, ibid. 81, 026207 (2010).

[3] N. Dror and B. A. Malomed, Phys. Rev. E 79, 016605 (2009).
[4] K. Staliunas, J. Mod. Opt. 42, 1261 (1995); S. Longhi, Opt.

Lett. 20, 695 (1995); S. Longhi and A. Geraci, Appl. Phys.
Lett. 67, 3060 (1995); S. Longhi, Phys. Scr. 56, 611 (1997);
S. Longhi, G. Steinmeyer, and W. S. Wong, J. Opt. Soc. Am. B
14, 2167 (1997); K. Promislow and J. N. Kutz, Nonlinearity 13,
675 (2000); R. O. Moore and K. Promislow, Physica D 206, 62
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F. Lederer, and A. Tünnermann, Opt. Lett. 35, 1578
(2010).

[7] B. A. Malomed, Phys. Rev. E 47, 2874 (1993).
[8] K. A. Gorshkov and L. A. Ostrovsky, Physica D 3, 428 (1981);

T. Kawahara and S. Toh, Phys. Fluids 31, 2103 (1988); B. A.
Malomed, Phys. Rev. A 44, 6954 (1991); A. V. Buryak and
N. N. Akhmediev, Phys. Rev. E 51, 3572 (1995); C. I. Christov,
G. A. Maugin, and M. G. Velarde, ibid. 54, 3621 (1996);
I. V. Barashenkov, Yu. S. Smirnov, and N. V. Alexeeva,

ibid. 57, 2350 (1998); W. Chang, N. Akhmediev, and S. Wabnitz,
Phys. Rev. A 80, 013815 (2009).

[9] A. V. Buryak, Phys. Rev. E 52, 1156 (1995); D. C. Calvo
and T. R. Akylas, Physica D 101, 270 (1997); J. Fujioka and
A. Espinosz, J. Phys. Soc. Jpn. 66, 2601 (1997); A. R.
Champneys, B. A. Malomed, and M. J. Friedman, Phys.
Rev. Lett. 80, 4169 (1998); A. R. Champneys and Yu. S.
Kivshar, Phys. Rev. E 61, 2551 (2000); K. Kolossowski, A.
R. Champneys, A. V. Buryak, and R. A. Sammut, Physica D
171, 153 (2002).

[10] I. V. Barashenkov and E. V. Zemlyanaya, Phys. Rev. Lett. 83,
2568 (1999).

[11] J. Wu, R. Keolian, and I. Rudnick, Phys. Rev. Lett. 52, 1421
(1984); X. Wang and R. Wei, Phys. Lett. A 192, 1 (1994);
W. Wang, X. Wang, J. Wang, and R. Wei, ibid. 219, 74
(1996); X. Wang and R. Wei, Phys. Rev. Lett. 78, 2744
(1997); M. G. Clerc, S. Coulibaly, N. Mujica, R. Navarro,
and T. Sauma, Phil. Trans. R. Soc. London A 367, 3213
(2009).

[12] I. V. Barashenkov and S. R. Woodford, Phys. Rev. E 75, 026605
(2007).

[13] X. Wang and R. Wei, Phys. Rev. E 57, 2405 (1998).
[14] I. V. Barashenkov, E. V. Zemlyanaya, and M. Bär, Phys. Rev. E

64, 016603 (2001).
[15] I. V. Barashenkov and E. V. Zemlyanaya, SIAM J. Appl. Math.

64, 800 (2004); R. O. Moore, talk at the SIAM Conference on
Nonlinear Waves and Coherent Structures, Philadelphia, 2010.

[16] X. Wang, Phys. Rev. E 58, 7899 (1998).

056610-8

http://dx.doi.org/10.1016/S0167-2789(99)00136-0
http://dx.doi.org/10.1016/S0167-2789(99)00136-0
http://dx.doi.org/10.1016/S0165-2125(01)00066-X
http://dx.doi.org/10.1103/PhysRevE.63.036604
http://dx.doi.org/10.1103/PhysRevLett.90.054103
http://dx.doi.org/10.1103/PhysRevLett.90.054103
http://dx.doi.org/10.1103/PhysRevE.71.026613
http://dx.doi.org/10.1103/PhysRevE.75.016613
http://dx.doi.org/10.1103/PhysRevE.75.016613
http://dx.doi.org/10.1103/PhysRevE.75.026604
http://dx.doi.org/10.1364/JOSAB.24.001254
http://dx.doi.org/10.1364/JOSAB.24.001254
http://dx.doi.org/10.1103/PhysRevE.75.045601
http://dx.doi.org/10.1364/OL.34.003827
http://dx.doi.org/10.1007/s10946-009-9073-2
http://dx.doi.org/10.1364/JOSAB.27.001099
http://dx.doi.org/10.1364/OL.35.001578
http://dx.doi.org/10.1364/OL.35.001578
http://dx.doi.org/10.1103/PhysRevE.47.2874
http://dx.doi.org/10.1016/0167-2789(81)90146-9
http://dx.doi.org/10.1063/1.866610
http://dx.doi.org/10.1103/PhysRevA.44.6954
http://dx.doi.org/10.1103/PhysRevE.51.3572
http://dx.doi.org/10.1103/PhysRevE.54.3621
http://dx.doi.org/10.1103/PhysRevE.57.2350
http://dx.doi.org/10.1103/PhysRevA.80.043818
http://dx.doi.org/10.1103/PhysRevE.52.1156
http://dx.doi.org/10.1016/S0167-2789(96)00229-1
http://dx.doi.org/10.1143/JPSJ.66.2601
http://dx.doi.org/10.1103/PhysRevLett.80.4169
http://dx.doi.org/10.1103/PhysRevLett.80.4169
http://dx.doi.org/10.1103/PhysRevE.61.2551
http://dx.doi.org/10.1016/S0167-2789(02)00563-8
http://dx.doi.org/10.1016/S0167-2789(02)00563-8
http://dx.doi.org/10.1103/PhysRevLett.83.2568
http://dx.doi.org/10.1103/PhysRevLett.83.2568
http://dx.doi.org/10.1103/PhysRevLett.52.1421
http://dx.doi.org/10.1103/PhysRevLett.52.1421
http://dx.doi.org/10.1016/0375-9601(94)91005-7
http://dx.doi.org/10.1016/0375-9601(96)00406-9
http://dx.doi.org/10.1016/0375-9601(96)00406-9
http://dx.doi.org/10.1103/PhysRevLett.78.2744
http://dx.doi.org/10.1103/PhysRevLett.78.2744
http://dx.doi.org/10.1098/rsta.2009.0072
http://dx.doi.org/10.1098/rsta.2009.0072
http://dx.doi.org/10.1103/PhysRevE.75.026605
http://dx.doi.org/10.1103/PhysRevE.75.026605
http://dx.doi.org/10.1103/PhysRevE.57.2405
http://dx.doi.org/10.1103/PhysRevE.64.016603
http://dx.doi.org/10.1103/PhysRevE.64.016603
http://dx.doi.org/10.1137/S0036139903424837
http://dx.doi.org/10.1137/S0036139903424837
http://dx.doi.org/10.1103/PhysRevE.58.7899

