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Time-periodic solitons in a damped-driven nonlinear Schrödinger equation
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Time-periodic solitons of the parametrically driven damped nonlinear Schrödinger equation are obtained
as solutions of the boundary-value problem on a two-dimensional spatiotemporal domain. We follow the
transformation of the periodic solitons as the strength of the driver is varied. The resulting bifurcation diagrams
provide a natural explanation for the overall form and details of the attractor chart compiled previously via
direct numerical simulations. In particular, the diagrams confirm the occurrence of the period-doubling transition
to temporal chaos for small values of dissipation and the absence of such transitions for larger dampings. This
difference in the soliton’s response to the increasing driving strength can be traced to the difference in the radiation
frequencies in the two cases. Finally, we relate the soliton’s temporal chaos to the homoclinic bifurcation.
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I. INTRODUCTION

The application of a resonant driving force is an efficient
way of compensating dissipative losses in a soliton-bearing
system. If the dissipation coefficient and driving strength are
weak, and the driving frequency is just below the phonon band,
the amplitude of the arising oscillating soliton is governed by
the nonlinear Schrödinger equation with damping and driving
terms.

The damped-driven nonlinear Schrödinger equations ex-
hibit localized solutions with a variety of temporal behaviors,
from stationary to periodic and chaotic. There is a whole
range of analytical and numerical approaches to the study
of stationary and steadily traveling solitary waves. As for the
solitons with nontrivial time dependence, such as periodic, the
direct numerical simulation has remained an exclusive means
of obtaining these solutions and classifying their stability.

The shortcoming of this method is that simulations capture
only stable regimes. This means that the actual mechanisms
and details of the transformations of solitons (which are
bifurcations involving both stable and unstable solutions)
remain inaccessible. Neither can simulations be used to
identify coexisting attractors in cases of bi- or multistability.

In this paper we pursue a different approach to the analysis
of these hidden mechanisms. Instead of direct numerical
simulations, the time-periodic solitons are determined as
solutions of a boundary-value problem formulated on a two-
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dimensional spatiotemporal domain. The advantage of this
approach is that it is potentially capable of furnishing all
solutions—all stable and all unstable.

The particular equation that we are concerned with here
is the parametrically driven damped nonlinear Schrödinger
equation,

iψt + ψxx + 2|ψ |2ψ − ψ = hψ∗ − iγψ. (1)

In Eq. (1), γ > 0 is the damping coefficient and h the
amplitude of the parametric driver, which can also be assumed
positive. Equation (1) was used to model a variety of resonant
phenomena in nonlinear dispersive media, including the
nonlinear Faraday resonance in a vertically oscillating water
trough [1–3], formation of oscillons in granular materials
and suspensions [4], synchronization in parametrically excited
pendula arrays [5,6], phase-sensitive amplification of light
pulses in optical fibers [7], and propagation of magnetization
waves in an easy-plane ferromagnet placed in a microwave
field [5,8,9]. The same equation governs the amplitude of
breathers in a variety of systems reducible to the parametrically
driven damped sine-Gordon [8] and the φ4 [10] equation. (For
more contexts, see [11].)

The studies of localized states in these mechanical, hydro-
dynamical, magnetic, and optical systems have been focusing
on structures oscillating periodically, i.e., without incommen-
surable frequencies in their spectrum. The quasiperiodically
oscillating states (e.g., states whose fundamental oscillation
is modulated by smaller frequencies) have been set aside as
complex and atypical. The periodically oscillating states in
the physical systems reducible to Eq. (1) are described by the
stationary solutions of this equation. Accordingly, all previous
analyses of localized solutions of Eq. (1) have been confined
to its stationary solitons. One of the conclusions of the present
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project, however, will be that the time-periodic solitons of
Eq. (1) populate a significant part of its attractor chart.
Therefore, the corresponding quasiperiodic localized states
should play a much bigger role in all physical applications of
Eq. (1) than has been assumed so far.

The aim of the present work is to follow the transformations
of temporally periodic solitons of Eq. (1) as its parameters are
varied, identify the arising bifurcations, and eventually verify
and explain the attractor chart for this equation which was
compiled using direct numerical simulations in Ref. [12]. In
the second part of this project [11] we will complement this
one-soliton chart with a chart of two-soliton attractors.

The paper is organized as follows. Section II (which con-
tinues this introduction) contains background information on
stationary solitons and their transformations as the parameters
of the equation are varied. It is these transformations that
we will be verifying and studying further in the subsequent
sections.

Next, Secs. III and IV present mathematical techniques
we employ in this project: In Sec. III we outline our method
of obtaining periodic solitons whereas Sec. IV describes our
approach to the analysis of their stability. Section VI introduces
a theoretical framework for the treatment of radiation from the
oscillating soliton.

The central results of this study are obtained using numer-
ical methods; these are reported in Sec. V. Here we present
bifurcation diagrams for the time-periodic freestanding soliton
in various damping regimes.

The paper is concluded by Sec. VII where the results of the
numerical study are discussed and interpreted.

II. STATIONARY AND OSCILLATORY SOLITONS: THE
BACKGROUND

Localized stationary or periodic solutions of Eq. (1) exist
only if h > γ . When h > hcont(γ ), where

hcont =
√

1 + γ 2,

any localized solution is unstable to continuous-spectrum
perturbations. The evolution of this instability leads to spa-
tiotemporal chaos.

Two stationary soliton solutions of Eq. (1) are well known.
One soliton (denoted ψ− in what follows) exists in the
parameter range γ � h � hcont(γ ) and has the form

ψ−(x) = A− exp(−iθ−) sech(A−x), (2a)
where

A− =
√

1 −
√

h2 − γ 2, θ− = π

2
− 1

2
arcsin

γ

h
. (2b)

This solution is unstable for all h and γ [2,8]. We are
mentioning this unstable object here because it will reappear
below as a constituent in stationary multisoliton bound states.
We will also be recalling this soliton when interpreting
complex temporal behavior of time-periodic solutions.

The other stationary soliton exists for all h � γ ; we denote
it ψ+:

ψ+(x) = A+ exp(−iθ+) sech(A+x), (3a)
where

A+ =
√

1 +
√

h2 − γ 2, θ+ = 1

2
arcsin

γ

h
. (3b)

FIG. 1. The single-soliton attractor chart for Eq. (1) compiled
by direct numerical simulations [12]. Stationary solitons serve as
attractors in the blank area above the h = γ line. The area where
only the trivial attractor is available is marked by the empty
triangles. Empty circles indicate stable periodic solitons; the black
triangles label spatiotemporal chaos. Other symbols mark stable
higher periodic and temporally chaotic solitons. For details see [12].

The stability properties of this soliton depend on γ and h [8].
When γ > 0.356, the ψ+ soliton is stable for all h in the range
γ < h < hcont(γ ). When γ < 0.356, on the other hand, the
soliton (3) is only stable for γ < h < hHopf(γ ), where the value
hHopf(γ ) lies between γ and hcont(γ ) (see the curve labeled 1
in Fig. 1). As we increase h past hHopf(γ ) keeping γ fixed, the
stationary soliton loses its stability to a time-periodic soliton
[8,13]. The transformation scenario arising as h is increased
further depends on the choice of the (fixed) value of γ .

The numerical simulations [12] (also [14]) indicate that for
γ smaller than approximately 0.25, the periodic soliton follows
a period-doubling route to temporal chaos. In a wide region
of h values above the chaotic domain, the equation does not
support any stable spatially localized solutions. In this “desert”
region, the only attractor found in direct numerical simulations
was the trivial one, ψ = 0. Finally, for even larger values of h,
the unstable soliton seeds the spatiotemporal chaos [12] (see
also [14]).

As h is increased for the fixed γ greater than approximately
0.275, the soliton follows a different transformation scenario.
Here, the period-doubling cascade does not arise and the
soliton death does not occur. The periodic soliton remains
stable until it yields directly to a spatiotemporal chaotic
state [12].

In a short intermediate range of γ values, 0.25 < γ <

0.275, we have a combination of the above two scenarios. The
increase of h for the fixed γ results in the period-doubling of
the soliton, culminating in the temporal-chaotic regime, which
is followed by the soliton death. As we continue to raise h, an
inverse sequence of bifurcations is observed which brings the
stable single-periodic soliton back. On further increase of h, it
loses its stability to a spatiotemporal chaotic state [12].

The attractors arising for various h and γ values are
illustrated by Fig. 1 which we reproduce from Ref. [12]. We
should emphasize that this attractor chart has been compiled
using direct numerical simulations of Eq. (1), with a particular
choice of initial conditions. (The initial condition was chosen
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in the form of the unstable soliton ψ+—in the parameter range
where it is unstable.) It is an open question, therefore, how
robust this chart is. Would it change if simulations started
with a different initial condition, or if one used a numerical
scheme with different parameters (such as the spatial interval
length, the number of the Fourier modes, the full time of
simulation, temporal step size, etc.)? In particular, would
qualitative features of the chart survive, e.g., the coexistence of
two transformation scenarios, appearance of the desert region,
and peculiar shape of the periodic-attractor domain? One of
the aims of the present work is to answer these questions.

III. PERIODIC SOLITONS AS SOLUTIONS OF
A BOUNDARY-VALUE PROBLEM IN 2D

Instead of solving Eq. (1) with some initial condition and
determining the resulting attractor by running the computation
for a sufficiently long time, we were searching for periodic
solutions by solving Eq. (1) as a boundary-value problem on
a two-dimensional domain (−∞,∞) × (0,T ). The boundary
conditions were set as

ψ(x,t) → 0 as x → ±∞, (4)

and

ψ(x,t + T ) = ψ(x,t). (5)

The value of T was not available beforehand; the period was
regarded as an unknown, together with the solution ψ(x,t).

The periodic solutions were continued (path-followed)
in h for the fixed γ . We employed a predictor-corrector
continuation algorithm [15] with a fourth-order Newtonian
iteration at each h. A finite-difference discretization with
the step size �x = 0.05 was used on the interval (−L,L) =
(−50,50).

IV. STABILITY OF PERIODIC SOLUTIONS

A. Floquet multipliers

Let ψ0(x,t) = R(x,t) + iI(x,t) be a spatially localized,
time-periodic solution. Letting ψ(x,t) = ψ0(x,t) + u(x,t) +
iv(x,t) and linearizing (1) in the small perturbation u + iv,
we obtain

Jwt = (H − γ J )w, (6)

where w = w(x,t) is a two-component column vector

w =
(

u

v

)
,

J is a skew-symmetric matrix

J =
(

0 −1
1 0

)
,

and H is a Hermitian matrix-differential operator

H =
(

−∂2
x + 1 + h − 6R2 − 2I2 −4RI

−4RI −∂2
x + 1 − h − 2R2 − 6I2

)
. (7)

The solution to Eq. (6) with an initial condition w(x,0)
can be written, formally, as w(x,t) = Mtw(x,0), where the
evolution operator Mt acts on (vector) functions of x but
depends, parametrically, on t . A fundamental role is played by
eigenvalues of the monodromy operator MT :

MT y(x) = μy(x). (8)

HereMT is the evolution operatorMt evaluated at t = T . The
eigenvalues μ are usually referred to as the Floquet multipliers
and the exponents λ, where μ = eλT , as the Floquet exponents.
According to the Floquet theory, for each λ there is a solution
w(x,t) such that

w(x,t) = eλtp(x,t), (9)

where p(x,t) is periodic with the period of the solution ψ0:
p(x,t + T ) = p(x,t) for all t .

It is useful to establish the relation between the evolution op-
eratorMt and symplectic maps. Letting w(x,t) = e−γ t w̃(x,t),
Eq. (6) is cast in the form

J w̃t = Hw̃. (10)

Since H is Hermitian, Eq. (10) is a Hamiltonian system (with
a quadratic Hamilton functional). The solution to (10) with an
initial condition w(x,0) is, therefore,

w̃(x,t) = Stw(x,0),

where St is a symplectic map. Thus the evolution operator Mt

and, in particular, the monodromy operator MT are related to
symplectic maps: Mt = e−γ tSt and

MT = e−γ T ST . (11)

We will use this relation below, in order to explain symmetries
of the set of eigenvalues of the operator MT .

B. Spectrum structure

Stability properties of stationary solutions are determined
by eigenvalues λ of the operator (J−1H − γ ). The corre-
sponding Floquet multipliers are given by eλT (where T can
be chosen arbitrarily for a stationary solution). Therefore the
stability eigenvalues λ are nothing but the Floquet exponents.
Each of the two stationary solitons ψ+ and ψ− has just
one zero stability eigenvalue (i.e., just one exponent λ = 0).
This zero mode originates from the translation invariance of
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Eq. (1)—this is the only continuous symmetry the damped-
driven equation has.

At the point of the Hopf bifurcation of a stationary solution
(a freestanding soliton ψ+ or a stationary bound state of
solitons), two complex-conjugate eigenvalues λ,λ∗ cross into
the Reλ > 0 half plane. Irrespectively of what one takes for the
value of T in this case, the corresponding Floquet multipliers
μ = eλT and μ∗ = eλ∗T cross through the unit circle on the
complex μ plane. If we take T to be equal to the period
of the periodic solution bifurcating off at this point, i.e., let
T = 2π/Im λ, the Floquet multipliers cross through the unit
circle exactly at μ = 1. Adding the unit multiplier associated
with the translation invariance, we conclude that any stationary
solution has 3 unit Floquet multipliers at the point of its Hopf
bifurcation and, accordingly, the detaching periodic solutions
should also have 3 unit multipliers at that point.

As we continue the periodic solution ψ0(x,t) away from
the point where it was born, two of the unit Floquet multipliers
persist (while the third one moves away along the real axis).
These two unit multipliers are associated with the translation
invariance in x and periodicity in time, respectively. Indeed, if
we substitute ψ0(x,t) back in Eq. (1) and differentiate the
resulting identity with respect to x and t , we will obtain
Eq. (6) with w = ∂xψ0 and w = ∂tψ0, respectively, where
the two-component vector

ψ0 =
(
R(x,t)
I(x,t)

)
.

This means that Eq. (6) has two periodic solutions and the
monodromy operator (8) has two eigenvalues μ = 1 with
eigenfunctions w = ∂xψ0 and w = ∂tψ0, respectively. These
two unit eigenvalues will routinely arise in our stability
analysis of periodic solutions of Eq. (1).

It is not difficult to show that real eigenvalues of MT

will always arise in pairs whereas the complex eigenvalues
will always come in quadruplets. Indeed, the monodromy
operator is related to a symplectic map by the relation (11).
Real eigenvalues of symplectic maps are known to come
in pairs: If ν is a real eigenvalue of ST , then so is ν−1.
Complex eigenvalues of ST come in quadruplets: If ν is such
an eigenvalue, then so are ν−1,ν∗, and (ν∗)−1 [16]. The relation
(11) implies then that if μ is a real eigenvalue of the evolution
operator MT , then so is μ̂, its inverse with respect to the circle
of radius e−γ T :

μμ̂ = e−2γ T .

In a similar way, if μ is a complex eigenvalue of MT , then μ∗,
μ̂, and μ̂∗ are eigenvalues as well.

We will be referring to μ̂ simply as the mirror image of μ.
Out of the two Floquet multipliers μ and μ̂ only one can cross
the unit circle whereas its mirror image will always be confined
inside a smaller circle of the radius e−γ T . Consequently, when
analyzing the motion of multipliers on the complex plane and
resulting stability changes, we will be focusing on μ with
moduli greater than e−γ T and ignoring those with |μ| < e−γ T .

Finally, we discuss the location of the continuous spectrum.
As |x| → ∞, the operator (J−1H − γ ) becomes a matrix
differential operator with constant coefficients whose spectrum
is easily determined. Namely, when h2 < 1, the spectrum
consists of all λ of the form λ = −γ ± ip, with

√
1 − h2 �

p � ∞. The corresponding Floquet multipliers fill in a circle
of the radius e−γ T on the complex μ plane. When h2 > 1,
the continuous spectrum of (J−1H − γ ) fills the vertical line
Re λ = −γ and an interval on the real axis, −γ − √

h2 − 1 <

λ < −γ + √
h2 − 1. The corresponding Floquet multipliers

fill the circle of the radius e−γ T and in addition, an interval on
the real axis: e−(γ+√

h2−1)T < μ < e−(γ−√
h2−1)T .

C. Numerical stability analysis: the method

To find out whether Eq. (6) admits solutions of the form
(9) with Re λ > 0, we expand u(x,t) and v(x,t) in the Fourier
series on the interval (−L,L). The bulk of our eigenvalue
calculations were done with N = 100 but we went up to N =
250 when the eigenfunctions have shown variations on a small
scale.

V. NUMERICAL STUDY

A. Strong damping: γ = 0.30 and γ = 0.35

We explored γ = 0.30 and γ = 0.35 as two representative
sections of the attractor chart in its right-hand part, where
numerical simulations had detected no period-doubling bifur-
cations. The transformation of the solution as it is continued
in h is similar in the two cases; see Fig. 2.

The top-end point of each of the two curves in Fig. 2
corresponds to the stationary single-soliton solution ψ+. The
underlying value of h equals 0.385 for γ = 0.30 and 0.7500
for γ = 0.35. At these h, the stationary ψ+ soliton undergoes
a Hopf bifurcation and a stable periodic solution is born.
At the starting point of each curve, the spectrum of the
periodic soliton includes three unit multipliers μ1,2,3 = 1.
As h is increased, the eigenvalue μ3 moves inside the
unit circle whereas μ1,2 remain at 1. Meanwhile, five real
positive eigenvalues μ4,...,8 detach, one after another, from
the continuous spectrum. One of these (μ8) later returns
to the continuum while the other four eigenvalues move toward
the unit circle. At some point the eigenvalue μ4 collides

FIG. 2. The period of the periodic solutions with γ = 0.30 and
γ = 0.35. The solid curves show stable and the dashed ones unstable
branches.
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with μ3 producing a complex pair which, however, later
returns to the positive real axis. At the turning point hsn,
two positive eigenvalues, μ3 and μ4, cross through the unit
circle (almost simultaneously). This is where the periodic
solution loses its stability. Numerically, the turning-point
value is hsn = 0.8761 for γ = 0.30 and hsn = 1.0186 for
γ = 0.35. On the unstable branch, the spectrum includes two
positive eigenvalues μ3,4 > 1, two unit eigenvalues μ1,2 =
1, and one positive eigenvalue close to unity (μ5 < 1). In
addition, two more positive eigenvalues approach the unit
circle from inside as we continue away from the turning
point.

It is fitting to note here that the two turning point values,
hsn = 0.8761 and hsn = 1.0186, are in a good agreement with
the boundaries of the periodic-attractor existence domain es-
tablished previously. Namely, the direct numerical simulation
of Eq. (1) gave values close to 0.86 and 1.01 for γ = 0.30 and
0.35, respectively [12].

The end point of the dashed curve (h = 0.61 for γ = 0.30
and h = 0.760 for γ = 0.35) corresponds to a stationary
complex of solitons. In the γ = 0.35 case, this solution has
three separate humps in its real and imaginary part. Comparing
(the real and imaginary parts of) each of the three humps to
(the real and imaginary parts of) the freestanding solitons ψ+
and ψ−, we conclude that the complex consists of the ψ+
soliton in the middle and two solitons ψ− on its sides; that is,
the stationary complex should be interpreted as ψ(−+−). The
spectrum of discrete eigenvalues of this stationary complex
is close to a union of the eigenvalues of the soliton ψ+
and those of two solitons ψ−. Namely, we have three unit
eigenvalues μ1,2,5 = 1 (resulting from the translation modes
of two ψ−’s and one ψ+) and two eigenvalues μ6,7 close to
unity (contributed by the ψ+ soliton which is close to its Hopf
bifurcation point). In addition, the two ψ− solitons contribute
two real positive eigenvalues μ3,4 > 1.

In the case of γ = 0.30, the two side peaks in the real part
of the end-point solution are seen to have merged with the
central peak (whose height coincides with the height of the
ψ+ soliton in its real part). On the other hand, the central
peak in the imaginary part of the solution is seen to have
disappeared while the two lateral peaks have the same height
as the soliton ψ− in its imaginary part. This indicates that the
solution can still be interpreted as the ψ(−+−) complex, albeit
a tightly bound one.

Representative solutions are shown in Fig. 3. Near the
leftmost point of the curve pertaining to γ = 0.35 in Fig. 2, the
periodic solution looks like a single soliton with a periodically
oscillating amplitude and width [Fig. 3(a)]. The soliton is
emitting radiation waves; however, the radiation is decaying
rapidly as |x| → ∞. As we move further along this curve in
Fig. 2, the amplitude of oscillations as well as the intensity
of radiation increases [Fig. 3(b)]. The shape of the oscillating
solution evolves into a three-hump structure. Near the end point
of the curve, the amplitude of oscillations decreases [Fig. 3(c)]
and we arrive at the stationary three-soliton complex.

Thus, periodic solitons with large γ connect (in the sense
of paths in the parameter space) stationary solitons and their
complexes, with the connection points provided by the Hopf
bifurcations of the stationary solutions. It is appropriate to
mention a recent publication [17] where a similar organization

FIG. 3. (Color online) The absolute value of the periodic solution
with large γ . In this plot, γ = 0.35. “Motion pictures” (a) and (c)
have been taken at the same value of h but correspond to the different
branches of the diagram in Fig. 2: (a) h = 0.85, T = 2.45 (top
branch) and (c) h = 0.85, T = 2.34 (bottom branch). The evolution
(b) corresponds to the turning point: h = 1.0185, T = 2.21. In each
case several periods of oscillation are shown.

of the solution manifold was reported for the Benjamin-Ono
equation.

B. Weak damping: γ = 0.1 and γ = 0.2

In the weak-damping regime we explored two representa-
tive values of γ , γ = 0.10 and γ = 0.20. The two cases exhibit
similar bifurcation diagrams (Fig. 4) which are, however, very
different from the strong-damping diagrams in Fig. 2.

As before, the starting point (the left-end point) of each
branch corresponds to the stationary ψ+ soliton. At h =
0.1250 (for γ = 0.10) and h = 0.2275 (for γ = 0.20) the
stationary soliton undergoes a Hopf bifurcation and a periodic
solution is born. In Fig. 4, this solution is marked T 1. The
spectrum of the T 1 solution at the starting point of the curve
has three unit multipliers, μ1,2,3 = 1. As h is increased, μ3

moves along the real axis inside the unit circle and immerses
in the continuous spectrum at μ = e−γ T . For even a larger h, a
pair of complex-conjugate multipliers with real parts close to
−e−γ T detaches from the continuum before converging on the
negative real axis. One of the resulting real eigenvalues moves
toward −e−γ T and rejoins the continuum. The other one moves
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+

FIG. 4. The period of the periodic solutions with γ = 0.10 and
γ = 0.20. The solid curves show stable and the dashed one unstable
branches.

away from the origin and eventually passes through −1. This
is a signature of the period-doubling bifurcation: The original
solution of period T loses its stability and a stable solution
with a period 2T is born. (This happens at h2T = 0.146 and
h2T = 0.266 for γ = 0.10 and γ = 0.20, respectively.)

The spectrum of the newly born T 2 solution evolves
similarly to the spectrum of T 1. At the starting point of each T 2
branch in Fig. 4, the monodromy operator M2T has three unit
multipliers, μ1,2,3 = 1. One of these (say, μ3) arises as a square
of the negative eigenvalue of the operator MT pertaining to
the solution T 1. As h increases, μ3 drops inside the unit circle,
moves to the negative real axis, and eventually passes through
−1 at some h = h4T . (The value h4T equals 0.151 for γ = 0.10
and 0.2725 for γ = 0.20.) At this point a new stable branch
is born, with the period equal to two periods of T 2. This new,
period-four branch is not shown in Fig. 4.

As for the (unstable) T 1 solution, the corresponding T (h)
curve is snaking up, with the period growing without bound.
The solution approaches a homoclinic orbit, connecting the
stationary ψ− soliton to itself. In the next subsection, we will
discuss this phenomenon in more detail.

We note that the bifurcation diagrams of Fig. 4 are in
agreement with direct numerical simulations of Eq. (1) with
γ = 0.10 and γ = 0.20 [12] that revealed the period-doubling
transition to temporal chaos in the soliton’s dynamics. It
is therefore natural to expect that our T 4 branch will also
undergo a period-doubling bifurcation after a short interval
of stability, and similarly the branches that it births would
undergo a sequence of period-doubling bifurcations. We did
not have computational capacity to verify this using our two-
dimensional continuation approach. It is worth mentioning,
however, that the values of h at which higher periodic and
temporally chaotic attractors were observed in simulations
(0.16 and 0.28 for γ = 0.1 and 0.2, respectively [12]) are
close to the h4T given above.

Finally, we have not been able to perform an accurate nu-
merical continuation of solutions with γ = 0.05 and smaller.
In this case the solution consists of a finite-extent soliton

riding on a (second-harmonic) oscillatory background of a
nonnegligible amplitude, which shows only a very slow spatial
decay as |x| → ∞. [Fig. 3(b) gives an idea of the shape of
the solution in that case, for most h.] In order to obtain this
solution under the boundary conditions ψ(±L,t) = 0, one
has to enlarge the length of the spatial side of the domain
of computation, (−L,L) × (0,T ). This quickly saturates the
computational capacity available.

C. Intermediate damping: γ = 0.265

Finally, we investigate the transformation of the periodic
solutions with γ lying between the strong- and weak-
damping ranges. As a representative value of such “borderline”
damping, we take γ = 0.265. According to the numerical
simulations, the direct period-doubling cascade is followed
by an inverse cascade here, resulting in a peculiar shape of the
periodicity region on the (γ,h) plane (Fig. 1). Our aim is to
provide an explanation for this phenomenon on the basis of the
transformations of the periodic solutions as h is continuously
varied.

The results of our numerical continuation are summarized
in Fig. 5. The bifurcation diagram consists of three branches,
the second and third of which arise as a result of the
period-doubling bifurcation of the solution on the first branch.
The transformation of the solution as we move along this
period-1 branch [the bottom branch in Fig. 5, denoted T 1]
is similar to the transformation of the solution along the
curves shown in Fig. 2. The starting point of the curve (its
leftmost point) corresponds to the stationary solution ψ+;
the end point corresponds to the stationary complex ψ(−+−).
The major difference from the case of large γ (γ = 0.3 and
γ = 0.35) occurs when a real eigenvalue crosses through −1
as h is increased through h = 0.44. As h is increased past
0.44, this negative eigenvalue continues to grow in absolute
value, reaches a maximum, and then starts to decrease. As
h passes through h = 0.75, the negative eigenvalue crosses
through −1 once again, this time in the direction of decreasing
modulus. The described behavior of the negative eigenvalue
corresponds to period-doubling bifurcations at h = 0.44 and
h = 0.75, where periodic solutions with double period are
detached. For larger h the solution is stable—all the way to the
turning point, where two real eigenvalues cross out through
the unit circle.

The spectrum of the first double-periodic solution (detach-
ing at h = 0.44 and denoted T 2 in Fig. 5) includes two unit
eigenvalues, μ1,2 = 1. At the detachment point, there is an
additional unit eigenvalue μ3 = (−1)2. As h is increased from
0.44, μ3 moves inside the unit circle, proceeds to the negative
semiaxis and finally crosses through −1 (at h4T = 0.495). At
this point, a new periodic solution T 4 is born, with the period
equal to double the period of the solution T 2—roughly four
times the period of T 1. (This “period-4” solution is not shown
in Fig. 5.) The value h4T = 0.495 coincides with the largest
value of h at which higher periodic attractors were seen in
simulations [12].

Returning to the T 2 solution, it has two positive eigenvalues
μ4,5 in addition to the eigenvalues μ1,2,3. As the T 2 curve in
Fig. 5 is traced around the turning point at h = 0.543, these
two eigenvalues cross, almost simultaneously, through the unit
circle so that μ4,5 > 1 on the upper branch of the curve. As
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we continue further along the upper branch, the period of the
solution grows: The solution develops a long epoch where it
remains very close to the stationary soliton ψ−. Each period
now consists of two phases: The solution performs a rapid
oscillation with its spatiotemporal profile close to that of the
T 1 solution, followed by a slow passage through the bottleneck
near the ψ− soliton (see Fig. 6).

The second period-2 solution (denoted T̃ 2 in Fig. 5), which
detaches at h = 0.75, remains stable for 0.731 � h � 0.75.
As with the first double-periodic solution T 2, the period of
T̃ 2 grows as we move along the branch. The solution changes
similarly to what we have described in the previous paragraph:
A rapid oscillation is followed by a long quasistationary epoch
when the solution is very close to the stationary soliton ψ−.

Thus, periodic solutions on the T 2 and T̃ 2 branches
approach a homoclinic orbit: an infinite-period solution which
tends to the stationary soliton ψ− as t → −∞ and t → ∞.
The same transformation scenario was detected in the weak-
damping case (γ < 0.25) where the T 1 (and, presumably, the
T 2) branch was seen to snake up to T = ∞ (Fig. 4). At the
point h = h∞ where the period becomes infinite, the periodic
solution undergoes a homoclinic bifurcation which may serve
as the source of chaos (see Sec. VII A below).

VI. RADIATION FROM THE OSCILLATING SOLITON

A. The long-range radiation indicator

Like their stationary counterparts, the oscillatory solitons
strike the balance between the energy fed by the driver and
the energy lost to the dissipation. This can be quantified,
for example, by considering the integral N = ∫ R

−R
|ψ |2dx.

[When the nonlinear Schrödinger equation is employed to
describe planar stationary waveguides, this integral measures
the total power of light captured by the (−R,R) section of
the waveguide. There are energy-related interpretations of this
integral in other contexts as well.]

Equation (1) yields

Ṅ = 2h

∫ R

−R

|ψ |2 sin(2θ ) dx − 2γN + �
∣∣R
−R

, (12)

FIG. 5. The period of the periodic solution for γ = 0.265. Solid
curves show stable and the dashed ones unstable branches.

where we have decomposed ψ as |ψ |e−iθ and defined

�(x) = i(ψxψ
∗ − ψ∗

x ψ). (13)

The first term on the right-hand side of (12) gives the rate at
which the energy is pumped into the soliton while the second
one quantifies the damping rate. Assuming that the interval
(−R,R) is large enough to contain the core of the soliton, the
last term in (12) measures the radiation flux through its end
points.

The radiation through the points x = ±R outside the
soliton’s core is governed by the linearization of (1) whose
dispersion relation is

(ω − iγ )2 = (k2 + 1)2 − h2. (14)

The radiation waves emanate from the oscillating soliton which
plays the role of a pacemaker for these waves. The pacemaker
has a a period T and will sustain waves with frequencies
ω = 2πn/T (n = 1,2,...); hence ω should be taken real in
(14). For real ω, Eq. (14) has two pairs of complex roots
k = ±(p1,2 + iq1,2), with the imaginary components

q1,2 =
√

1

2
± S

2
+ 1

2

√
1 + 2(Q ± S), (15)

where
S = √

P + Q, Q =
√
P2 + γ 2ω2,

and 2P = h2 − γ 2 + ω2.

FIG. 6. (Color online) (a) The absolute value of the double-
periodic solution found on the left upper branch in Fig. 5. Here γ =
0.265, h = 0.502, and T = 22.985. A rapid oscillation is followed
by a long quasistationary epoch where the solution remains close
to the ψ− soliton. (b) The phase portrait of this solution taken at
x = 0. Shown is Im ψ(0,t) vs Re ψ(0,t). The filled and open circles
represent two fixed points: the stationary solitons ψ+ and ψ−.
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The decay rate q1 is always greater than q2 and bounded
from below (q1 > 1); it accounts for the rapidly decaying core
of the soliton. Outside the core, the decay rate crosses over to
q2, and if q2 is small the solution enters the long oscillatory
wing decaying in proportion to e−q2|x|. Periodic solutions that
we have reported in this paper all have ω ∼ 1; for these, the
exponent q2 can be small only if γ is small.

Assuming that γ is small, the expression (15) simplifies.
Defining the quantity

σ = σ (ω) =
√

ω2 + h2 − γ 2 − 1, (16)

we have, in particular,

q2 → ω/2

1 + σ

(γ

σ

)1/2
γ 1/2 as

γ

σ
→ 0 (σ > 0); (17a)

q2 →
√

ω/2

1 + σ
γ 1/2 as

σ

γ
→ 0; (17b)

q2 → (−σ )1/2 as
γ

σ
→ 0 (σ < 0). (17c)

Thus q2 is small if γ is small while σ is positive. In particular,
if σ is much greater than γ , the exponent q2 ∼ γ /

√
σ while if

σ is much smaller than γ , we have q2 ∼ √
γ . The decay rate

stays small (∼ √−σ ) when σ becomes negative—as long as it
remains much smaller than γ in absolute value. However, as σ

grows to larger negative values, the exponent q2 grows as well.
Hence the quantity σ (ω) serves as an indicator of whether the
long-range radiation with the frequency ω can be excited (i.e.,
whether q2 is small) or not.

B. Radiation frequency selection

The harmonic-wave solution of the linearized equation with
the decay rate q2 is

ψ = η

(
cos φ + i

α sin φ − β cos φ

(S + h)2 + T 2

)
eq2x, (18)

where the phase φ = ωt − p2x, the wave number p2 =
−T /(2q2), and the coefficients

α = ω(S + h) + γT , β = γ (S + h) − ωT ,

and T = √
Q − P . The amplitude η = η(ω) is arbitrary as far

as the linearized equation is concerned but acquires a specific
value when (18) is used to represent radiation from the soliton.

If R is large enough, the solution ψ(x,t) with x near ±R

is given by (18). Substituting (18) in (13) we obtain the flux
through the points x = ±R:

�(±R) = ∓|η|2 T
q2

ω(S + h) + γT
(S + h)2 + T 2

e−2q2R. (19)

Assume, first, that q2 is of order 1; this occurs, in particular,
when γ ∼ 1. Since R is chosen to be large, the flux through
the points x = ±R in this case is exponentially small: Strongly
damped radiation waves decay so quickly that they do not reach
beyond the core of the soliton (and essentially form part of it).
The exponential factor in (19) is not exponentially small only
if q2 is small; this, in turn, may only happen when the damping
is weak.

These considerations have a simple physical interpretation.
When γ is large, the soliton dissipates most of its excess energy
within its core; this is accounted for by the second term in (12).
On the other hand, when γ is small, the dissipation within the
core is insufficient to balance the first term in (12). The long-
range radiation may provide an alternative energy-draining
mechanism in this case, but this is only available when q2 is
small which, in turn, is indicated by σ > 0.

If the period of the solution is small enough for the quantity
σ (2π/T ) to be positive and much greater than γ (which is
assumed small), the decay rate q2 is close to zero. Therefore,
the flux (19) is not exponentially small and the first-harmonic
radiation is not blocked in this case. As T is increased so that
h2 − γ 2 + (2π/T )2 drops below 1, the decay rate q2 grows to
values of order 1. According to Eq. (19), the first-harmonic
radiation will be mostly suppressed in this case (i.e., damped
outside a small neighborhood of the soliton’s core). However,
σ (ω) with ω = 4π/T will be still positive; this means that the
tails will be dominated by the second-harmonic radiation now.
Once the second harmonic is suppressed, the third harmonic
will take over, and so on.

We note that the second-harmonic radiation is present not
only when the first-harmonic radiation is suppressed. However,
the amplitude η(2πn/T ) typically scales as εn and so Eq. (19)
implies that the second-harmonic flux is much weaker than the
first-harmonic flux in situations where both channels are open.

C. First-harmonic radiation as a stabilizing agent

We routinely calculated the indicator σ (2π/T ) as we
continued our periodic solitons. The frequency spectrum of
the radiation shows a remarkable correlation with the type of
transition the soliton is suffering.

The indicator (16) with ω = 2π/T is positive along each
curve in Fig. 2—moreover, σ (ω) is much greater than γ .
Therefore, in the case γ > 0.275, the long-range radiation
from the soliton is dominated by the first harmonic. On
the other hand, σ (2π/T ) is negative along each T 1 branch
in Fig. 4, which implies that the first-harmonic radiation is
short range when γ is smaller than 0.25. (When γ = 0.10,
σ decreases from values close to −γ to about −6γ along the
curve; when γ = 0.20, σ drops from zero to nearly −2.5γ .) In
the latter case (γ = 0.10 and 0.20) the indicator σ (ω) becomes
positive if one lets ω = 4π/T ; hence the radiation is second
harmonic here (except for very large T , where it is third
harmonic).

This observation allows us to understand, in qualitative
terms, why the transformation of the soliton with γ > 0.275
is different from the scenario realized for very weak dampings
(γ < 0.25). When γ is not very small, the soliton can dispose
the excess energy via two channels. Some energy will be lost
to the damping in the core region, where |ψ | ∼ 1 and the term
iγψ is ∼γ . The rest will be sent away in the form of the
strong first-harmonic radiation. Due to the availability of this
powerful backup dissipation channel, the soliton behaves as
an overdamped system; hence its enhanced stability. On the
other hand, when γ is very small, the dominant long-range
radiation is second harmonic. Since the amplitude of the nth
harmonic radiation scales as εn where ε is the scale of the
amplitude of the oscillation in the core, the second-harmonic
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radiation is much weaker than the first-harmonic one, and the
radiation channel is effectively blocked. The soliton shows the
volatility of an underdamped system; hence its instability and
period doublings.

The formation of three-soliton complexes observed in the
continuation of the oscillatory solitons with γ = 0.30 and
γ = 0.35 is also made possible due to the availability of strong
radiation with the period equal to the period of the central
soliton. The lateral humps in the complex are seeded by the
two maxima of the radiation sinusoid which are closest to
the central soliton. On the other hand, the second-harmonic
radiation available in the γ = 0.10 and γ = 0.20 cases is
unable to seed the lateral solitons because it is weak and has a
period different from the period of the central hump.

It is interesting to test these qualitative considerations using
the case of the intermediate damping, γ = 0.265. In this case
the first-harmonic indicator σ (2π/T ) is positive but σ/γ is
not much greater than 1 over the most of the top T 1 branch in
Fig. 5. (As h grows from 0.35 to 0.71 to 0.78, the quotient σ/γ

on the top branch changes from 0.5 to 0 to 1.). Accordingly,
the first harmonic is strongly damped (q2 ∼ √

γ ) and the long-
range radiation is second harmonic. As a result, the soliton
suffers period-doubling bifurcations, as in the case of γ = 0.10
and 0.20. However, as we continue further, the quotient σ/γ

grows (to 2. at h = 0.82) and the first-harmonic radiation takes
over from the second-harmonic. Consequently, the solution
transforms into a three-soliton complex—as in the case of
γ = 0.30 and 0.35).

VII. DISCUSSION AND CONCLUSIONS

A. Homoclinic explosion

The numerical continuation of the T 1 solution with γ <

0.25 shows an unbounded growth of its period. The same is true
for the T 2 solution with γ < 0.275. These observations imply
the presence of a homoclinic bifurcation where the period
becomes infinite. We now argue that this bifurcation is a source
of chaos.

We use results of Shilnikov [18] who considered a
three-dimensional dynamical system with a homoclinic orbit
connecting a saddle focus to itself. The saddle focus is a
fixed point with a real unstable eigenvalue λ1 > 0 and two
complex-conjugate stable eigenvalues λ2 = λ∗

3, Re λ2,3 < 0.
Assuming that

λ1 > |Re λ2,3|, (20)

Shilnikov proved that at the bifurcation point, the system has
infinitely many Smale’s horseshoes in the neighborhood of the
homoclinic orbit [18] (see also [19]). Each of these horseshoes
contains an invariant Cantor set with a countable infinity
of (unstable) periodic orbits and an uncountable infinity of
(unstable) bounded aperiodic orbits—the strange invariant set
which manifests itself as attractive or transient chaos. Later
it was shown that finitely many of the horseshoes persist on
one side of the homoclinic bifurcation [20]. The homoclinic
bifurcation giving birth to this plethora of periodic and chaotic
orbits has been referred to as the “homoclinic explosion” [21].

The homoclinic explosion may also occur in four- and
higher-dimensional systems with a homoclinic orbit. The

necessary conditions for this are formulated in terms of the
eigenvalues of the linearization about the fixed point connected
to itself by the orbit: (a) Out of all eigenvalues in the right half
of the complex plane, the closest to the imaginary axis is a
real eigenvalue λ1; (b) in the left half of the complex plane,
a pair of complex-conjugate eigenvalues λ2,3 are the closest
eigenvalues to the imaginary axis. The homoclinic explosion
occurs then if the Shilnikov inequality (20) is satisfied [19]. A
carefully studied and clearly explained example of homoclinic
explosion in partial differential equations is in [22].

The role of the saddle-focus fixed point in our Eq. (1) is
played by the soliton ψ−, Eq. (2). The linear spectrum of this
fixed point consists of two discrete eigenvalues, Eqs. (A7) of
the Appendix, and a continuum of values λ = −γ + iω, where
|ω| � ω0, ω0 = √

1 − h2. In the left half of the complex plane,
the eigenvalue λ2 is farther away from the imaginary axis than
the continuous spectrum; hence the dynamics near the saddle
focus will be dominated by the single positive eigenvalue λ1

and the continuum of eigenvalues with negative real part. This
is not exactly the situation of Shilnikov; however it is similar in
the sense that the fixed point has a one-dimensional unstable
manifold and a more-than-one-dimensional stable manifold,
formed by orbits spiraling into the focus. It is natural to expect
Shilnikov’s result to remain valid in this case, provided an
analog of the inequality (20) is in place—although we do not
have any rigorous proof of that. The analog of the Shilnikov
inequality in our case is

λ1 > γ, (21)

with λ1 as in (A7).
The inequality (21) translates into (A2

−/
√

3)�0 > γ , where
�0(ε) is the positive eigenvalue of the problem (A3). One can
easily demarcate the region where this inequality is valid. From
(A2) we have

h =
√(

ε

2 + ε

)2

+ γ 2. (22)

Equation (22), together with

γ = A2
−√
3
�0(ε), (23)

defines the parametric curve h = hSh(γ ) on the (γ,h) plane.
The curve is parabolic in shape (see the dotted curve in the
main frame and inset in Fig. 7); it connects the origin to the
point γ = 0, h = 1. The inequality (21) is valid in the region
bounded by this curve and the h axis. This region obviously
includes the loci of the homoclinic bifurcations for all γ <

0.275 (see Fig. 7). Therefore the homoclinic bifurcation is
indeed of the homoclinic-explosion type in our case. It is this
bifurcation that is responsible for the appearance of temporally
chaotic solitons in the parametrically driven damped nonlinear
Schrödinger equation.

B. Attractor charts

(1) Our analysis answers a number of questions raised by the
attractor chart [12] compiled via direct numerical simulations.
One such question concerns the existence of two types of the
transformation scenario of the parametrically driven soliton, as
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FIG. 7. (Color online) Single-soliton attractor chart. The
Shilnikov inequality (21) holds inside the region bounded by the
dotted curve. The inset gives a wider perspective of this region.

the driving strength is raised for the fixed damping coefficient.
Is the transformation followed by the soliton with large γ >

0.275 really different from the transition to chaos suffered by
its weakly damped counterpart (γ < 0.25), or is this difference
caused merely by numerical approximations?

The answer to this question is provided by diagrams in
Figs. 2, 4, and 5. In the region γ < 0.25 (represented by the
values γ = 0.10 and 0.20, Fig. 4) the increase of h results
in a sequence of period-doubling bifurcations of the periodic
soliton. On the contrary, no period-doubling bifurcations occur
as h is increased for the fixed γ > 0.275. (See Fig. 2 showing
the diagrams for γ = 0.30 and 0.35.)

(2) Another question is why no periodic solitons are
observed in numerical simulations with sufficiently large h.
Is there a well-defined boundary of the domain of existence of
stable periodic solitons? We have shown that for γ > 0.275,
the region of existence of periodic solitons on the h axis is
bounded by the saddle-node bifurcation. No such solutions,
stable or unstable, exist above this turning point. For small γ ,
γ < 0.25, the region of existence of periodic solitons is also
bounded by a turning point; however, solitons cease to exist as
attractors for lower values of h. The boundary of the stability
domain here is set by a narrow strip of temporally chaotic
solitons.

These conclusions verify and explain the formation of the
“desert region” on the (γ,h) plane. The positions of the saddle-
node bifurcation point for γ > 0.275 and the accumulation
point of higher-periodic solutions for γ < 0.25 are in good
agreement with the boundary of the desert region detected in
simulations [12].

(3) The third issue clarified by our analysis pertains to the
shape of the region on the (γ,h) plane where periodic solitons
are observed in numerical simulations. The question here is,
why does the h(γ ) curve bounding this region fold on itself
for γ between 0.25 and 0.275?

This phenomenon is accounted for by the restabilization of
the periodic soliton as h is increased for γ = 0.265 (Fig. 5).
We note that the case γ = 0.265 is intermediate between the
small- and large-γ transformation scenarios: On the one hand,

similar to the weakly damped scenario, the soliton undergoes
a period-doubling cascade as h is raised for this γ (more
precisely, it undergoes two period-doubling cascades). On the
other, the domain occupied by the periodic attractor is bounded
by a saddle-node bifurcation in this case, as in the strongly
damped situation.

Figure 7 summarizes our conclusions on single-soliton
periodic attractors. This diagram is in good agreement with the
attractor chart produced using direct numerical simulations,
Fig. 1.
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APPENDIX: EIGENVALUES OF THE SOLITON ψ−

We let ψ = ψ−(x) + δψ(x,t), where

δψ = e−iθ− [u(x,t) + iv(x,t)]

is a small perturbation, and linearize Eq. (1) in δψ . Assuming
that

u(x,t) = Re[eλtp(x)], v(x,t) = Re[eλtq(x)],

with complex p, q, and λ, yields an eigenvalue problem

L1p + 2γ̃ q = −λ̃q, (L0 + ε)q = λ̃p. (A1)

Here we have defined γ̃ = γ /A2
− and λ̃ = λ/A2

−, and intro-
duced two Sturm-Liouville operators with familiar spectral
properties:

L0 = −d2/dX2 + 1 − 2 sech2X,

L1 = −d2/dX2 + 1 − 6 sech2X.

The independent variable X = A−x and the parameter ε was
defined by

ε = 2
√

h2 − γ 2/A2
−. (A2)

The two-parameter eigenvalue problem (A1) can be reduced
[8] to a one-parameter problem

L1p = −�q̃, (L0 + ε)q̃ = �p (A3)

by letting

�2 = λ(λ + 2γ̃ ) (A4)

and q̃ = (λ + 2γ̃ )λ−1q.
The lowest eigenvalue of the operator L0 is zero; hence

for any ε > 0 the operator L0 + ε is positive definite and the
eigenvalue problem (A3) can be cast in the form

L1p = −�2Mp, (A5)

where M = (L0 + ε)−1. The operator on the left-hand side is
symmetric and the one on the right is symmetric and positive
definite; hence all eigenvalues −�2 are real and the function
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p(x) can also be considered real. The smallest eigenvalue of
(A5) can be found as a minimum of the Rayleigh quotient:

−�2
0 = min

p∈L2

(p,L1p)

(p,Mp)
, (A6)

where (p,q) stands for the L2 scalar product: (p,q) =∫
p(x)q(x)dx.
The operator L1 has a negative eigenvalue, η0 = −3, with

the eigenfunction y0 = sech2X. Letting p = y0 in Eq. (A6), we
conclude that the minimum is negative and hence the problem
(A5) has a negative eigenvalue. We denote the associated
eigenfunction p0(x):

L1p0 = −�2
0Mp0.

Since L1 does not have any other negative eigenvalues (the only
other discrete eigenvalue of L1 is η1 = 0), the problem (A5)
does not have any other negative eigenvalues either. Indeed,

assume there exist −�2
1 and p1(x) such that L1p1 = −�2

1Mp1.
The quadratic form (y,L1y) is then negative definite on the
subspace spanned by p0 and p1; in particular, it is negative for
y(x) = C0p0(x) + C1p1(x) where the coefficients are chosen
such that (y,y0) = 0. This, however, contradicts the fact that
the form (y,L1y) cannot take negative values on the subspace
orthogonal to y0.

Thus the problem (A3) has only one pair of nonzero
eigenvalues, �0 and −�0 (where �0 is taken to be positive).
The function �0(ε) has asymptotic behaviors �0 → (4ε)1/2

as ε → 0 and �0 → (3ε)1/2 as ε → ∞; for intermediate
values of ε we have tabulated it numerically. Using Eq. (A4)
we recover two eigenvalues of the original, two-parameter
problem (A1):

λ1,2 = −γ ±
√

γ 2 + A4−�2
0. (A7)

Here λ1 > 0 and λ2 < −γ < 0.
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