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Externally driven collisions of domain walls in bistable systems near criticality
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(Received 5 October 2010; revised manuscript received 13 February 2011; published 17 May 2011)

Multidomain solutions to the time-dependent Ginzburg-Landau equation in the presence of an external field
are analyzed using the Hirota bilinearization method. Domain-wall collisions are studied in detail considering
different regimes of the critical parameter. I show the dynamics of the Ising and Bloch domain walls of the
Ginzburg-Landau equation in the bistable regime to be similar to that of the Landau-Lifshitz domain walls.
Domain-wall reflections lead to the appearance of bubble and pattern structures. Above the Bloch-Ising transition
point, spatial structures are determined by the collisions of fronts propagating into an unstable state. Mutual
annihilation of such fronts is described.
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I. INTRODUCTION

Localized and labyrinth structures in excitable media are
considered for possible use as carriers of binary information for
specific applications [1,2]. Such structures appear in monos-
table and bistable regimes of magnetic, electrical, chemical,
and optical systems. In particular, different realizations of
memory and logic elements with bubble-forming bistable
media seem to be technologically promising because of the
high stability of the bubble structures. Prototype bubble-
forming systems are two-dimensional (2D) ferromagnets
including ferrofluids [3,4], and 2D ferroelectrics including
electrically active liquid crystals [5,6]. In critical parameter
ranges, these systems create pattern structures (lamellae,
labyrinths) which are not periodic [3,7]. To be precise, I
mention that experimental observation of bubbles and lamellar
patterns in solid ferroelectric films has not been achieved
(unlike in liquid crystals where electroelastic coupling is
weaker) [8], although a 2D bubblelike structure has been
seen in a system of a finite-size geometry [9]. Unlike
patterns in oscillatory critical systems, the above structures
are built of domain walls (DWs) connecting stable states of
opposite orientation of an order parameter. Similar patterns and
bubbles are observed in excitable (reaction-diffusion) chemical
systems below the critical (bifurcation) point [10,11]. It is
hoped that the difficulties of early magnetic and dipolar bubble
technologies reviewed in [12,13] can, nowadays, be overcome
thanks to the advance of miniaturization. One observes
increased interest in studies of DW complexes with relevance
to data storage and processing devices which are based on
ferromagnetic and ferroelectric nanoelements. In particular,
nanowire structures are under intense investigation because of
the possibility of the most dense information packing [14,15].
The importance of critical effects in nanosystems grows with
decrease in their diameters because of a significant decrease
of the critical (Néel) temperature [16,17].

Generic critical properties of magnetic and electric me-
dia are described with the time-dependent Ginzburg-Landau
equation which enables qualitative analysis of DW behaviors
in all bistable systems. The DW solutions to the 1D Ginzburg-
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Landau equation are of Ising (named Néel DWs also) or Bloch
type. Under external stimulation the DWs move and their
collision properties determine the morphology of resulting
pattern structures. In the present paper, external-field-induced
DW collisions in 1D Ginzburg-Landau systems are studied
with reference to bubble formation. I show similarities of
the process to the bubble formation in ferromagnetic (or
ferroelectric) wires far from the criticality (a system described
with the Landau-Lifshitz-Gilbert equation), referring to my
previous study of the problem [18] as I throughout the
text. The creation of bubbles and DW patterns is described
with connection to the property of elastic reflection of DWs
observed in excitable media. However, I emphasize that the
present study is not related to widely investigated pulses in
monostable regimes of excitable systems [19,20].

In Secs. II and III, the field-induced collisions of DWs and
phase fronts, respectively, are studied. In Sec. IV, the relevance
of predictions on DW and front collisions to pattern formation
is discussed.

II. DOMAIN-WALL COLLISIONS

Let us consider the 1D Ginzburg-Landau equation for
the ferromagnetic (ferroelectric) wire in a (longitudinal)
external field directed along the spontaneous magnetization
(polarization),

α
∂m

∂t
= J

∂2m

∂x2
+ β1m + β2m

∗ − μ|m|2m + γH. (1)

Here m denotes a complex order parameter (a two-component
magnetization or polarization), β1 determines the distance
from the criticality (β1 = −β2 at the phase-transition point),
and H denotes an external (magnetic or electric) field intensity
(it can take positive or negative real values). Based on
arguments related to the time-reversal symmetry, I show
that the DWs described with (1) have to reflect upon their
collision into the parameter region where they form magnetic
bubbles. Under the assumption γH � (β1 + β2)3/2/μ1/2, the
domains of the stable phase of the system correspond to
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m ≈ ±√
β1 + β2/

√
μ, and the single-DW solutions to (1) take

the form

m =
√

β1 + β2

μ

1 − e2η

1 + e2η
+ iθ2

√
β1 − 3β2

μ

eη

1 + e2η
,

η = k(x − x0) −
√

μγHt√
β1 + β2α

, (2)

where

|k| =
√

2β2

J
for θ = ±1, (3a)

and

|k| =
√

β1 + β2

2J
for θ = 0. (3b)

These equations describe the Bloch and the Ising DW, respec-
tively. Only in the limiting case H = 0, the above solution
is strict while, for H �= 0, it neglects the small field-induced
deformation of the DW profile (an space asymmetry arising
with respect to the DW center; details are given in Appendix
A). The DWs move under the condition H �= 0 in a direction
dependent on the sign of k. It is seen from (2) and (3a) that
Bloch DWs can exist only in the regime β1 > 3β2; therefore, at
β1 → 3β+

2 , the Bloch DWs transform into Ising DWs which
are the only known stationary front solutions in the regime
−β2 < β1 < 3β2 [21]. Stationary two-DW solutions to (1) are
given in [22]. In the absence of an external field H = 0, the
double-wall solutions describe localized static bubbles built of
pairs of different types (Ising and Bloch) of DWs. The size
of the bubble can be changed by the application of a field,
H �= 0, because of inducing the motion of its fronts (DWs)
and, eventually, their collisions. The collision result (DW
reflection or annihilation) determines the final spatial structure
created by the DWs, similar to those of 1D ferromagnets far
from the critical regime (I). In the present work, I omit the
discussion of the formation of bubbles built of two Bloch or
two Ising DWs, mentioning the previous studies of Refs. [23].
Such objects are unstable for H = 0 (initially stationary DWs
repel or attract each other); thus, they are less important for
potential applications than Ising-Bloch bubbles (although the
stability of the Ising-Bloch bubbles against temporal external
perturbations is a separate question discussed in [24]).

Obviously, Eq. (1) is not time-reversal invariant, while
the reversibility of a dynamical system is a crucial property
in terms of the stability of any localized structure (e.g.,
a bubble) [1,25]. Due to this irreversibility, solitary-wave
solutions to (1) are, in the general case, relevant only to the
limit of large positive values of time (t → ∞), while they
are irrelevant to the opposite limit (t → −∞), in particular,
because of infinite growth of the energy with t → −∞ which
is indicated by nonzero values of the dissipative function (I).
With relevance to studying the DW collisions, and thus to
investigating the stability of DW complexes, I analyze the
dynamics of the bubble in the limit of large negative values
of time (in this limit, the colliding DWs are noninteracting
objects), modifying the evolution equation (1) by reversing
the arrow of time. The inverse-evolution equation takes the
form

−α
∂m̃

∂t
= J

∂2m̃

∂x2
+ β1m̃ + β2m̃

∗ − μ|m̃|2m̃ − γH. (4)

Let me mention an analogy to the necessity of doubling
the number of degrees of freedom when formulating the
dynamics of dissipative (classical or quantum) systems within
formalisms relevant to the whole length of the time axis [26,27]
(see also I), in particular, the dynamics of essentially dis-
sipative (reaction-diffusion) systems whose excitations are
overdamped [28].

Applying Hirota’s bilinearization method, following the
substitutions m = g1/f1, m̃ = −g2/f2 in (1) and (4), where
f1,f2 take real values, one arrives at the secondary equations
of motion( − αDt+JD2

x

)
g1 · f1+(β1 − λ)g1f1+β2g

∗
1f1 + γHf 2

1 = 0,

JD2
xf1 · f1 + μg1g

∗
1 − λf 2

1 = 0, (5a)(
αDt + JD2

x

)
g2 · f2 + (β1 − λ)g2f2 + β2g

∗
2f2 + γHf 2

2 = 0,

JD2
xf2 · f2 + μg2g

∗
2 − λf 2

2 = 0. (5b)

Here,

Dm
t Dn

xb(x,t) · c(x,t)

≡ (∂/∂t − ∂/∂t ′)m(∂/∂x − ∂/∂x ′)nb(x,t)c(x ′,t ′)|x=x ′,t=t ′ .

The above breaking of (1) and (4) into the pairs of secondary
equations (5a) and (5b), respectively, is nonunique but it leads
to equations of the lowest possible order in g1(2) and f1(2)

(bilinear ones). Upon the inversion of the arrow of time (t →
−t), the secondary dynamical variables transform following
g1(2) → −g2(1), f1(2) → f2(1) while (5a) transform into (5b)
and vice versa.

For λ = β1 + β2 and γH � (β1 + β2)3/2/μ1/2 (the field
is much weaker than the coercivity value; thus, m ≈
±√

β1 + β2/
√

μ inside the domains and a deformation of the
DWs induced by H is negligible), following Appendix A, I
find a two-DW (bubble) solution in the form

g1 = a(1 − νe2η1 − νe2η2 + e2η1+2η2 ) + ibν1/2eη1 (1 − e2η2 ),

f1 = 1 + νe2η1 + νe2η2 + e2η1+2η2 , (6a)

ηj = kj (x − x0j ) − ωj t,

g2 = a(1 − νe2η̃1 − νe2η̃2 + e2η̃1+2η̃2 ) + ibν1/2eη̃1 (1 − e2η̃2 ),

f2 = 1 + νe2η̃1 + νe2η̃2 + e2η̃1+2η̃2 , (6b)

η̃j = kj (x − x0j ) + ωj t,

where

a =
√

β1 + β2

μ
, b = 2

√
β1 − 3β2

μ
,

k1 = ∓
√

β1 + β2

2J
, k2 = ±

√
2β2

J
, ω1 = ω2

=
√

μγH√
β1 + β2α

, ν = β1 + β2 − 2
√

β2(β1 + β2)

β1 + β2 + 2
√

β2(β1 + β2)
. (7)

In the limit H → 0, g1 = g2, f1 = f2, and both the fields m

and −m̃ coincide with the static bubble solution to (1) written
in [22].

Studying the DW collision, I analyze the limit t → ∞ of
the double-DW solutions to (1), the formula (6a), and the
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t → −∞ limit of the solution to (4), the formula (6b), in the
closest vicinity of the ith DW center, noticing that

m ≈ m(i) = a
1 − e2ηi+ln(ν)

1 + e2ηi+ln(ν)
+ iδi2b

eηi+ln(ν)/2

1 + e2ηi+ln(ν)
(8)

for 0 ≈ ηi + ln(ν)/2 � ηk + ln(ν)/2 and i �= k, and

m̃ ≈ m̃(i) = −a
1 − e2η̃i+ln(ν)

1 + e2η̃i+ln(ν)
− iδi2b

eη̃i+ln(ν)/2

1 + e2η̃i+ln(ν)
(9)

for 0 ≈ η̃i + ln(ν)/2 � η̃k + ln(ν)/2 and i �= k. Note that (8)
coincides with the Ising-DW profile (2),(3b) for i = 1 and
with the Bloch-DW profile (2),(3a) for i = 2. In order to
establish the magnetization dynamics in the limit of large
negative values of time, I invert the motion of m̃(i), utilizing
the property m̃(i)(x,0) = −m̃(i)∗(−x + 2x ′

0i ,0), where x ′
0i =

x0i − ln(ν)/(2ki), and find

m ≈ −a
1 − e2ηi+ln(ν)

1 + e2ηi+ln(ν)
+ iδi2b

eηi+ln(ν)/2

1 + e2ηi+ln(ν)
(10)

for 0 ≈ ηi + ln(ν)/2 � ηk + ln(ν)/2 and i �= k. Comparing
(8) and (10), one sees that the result of the collision is a change
of the sign of the real part of m(i). Thus, one can think of the
colliding DWs that they pass through each other with constant
velocity and change their character from the head-to-head into
the tail-to-tail structure and vice versa. In fact, the result of
the DW collision is their elastic reflection accompanied by
change of the Bloch into a Néel DW and vice versa, similarly to
the result of field-driven or spontaneous collision of magnetic
DWs of the 1D Landau-Lifshitz equation (I). Let me emphasize
that taking the t → −∞ limit of g1/f1 at η1(2) + ln(ν)/2 ≈ 0
leads to m differing from (10) by the sign of its imaginary part,
which confirms the irrelevance of (1) in this limit.

Above, I analyzed an infinite 1D medium. Finite length
of the domains leads to additional consequences of the DW
collision because of the natural tendency of finite systems
toward energy minimization (the energy cannot be defined for
infinite systems). The preferred direction of the DW motion
before the collision (the growth or decrease of the bubbles)
corresponds to a decrease of the Zeeman energy while the
collision-induced motion in the reversed direction finishes
when the decrease of the interaction energy of the (repulsing)
DWs equals the Zeeman-energy increase. Thus, I predict
the appearance of localized bubbles due to an external-field
application in the parameter range β1 > 3β2. Their diameter
is determined by the strength of the driving field.

Approaching the Bloch-Ising transition point with β1

results in a decrease of ν (β1 → 3β+
2 ⇒ ν → 0+). Then the

imaginary parts of m,m̃ decrease and, eventually, vanish at
β1 = 3β2. Simultaneously, the centers of both the DWs move
away from each other due to the shift of the parameters (7) of
(6a) and (6b) (ν → ν + �ν, kj → kj + �kj , �k2 = 0). The
shifts of the DW centers are equal to �x0j = ln(ν)/|2kj | −
ln(ν + �ν)/|2kj + 2�kj |. Finally, at β1 = 3β2 (�ν = −ν,
kj + �kj = √

2β2/J ) the centers of both the DWs diverge.
A domain pattern is expected to appear due to the finite
density of the mutually interacting bubbles. Further decrease
of β1 (down to −β2) results in divergence of the widths of
the (Ising) DWs and, thus, in the divergence of the length of
the DW interaction. An adiabatic approach with β1 → −β+

2
is impossible in practice due to the instant widening of the

DW. Because of the rapid increase of the overlap of DWs,
one anticipates the appearance of domains of an unstable
phase in our bistable medium in the regime −β2 < β1 < 3β2

(above the Bloch-Ising transition and below the bifurcation
point). Then, an energy excess is being removed from the
system via the propagation of fronts connecting domains
of a stable phase with domains of an unstable phase (e.g.,
fronts between ferromagnetic and paramagnetic domains).
They always propagate into an unstable state and below I call
them phase fronts [29].

III. PHASE-FRONT COLLISIONS

We can gain insight into the pattern formation near
criticality by considering the collision of fronts propagating
into unstable states. Let us study front solutions to (1) assuming
Im(m) = 0 or, alternatively, to a simplified version of (1),

−α
∂m

∂t
+ J

∂2m

∂x2
+ θm − μm3 + γH = 0, (11)

where θ = β1 + β2, (the real solutions to both the equations
are the same). Equation (11) is relevant to the closest vicinity
of the critical point θ = 0, where the order parameter takes
real values. On the other hand, Im(m) vanishes when crossing
the Bloch-Ising transition point β1 = 3β2; thus, real solutions
are expected to qualitatively describe the phase-front motion
for the parameter range −β2 < β1 < 3β2. Since m → 0 with
θ → 0, I introduce a renormalized field m′ ≡ m/

√
θ in order

to determine dynamical properties of the phase fronts in the
vicinity of the critical point. Substituting m′ by g/f , one arrives
at a trilinear (Hirota) form of (11):

f
[( − αDt + JD2

x

)
g · f + γH/

√
θf 2

]
+ g

[( − JD2
x + θ

)
f · f − μθg2] = 0. (12)

For H = 0, an exact single-front solution

g = 1√
μ

ek(x−x01)+ckt , f = 1 + ek(x−x01)+ckt , (13)

where

k =
√

θ

2J
, ck = 3θ

2α
, (14)

and a double-front solution to (12),

g = 1√
μ

(ek(x−x01)+ckt − e−k(x−x02)+ckt ),

f = 1 + ek(x−x01)+ckt + e−k(x−x02)+ckt (15)

were found by Nozaki and Bekki [30]. I mention that these
authors have considered a generalization of (11) changing
α,J ,μ into complex coefficients (and allowing complex m);
however, the real parts of these coefficients were found to
determine generic dynamical properties of the phase fronts
whereas the imaginary parts are responsible mainly for
additional periodic structure of the phase domains [30] (1D
spiral waves [31]). The solution (15) describes a collision of
the phase fronts at the borders of oppositely oriented domains
of the stable phase. Upon the collision both the fronts create
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the so called Nozaki-Bekki hole, a localized object which is
similar to the Ising DW.

For H = 0, following the derivation in Appendix B, I find
an approximate double-front solution to (12) of the form

g = 1√
μ

(ek(x−x01)+ckt + e−k(x−x02)+ckt

+ θek(x−x01)+ckt e−k(x−x02)+ckt ),

f = 1

θ
+ ek(x−x01)+ckt + e−k(x−x02)+ckt

+ θek(x−x01)+ckt e−k(x−x02)+ckt ,

k =
√

θ

2J
, ck = 3θ

2α
. (16)

It describes two phase fronts at the borders of similarly
oriented domains of the stable phase since, in contrast to the
Nozaki-Bekki hole, all terms of g are of the same sign. They
counterpropagate into an unstable area. According to (16),
since t → ∞ ⇒ g → f/

√
μ, these fronts annihilate upon the

collision. Above I have neglected the external field because
it introduces a big complexity to the solution (Appendix B).
However, the asymmetry of the Ginzburg-Landau function
due to H �= 0 plays a role in the collision-induced formation
of a dissipative structure since it determines the choice of the
preferred stable state [32] [though the strength of the field
is limited by the condition γ |H | < 2(θ/3)3/2/μ1/2 ensuring
that two stable homogeneous solutions to (11) are of opposite
signs].

IV. DISCUSSION

Direct observation of the front motion in ferromagnetic and
ferroelectric media is difficult because relevant time scales are
very narrow. Thus, I refer to an experiment on a (bistable)
ferrocyanide-iodate-sulfite chemical reaction performed in a
continuous-flow stirred tank reactor [10,11]. When the ferro-
cyanide concentration is decreased, the morphology of the 2D
chemical structure changes. At a relatively low concentration,
irregular stationary patterns of DWs (lamellae) appear and
change into bubble structures with a further concentration
decrease. The lamellae formation is accompanied by the prop-
erty of DW reflection upon their externally driven collision
(which is enforced by an intense irradiation). On increasing
the critical parameter (the ferrocyanide concentration), the
lamellae disappear while domains become inhomogeneous
(spiral structure of the domains appear) and their fronts
annihilate upon the collision. I identify the transition between
structures analogous to those visualized in Figs. 1(a) and
1(b) with the decrease of the critical parameter β1, and the
transition between structures in Figs. 1(b) and 1(c) with
crossing the Bloch-Ising point β1 = 3β2. Thus, the predicted
dynamical behavior of DWs of a generic (Ginzburg-Landau)
model of bistable systems coincides with that observed in a
chemical reaction below the critical point. Further increase
of the ferrocyanide concentration leads to the appearance of
wave-front reflection and self-replication of phase spots. These
effects are related to differences in the diffusion coefficients
of the chemical species; therefore, they cannot be predicted
within the Ginzburg-Landau model. According to calculations
using a two-species (Gray-Scott) model of a chemical reaction,

(a) (b) (c)

FIG. 1. (Color online) 2D pattern structures in a bistable medium:
(a) a bubble structure, (b) a lamellar (labyrinth) pattern, (c) stable
(white) domains propagating into (gray) unstable state. In (c) a
periodic (spiral) structure of the domains is neglected.

the self-replication regime relates to the monostability of the
system [33].

I conclude that the coexistence of subcritical effects of front
reflection and annihilation (accompanied by the creation of
dissipative structures) can be explained by the appearance of
domains of the unstable phase above the Bloch-Ising transition
point.
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APPENDIX A: DERIVATION OF DW SOLUTIONS

One manages to find an exact single-DW solution to (1) for
H �= 0 in the case Im(m) = 0. It corresponds to an asymmetric
Ising DW. In particular, inserting

g1 = a1 − a2e
2η, f1 = 1 + e2η, η = k(x − x0) − ωt,

(A1)

into (12), one establishes the coefficients a1,a2,k,ω to be
complicated functions of H . For γH � (β1 + β2)3/2/μ1/2 (H
is much weaker than the coercivity field), the effects of the
DW asymmetry a1 �= a2 and the dependence of the DW width
1/k on H are negligible while (A1) reproduces (2) and (3b).
Unfortunately, an exact solution describing a Bloch DW in
an external field is unknown. Thus, I search for approximate
solutions with Im(m) �= 0 assuming they satisfy the following
requirements: (1) they tend to the exact (single- or double-DW)
solutions of Ref. [22] with H → 0, and (2) they satisfy (1)
at the centers of the DWs (therefore, I neglect an expected
space asymmetry of Re(m) and Im(m) with respect to the DW
center in the presence of H �= 0). Within this approach, let us
consider approximate single-DW solutions to the bilinearized
Ginzburg-Landau system (5a) of the form

g1 = a(1 − e2η) + ibeη, f1 = 1 + e2η,
(A2)

η = k(x − x0) − ωt.

Inserting (A2) into (5a), one arrives at

a(β1 + β2 − λ) + γH + eηib(β1 − β2 − λ + Jk2 + αω)

+ e2η2(γH − 2aαω) + e3ηib(β1 − β2 − λ + Jk2 − αω)

+ e4η[−a(β1 + β2 − λ) + γH ] = 0,
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− a2μ + λ + e2η(2a2μ − b2μ + 2λ − 8Jk2)

+ e4η(−a2μ + λ) = 0. (A3)

For λ = β1 + β2, a = √
β1 + β2/

√
μ, one finds the sec-

ond equation of (A3) to be satisfied (all coefficients of
the LHS expansion in eη vanish), if b = 2

√
β1 − 3β2/

√
μ

and |k| = √
2β2/

√
J (the Bloch DW) or b = 0 and

|k| = √
β1 + β2/

√
2J (the Ising DW), whereas, for ω =√

μγH/(
√

β1 + β2α), the LHS of the first equation of (A3)
simplifies to

γH

(
1 + eηib

√
μ√

β1 + β2
− e2η2 − e3ηib

√
μ√

β1 + β2
+ e4η

)
.

We see that it vanishes with H → 0 or at η = 0 (at the DW
center). Therefore, the DW described by (A2) propagates with
a constant velocity c = ω/k ∝ H .

Let me mention that I do not perform a systematic Hirota
construction connected to inserting consecutive elements of
the expansion of g1,f1 in eη1 ,eη2 and solving a series of
relevant equations one by one. If their solutions were not exact,
an error would accumulate in the consecutive steps. In the
present approach, the form of the solution (A2) is fixed while
I simply verify the coefficients a,b,ω. Similarly, searching for
the approximate double-DW solution, I insert (6a) into (5a).
The resulting equations take the form

(1 + e4η1+4η2 )[a(β1 + β2 − λ) + γH ] + eη1 ibν1/2
(
β1 − β2 − λ + Jk2

1 + αω1
) + e2η1 2ν(γH − 2aαω1)

+ e2η2 2ν(γH − 2aαω2) + e3η1 ibν3/2
(
β1 − β2 − λ + Jk2

1 − αω1
) + (e4η1 + e4η2 )ν2[−a(β1 + β2 − λ) + γH ]

+ e2η1+4η2 2ν(γH + 2aαω1) + e4η1+2η2 2ν(γH + 2aαω2) − eη1+2η2 ibν1/2{(1 − ν)
[
β1 − β2 − λ + Jk2

1 + 4Jk2
2 + αω1

]
+ (1 + ν)(4Jk1k2 + 2αω2)

} + e2η1+2η2 2
[
a(1 − ν2)

(
β1 + β2 − λ + 4Jk2

1 + 4Jk2
2

) + (1 + ν2)(8aJk1k2 + γH )
]

+ e3η1+2η2 ibν1/2
{
(1 − ν)

[
β1 − β2 − λ + Jk2

1 + 4Jk2
2 − αω1

] + (1 + ν)(4Jk1k2 − 2αω2)
}

− eη1+4η2 ibν3/2
(
β1 − β2 − λ + Jk2

1 + αω1
) − e3η1+4η2 ibν1/2

(
β1 − β2 − λ + Jk2

1 − αω1
) = 0,

(1 + e4η1ν2 + e4η2ν2 + e4η1+4η2 )(−a2μ + λ) + (e2η1 + e2η1+4η2 )ν
(
2a2μ + 2λ − 8Jk2

1 − b2μ
) + e2η1+2η2

×2
[ − (1 − ν2)8Jk1k2 + (1 + ν2)

( − a2μ + λ − 4Jk2
1 − 4Jk2

2

) + νb2μ
] + (e2η2 + e4η1+2η2 )ν

(
2a2μ + 2λ − 8Jk2

2

) = 0.

(A4)

The second equation of (A4) is fulfilled for λ,a,b determined
above and for k1,k2,ν of (7). When H = 0, the first equation of
(A4) is satisfied for these parameters according to [22]. In the
vicinity of the DW centers in a state of well-separated DWs, the
regimes η1 + ln(ν)/2 ≈ 0, eη2+ln(ν)/2 ≈ 0 or η2 + ln(ν)/2 ≈ 0,
eη1+ln(ν)/2 ≈ 0, the system (A4) reproduces (A3); therefore,
the centers of both the DWs counterpropagate with constant
velocities.

APPENDIX B: DERIVATION OF DOUBLE-FRONT
SOLUTION

Looking for the approximate double-front solution (16), I
define an error function as the absolute value of the LHS of
(12) for H = 0,

Err(x,t) ≡ ∣∣f [( − αDt + JD2
x

)
g · f

]
+ g

[( − JD2
x + θ

)
f · f − μθg2

]∣∣. (B1)

Inserting

g = h(eη1 + eη2 + ϕeη1+η2 ),
(B2)

f = ϕ−1 + eη1 + eη2 + ϕeη1+η2 ,

where η1 ≡ k(x − x01) + ckt , η2 ≡ −k(x − x02) + ckt , into
(B1), I take ϕ = θ in order to ensure faster divergence of the
front centers in the limit θ → 0+ than the divergence of the

front widths in this limit. We arrive at

Err(x,t) = |[e3η1+3η2θ4 + (e2η1+3η2 + e3η1+2η2 )3θ3

+ (e3η1+η2 + eη1+3η2 )3θ2 + (e3η1 + e3η2 )θ ]

×b(1 − μb2)+(e2η1 + e2η2 )b(2 − αck/θ − Jk2/θ )

+ e2η1+2η2θ2b(8 − 6μb2 − 2αck/θ )

+ (eη1+2η2 + e2η1+η2 )θb(7 − 3μb2 − 3αck/θ

+ Jk2/θ ) + eη1+η2b(5 − 4αck/θ + 6Jk2/θ )

+ (eη1 + eη2 )θ−1b(1 − αck/θ + Jk2/θ )|. (B3)

For h = 1/
√

μ, k = √
θ/2J , ck = 3θ/(2α), all the

coordinate-x-dependent terms of (B3) vanish, leading to

Err(x,t) = Err(t) ∼ |e2η1+2η2θ2 − 2eη1+η2 |
= |e4ckt−2k(x01−x02)θ2 − 2e2ckt−k(x01−x02)|. (B4)

Before the collision, when the fronts are well separated,
Eq. (12) [equivalent to Err(x,t) = 0] is approximately fulfilled
in the vicinity of the front centers [the regimes η1 + ln(θ ) ≈ 0,
eη2+ln(θ) ≈ 0 or η2 + ln(θ ) ≈ 0, eη1+ln(θ) ≈ 0] as well as in the
area of an unstable phase separating the fronts (eη1+ln(θ) ≈ 0,
eη2+ln(θ) ≈ 0). Then

m′ = 1√
μ

eη1 + eη2 + θeη1+η2

1/θ + eη1 + eη2 + θeη1+η2

=
⎧⎨
⎩

1√
μ

eη1+ln(θ )

1+eη1+ln(θ ) , η1 ∼ −ln(θ ), eη2+ln(θ) ∼ 0,

1√
μ

eη2+ln(θ )

1+eη2+ln(θ ) , η2 ∼ −ln(θ ), eη1+ln(θ) ∼ 0.

(B5)
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Assuming the motion to start at t = 0, and choosing the
reference frame such that x02 = −x01, the front centers are
initially at the points x = ±x1 = ±[x01 − ln(θ )

√
2J/θ ] and

they meet at the point x = 0 after the time t ′ = x1/c. Note
that up to the time t ′′ = t ′ + ln(2)

2ck
, the function Err(t) is

a decreasing one and Err(t ′′) = 0. We conclude that the
approximate solution (16) satisfies well (12) at the beginning
of the motion (at t = 0) and the accuracy of approximating
the solution by the functions (16) increases with time up

to t = t ′′ which corresponds to the moment of finishing the
front collision (the moment when the fronts of the width
1/k finish passing through each other with the relative
velocity 2c).

The application of a similar analysis to the field-induced
collision of DWs below the Bloch-Ising transition, studying
(5a) separately from (5b), does not work. Utilizing the
argumentation (of Sec. II) based on the time-reversal symmetry
is an alternative.
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