
PHYSICAL REVIEW E 83, 056607 (2011)

Externally driven transmission and collisions of domain walls in ferromagnetic wires
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Analytical multidomain solutions to the dynamical (Landau-Lifshitz-Gilbert) equation of a one-dimensional
ferromagnet including an external magnetic field and spin-polarized electric current are found using the Hirota
bilinearization method. A standard approach to solve the Landau-Lifshitz equation (without the Gilbert term) is
modified in order to treat the dissipative dynamics. I establish the relations between the spin interaction parameters
(the constants of exchange, anisotropy, dissipation, external-field intensity, and electric-current intensity) and
the domain-wall parameters (width and velocity) and compare them to the results of the Walker approximation
and micromagnetic simulations. The domain-wall motion driven by a longitudinal external field is analyzed with
especial relevance to the field-induced collision of two domain walls. I determine the result of such a collision
(which is found to be an elastic one) on the domain-wall parameters below and above the Walker breakdown (in
weak- and strong-field regimes). Single-domain-wall dynamics in the presence of an external transverse field is
studied with relevance to the challenge of increasing the domain-wall velocity below the breakdown.
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I. INTRODUCTION

Description of the magnetic-field- and electric-current-
induced motions of domain walls (DWs) in nanowires has
became a hot topic because of novel methods of storing
and switching the (magnetically encoded) binary information.
These proposals offer progress in the miniaturization of
memory and logic elements, utilizing crucial advantages of
magnetic information encoding (when a bit is identified with
a single magnetic domain). Such information is insensitive
to the voltage fluctuations while its maintenance does not
cost any energy, which enables data processing with the
production of a small amount of heat. Currently investigated
random-access memories are built of metallic nanowires,
formed into a parallel-column structure, which store magnetic
domains separated by DWs. Such a three-dimensional (3D)
magnetic system has the potential of storing more information
than devices based on 2D systems, like hard-disk drives
or electronic memories, in a given volume [1,2]. Also, an
interesting concept of logical operation via transmitting mag-
netic DWs through nanowires of specific geometries is being
developed [3,4]. I mention that ferroelectric nanosystems offer
similar capabilities while their basic properties are studied with
the same dynamical (Landau-Lifshitz-Gilbert) equation even
though the effects of electroelastic coupling are strong [5,6].

In order to write and switch information, one can move the
DWs via the application of an external magnetic field (parallel
to the easy axis) or via the application of a voltage which
induces a spin-polarized electric current through the DW. The
directions of the field-driven motion are different for the tail-
to-tail and head-to-head DWs; thus the magnetic field induces
DW collisions, while the direction of the voltage-driven motion
uniquely corresponds to the current direction. Field-driven
motion and current-driven (below the Walker breakdown)
motion are possible due to the magnetic dissipation, and
their description demands inclusion of the Gilbert term into
the Landau-Lifshitz (LL) equation. However, existing many-
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domain analytical solutions to the LL equation do not include
the dissipation [7,8], while approximate solutions using the
Walker ansatz describe a single DW only [9]. Since the
parameters of the DW solutions to the Landau-Lifshitz-Gilbert
(LLG) equation determine accessible values of technological
characteristics (e.g., the minimal domain length, the bit-
switching time, etc.), it is of interest to know the analytic
DW solution to the LLG equation. Knowledge of the many-
domain solution is of importance for preventing unwanted DW
collisions, which can result in an instability of the record, and it
enables verification of DW-collision simulations regardless of
the internal structure or the geometry of the simulated system.

In the present paper, I perform an analytical study of the
dynamics of multidomain systems including the dissipation.
The dynamical LLG system is bilinearized following the
Hirota method of solving nonlinear equations and it is
extended, via doubling the number of freedom degrees and
the number of equations, into a time-reversal-invariant form.
The field solving the extended system contains proper and
virtual (unphysical) dynamical variables and the physical
components of the solution are shown to satisfy the pimary
LLG system in a relevant time regime. In particular, aiming
to analytically describe the field-induced collision, I establish
asymptotic three-domain magnetization profiles (relevant in
the time limits t → ±∞). With connection to the phenomenon
of the Walker breakdown, (a cusp in the dependence of the
DW velocity on the external field and in its dependence on
the current intensity), I modify the LLG model in a way to
make it applicable below the breakdown. I reduce it to a
model of plane rotators. In this weak-field regime, the spin
alignment in the DW area is saturated in a plane while, above
the breakdown (the strong-field regime), the spins rotate about
the magnetic-field axis (the easy axis). These considerations
supplement micromagnetic simulations of the DW collisions
in terms of the studied DW-parameter regimes [10]. Within
the present method, I verify the Walker-ansatz predictions on
the current-driven DW motion above and below the breakdown
(including adiabatic and nonadiabatic parts of the spin-transfer
torque) [11–15], thus showing the applicability of the present
formalism to the field-driven motion of multi-domain systems
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with an additional voltage applied. With relevance to the
challenge of controlling the maximum DW velocity below
the Walker breakdown, we analyze the longitudinal-field-
and current-driven motion of the DWs in the presence of an
additional perpendicular (with respect to the easy axis) field.

A complementary study of the DW collision of magnetic
DWs in the subcritical regime is performed in a separate
paper [16].

In Sec. II, I extend the dissipative equations of motion of
the ferromagnet in such a way as to make equations applicable
to the unlimited range of time t ∈ (−∞,∞). Section III is
devoted to the analysis of its single-and double-DW solutions
in the presence of a magnetic field and electric current. I
study the field-induced collision in detail. The plane-rotator
approach to the DW dynamics is described in Sec. IV. In
Sec. V, consequences of the application of an external field
perpendicular to the easy axis for the DW statics and dynamics
are considered. Conclusions are given in Sec. VI.

II. DYNAMICAL EQUATIONS

The dynamics of the magnetization vector m (|m| = M) in
the one-dimensional ferromagnet is described with the LLG
equation

∂m
∂t

= J

M
m × ∂2m

∂x2
+ γ m × H + β1

M
(m · î)m × î

−β2

M
(m · ĵ )m × ĵ − δ

∂m
∂x

− δβ

M
m × ∂m

∂x

− α

M
m × ∂m

∂t
. (1)

The first term of the right-hand side (RHS) of (1) relates to the
exchange spin interaction while the second term depends on
the external magnetic field H; thus, γ denotes the giromagnetic
factor (up to its sign). The constant β1(2) determines the
strength of the easy axis (plane) anisotropy and î ≡ (1,0,0),
ĵ ≡ (0,1,0). Note that the long axis of the magnetic nanowire
is an easy axis for the majority of real systems; however,

another choice of the anisotropy axes does not influence the
magnetization dynamics. The constant δ is proportional to
the intensity of the electric current through the wire and
δ changes its sign under time-arrow reversal (the inversion
of the electron flow) [17,18]. The nonadiabatic part of the
current-induced torque (which depends on β) is of dissipative
origin; thus, β → 0 with decreasing Gilbert damping constant
α → 0 (one takes α,β � 1). Its inclusion is necessary if one
describes an observed monotonic motion of the DW below
the Walker breakdown [11–14]. Notice that including the
magnetic-dissipation term following the original LL approach
(changing the last term of (1) into −αm × [m × heff], where
heffj = −δH/δmj , and H denotes the Hamiltonian) would
lead to changing the constant β into β − α [13]. Although the
discussion of the relevance of both approaches to the magnetic
dissipation remains open [13,19], I believe the clinching
argument for the Gilbert approach is the expectation for
the proper dissipative term to be dependent on the time
derivative of the dynamical parameter m. In the other case,
the dissipative term could influence static solutions to the LL
equation while one expects the magnetic friction to be kinetic.

Since (1) is valid only when the constraint |m| = M is
satisfied, I intend to write equations of the unconstrained
dynamics equivalent to (1). Introducing the complex dynami-
cal parameters m± = my ± imz, I represent the magnetization
components using a pair of complex functions g(x,t),f (x,t).
This way I reduce the number of independent degrees of
freedom. The relation between the primary and secondary
dynamical variables

m+ = 2M

f ∗/g + g∗/f
, mx = M

f ∗/g − g∗/f
f ∗/g + g∗/f

(2)

[where (·)∗ denotes the complex conjugate (c.c.)] ensures that
|m| = M while there are no constraints on g and f . The
transform (2) enables bilinearization (“trilinearization”) of (1)
following the Hirota method of solving nonlinear equations
[7,8]. In the particular case Hy = Hz = 0, from (1) and (2),
we arrive at the trilinear equations for f and g:

f
[− iDt + JD2

x + δ(β − i)Dx + αDt

]
f ∗ · g + Jg∗D2

xg · g −
(

γHx + β1 + β2

2

)
|f |2g − β2

2
f ∗2g∗ = 0,

(3)

g∗[− iDt − JD2
x + δ(β − i)Dx + αDt

]
f ∗ · g − Jf D2

xf
∗ · f ∗ +

(
−γHx + β1 + β2

2

)
|g|2f ∗ + β2

2
g2f = 0,

where Dt ,Dx denote Hirota operators of differentiation which
are defined by

Dm
t Dn

xb(x,t) · c(x,t)

≡ (∂/∂t − ∂/∂t ′)m(∂/∂x − ∂/∂x ′)nb(x,t)c(x ′,t ′)|x=x
′
,t=t ′ .

The inclusion of the dissipation into the LLG equation
is connected to breaking the symmetry with respect to time
reversal. Therefore, neither (1) nor (3) can describe the mag-
netization evolution on the whole time axis. In particular, the
application of an external magnetic field or current to the DW

system (or creation of a domain in the presence of an external
field) initiates a nonequilibrium process of the DW motion.
Such a motion cannot be present in the distant past (t → −∞)
since a nonzero value of the dissipative function [relevant
to the Gilbert term in (1)] would indicate unlimited growth
of the energy as t → −∞. Thus, solitary-wave solutions to
(1) are relevant only in the limit of large positive values of
time [11,13]. This fact makes impossible an exact analysis of
the DW collisions using (3) and motivates extension of the
dynamical system within a formalism applicable to the whole
length of the time axis.
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I write modified equations of motion using a similar trick
to the one proposed by Bateman with application to the
Lagrangian description of the damped harmonic oscillator
[20]. It is connected to the concept by Lakshmanan and
Nakamura of removing the dissipative term from the evolution
equation of ferromagnets via multiplying the time variable by
a complex constant [21]; however, it demands an improvement
in the spirit of Bateman’s idea [22]. The concept is to extend
the dynamical system, doubling the number of degrees of
freedom and adding equations which differ from the original
ones by the sign of the dissipation constants. The resulting
extended system is symmetric with respect to the time-arrow

reversal; however, its solution consists of physical and virtual
fields. Let me mention that different quantum dissipative
formalisms (nonequilibrium Green functions, thermofield
dynamics, rigged Hilbert space) are based on Bateman’s trick
[23].

I extend the system of secondary dynamical equations (3)
since it describes unconstrained dynamics unlike the primary
LLG equation (1). We replace g, g∗, f , and f ∗ in (3) with
fields of the corresponding set g1, g∗

2 , f2, and f ∗
1 and of the

set of their c.c.s. For α,β = 0, in the absence of dissipation,
g1 = g2 = g, f1 = f2 = f . For the case Hy = Hz = 0, the
secondary dynamical equations transform into

f2
[− iDt + JD2

x + δ(β − i)Dx + αDt

]
f ∗

1 · g1 + Jg∗
2D

2
xg1 · g1 −

(
γHx + β1 + β2

2

)
f2f

∗
1 g1 − β2

2
f ∗

2 f ∗
1 g∗

1 = 0,

(4)

g∗
2

[− iDt − JD2
x + δ(β − i)Dx + αDt

]
f ∗

1 · g1 − Jf2D
2
xf

∗
1 · f ∗

1 +
(

−γHx + β1 + β2

2

)
g∗

2g1f
∗
1 + β2

2
g2g1f1 = 0.

In writing (4), I have replaced the last terms on the LHS of (3) in such a way as to be linear in g
(∗)
2 ,f (∗)

2 , which ensures that they
vanish (diverge) with time in the presence of Hx 	= 0 with similar damping (exploding) rates as all other terms of these equations
(in particular, their damping does not modify the anisotropy). The additional equations of the dynamical system differ from (4)
by the sign of the dissipation constants α,β:

f1
[− iDt + JD2

x + δ(−β − i)Dx − αDt

]
f ∗

2 · g2 + Jg∗
1D

2
xg2 · g2 −

(
γHx + β1 + β2

2

)
f1f

∗
2 g2 − β2

2
f ∗

1 f ∗
2 g∗

2 = 0,

(5)

g∗
1

[− iDt − JD2
x + δ(−β − i)Dx − αDt

]
f ∗

2 · g2 − Jf1D
2
xf

∗
2 · f ∗

2 +
(

−γHx + β1 + β2

2

)
g∗

1g2f
∗
2 + β2

2
g1g2f2 = 0.

Though the previous dynamical variables g(f ) and g∗(f ∗)
were mutually independent, they had to be c.c.s. of each other
in order that the system of equations (3) and their c.c.s. was
closed. In the system of eight equations (4) and (5) and their
c.c.s. g1(f1) is not a c.c. of g2(f2), while, comparing (4) and
(5), one sees that g2(x,t) [f2(x,t)] can be obtained from g1(x,t)
[f1(x,t)] via changing the sign of its parameters α,β.

Under the time-arrow inversion, the system of equations
obtained transforms into itself if one accompanies this op-
eration by the transform of the dynamical variables g1(2) →
f2(1), f1(2) → −g2(1). The equations (4) and their c.c.s, which
determine the magnetization dynamics for large positive values
of time (in particular, for t → ∞), contain the differentials of
the functions g1, g∗

1 , f1, and f ∗
1 . Therefore, the magnetization

vector should be expressed with these functions in the relevant
time regime. Writing the magnetization in the form

m+ = 2M

f ∗
1 /g1 + g∗

1/f1
, mx = M

f ∗
1 /g1 − g∗

1/f1

f ∗
1 /g1 + g∗

1/f1
(6)

ensures that their components satisfy |m| = M , mx = m∗
x , and

they reproduce (2) for α = β = 0. In the regime of large
negative values of time, in particular, for t → −∞, we can
analyze the evolution of the magnetization with the reversed

time arrow. It is described with the reversed magnetization
vector

m̃+ = − 2M

f ∗
2 /g2 + g∗

2/f2
, m̃x = −M

f ∗
2 /g2 − g∗

2/f2

f ∗
2 /g2 + g∗

2/f2
. (7)

III. DOMAIN-WALL MOTION

Let us analyze the multidomain solutions to (4) and (5)
in the absence of any external magnetic field, H = 0. We
search for solutions which describe a single DW and two
DWs in the forms f ∗

1 = 1, g1 = w1e
k1x−l1t , and f ∗

1 = 1 +
v∗ek1x−l1t ek2x−l2t , g1 = w1e

k1x−l1t + w2e
k2x−l2t , respectively,

where kj = Re(kj ), and sgn(k1) = −sgn(k2). Inserting these
Ansätze into (4) and (5), one finds

lj = 1

1 + iα

{ −
√

−(
Jk2

j − β1
)[

Jk2
j − (β1 + β2)

]
+ δ(1 + iβ)kj

}
,

(8)

kj =
√

β1 + β2(wj + w∗
j )2/(4|wj |2)

J
.

The single-wall (two-domain) solutions with |k1| ∈
(
√

β1/J ,
√

(β1 + β2)/J ) describe moving solitary waves
(topological solitons), [7,24]. One sees the correspondence
between the wall width and the spin deviation from the easy
plane in the dependence of kj on wj . When δ = 0, static
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two-domain solutions represent the Bloch DW (|k1| = √
β1/J ,

w1 = −w∗
1) or Néel DW (|k1| = √

(β1 + β2)/J , w1 = w∗
1),

respectively (the nomenclature of [24] which differs from Neel
and Bloch wall definition of e.g. [26]). These two solutions
correspond to the ones found in [25,27] within the XY model.
The DW profiles can be described with the functions

m+(x,t) = M
w1e

−iIml1t

|w1| sech[k1x − Rel1t + ln|w1|],
(9)

mx(x,t) = −Mtanh[k1x − Rel1t + ln|w1|]
(k1 > 0 relates to the head-to-head structure and k1 < 0 to
the tail-to-tail structure). At the time points of the discrete set
t = πn/Iml1, n = 0, ± 1, ± 2, . . . , one finds g1 = g2 = g,
f1 = f2 = f and (4) coincides with (3). Therefore, (9) is a
solitary-wave solution to (1) (in particular, it coincides with
the one representing a Bloch or a Néel DW for δ 	= 0 [12]).
Throughout the paper, I focus my attention on the externally
driven dynamics of the Bloch and Néel DWs, since these
initially static structures are the most important with relevance
to magnetic data storage.

I establish that static double-wall (three-domain) solutions
to the LLG equation cannot be written with the above Hirota
expansion when k1 = −k2. In this case the coefficient v,

v = − β2Jk2
1w

∗
1w

∗
2(

Jk2
1 − β1

)(
Jk2

1 − β1 − β2
) , (10)

diverges with |k1| → √
β1/J or |k1| → √

(β1 + β2)/J . Anal-
ogously to the XY model, the Hirota expansion is inapplicable
to static three-domain configurations of the Bloch or Néel
walls, while there exists a static solution to (4) and (5) which
describes a pair of different-type (Néel and Bloch) walls [28].
In particular, for k1 = √

β1/J , k2 = −√
(β1 + β2)/J , and

w1 = −w∗
1 , w2 = w∗

2 , one finds

v = − β2w1w2

2β1 + β2 − 2
√

β1(β1 + β2)
. (11)

Let me emphasize that I have not excluded the coexistence of
a pair of Néel or Bloch walls in a magnetic wire. However,
the overlap of both the topological solitons induces their
interaction which leads to an instability of their parameters and,
unlike for nontopological solitons, is not a temporal one [29].

Solving (4) and (5) in the presence of a longitudinal
magnetic field Hx 	= 0, we apply the Ansatz

f ∗
1 = (1 + v∗ek1x−l1t ek2x−l2t )eγHxt/(−2i+2α),

(12)
g1 = (w1e

k1x−l1t + w2e
k2x−l2t )e−γHxt/(−2i+2α)

at the discrete time points t = tn ≡ 4πn(1 + α2)/(γHx),
where n = 0, ± 1, ± 2 . . . (let δ = 0 for simplicity). Behind
these time points, in the presence of the longitudinal field, the
last terms on the LHS of (4) and (5) change faster (they oscillate
with a three times higher frequency) than the other ones.
Therefore, taking the above Ansatz, we apply an approach
similar to the rotating wave approximation in quantum optics.
Since this Ansatz describes the spin structure rotation about
the x axis, it is applicable when the external field exceeds
the Walker-breakdown critical value, |Hx | > HW . From the

single-wall solution (the case of w2 = 0 or w1 = 0) for
k1 = √

β1/J , k2 = −√
(β1 + β2)/J , I establish that applying

the magnetic field in the easy-axis direction drives the DW
motion with the velocity

c1(2) = γ |Hx |α/[|k1(2)|(1 + α2)]. (13)

Correspondingly, for Hx = 0, applying the electric current
through the initially static wall drives it to move with the
velocity

c = δ(1 + αβ)

1 + α2
(14)

which is independent of the DW width.
The essential difference between the two kinds of driven

motion emerges from the analysis of the three-domain solu-
tions. Under the external field, the two consecutive DWs move
in opposite directions. The walls which are closing up to each
other collide and eventually they can annihilate or wander
away from each other. The application of an electric current
along the magnetic wire drives both the DWs to move in the
same direction with the same velocity. Analyzing the long-time
limits of the magnetization vector in different regions of the
coordinate x, I establish the consequences of the field-induced
collision of the complex of a Bloch DW interacting with a
Néel DW. We use the Ansatz (12) and assume δ = 0.

Let ηj ≡ kj (x − x0j ) − γHxαt/(1 + α2), η̃j ≡ kj (x −
x0j ) + γHxαt/(1 + α2). For Hx > 0, at t = tn (within the
above rotating wave approximation), we find the distant-future
limit of the magnetization (6):

m+ ≈
{

m
(1)
+ , η2 � η1 ∼ 0,

m
(2)
+ , η1 � η2 ∼ 0,

= lim
t→∞ m+,

(15)

mx ≈
{
m(1)

x , η2 � η1 ∼ 0,

m(2)
x , η1 � η2 ∼ 0,

= lim
t→∞ mx,

where

m
(j )
+ = 2M

v/w∗
j e

η̃k e−iγHx t/(1+α2)

1 + |v|2/|wj |2e2η̃k
,

(16)

m(j )
x = −M

1 − |v|2/|wj |2e2η̃k

1 + |v|2/|wj |2e2η̃k
,

and j 	= k. Identifying the parameters x0j with the DW-center
positions, I introduce the restriction on wj , |v|/|wj | = 1. Note
that m

(1)
+ ,m(1)

x as well as m
(2)
+ ,m(2)

x are the Walker single-DW
solutions to the primary LLG equation, which describe the
motion of well-separated DWs [9,30]. Thus, our three-domain
profiles of the fields (6) tend to satisfy (1) in the limit t →
∞ according to the requirement formulated in the previous
section.

In the distant-past limit, I describe the magnetization
evolution with the reversed time arrow. Following (7),

m̃+ ≈
{

m̃
(1)
+ , η̃1 � η̃2 ∼ 0,

m̃
(2)
+ , η̃2 � η̃1 ∼ 0,

= lim
t→−∞ m̃+,

(17)

m̃x ≈
{
m̃(1)

x , η̃1 � η̃2 ∼ 0,

m̃(2)
x , η̃2 � η̃1 ∼ 0,

= lim
t→−∞ m̃x,
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where

m̃
(j )
+ = −2M

v/w∗
k e

ηj e−iγHx t/(1+α2)

1 + |v|2/|wk|2e2ηj
,

(18)

m̃(j )
x = M

1 − |v|2/|wk|2e2ηj

1 + |v|2/|wk|2e2ηj
,

and j 	= k. In order to consider the collision of a pair of
DWs which are infinitely distant from each other at the
beginning of their evolution, I determine the magnetization
dynamics in the limit t → −∞. For this aim, one has to
invert the propagation direction of the kinks of m̃ and
to reverse the arrowhead of the field vector m̃. Utilizing
the properties m̃

(j )
+ (x + x0k,0) = m̃

(j )
+ (−x + x0k,0), m̃

(j )
x (x +

x0k,0) = −m̃
(j )
x (−x + x0k,0), I arrive at

m+(x,t) =
{

−m̃
(1)
+ (−x + 2x01,t), η1  η2 ∼ 0,

−m̃
(2)
+ (−x + 2x02,t), η2  η1 ∼ 0,

(19)

mx(x,t) =
{
m̃(1)

x (−x + 2x01,t), η1  η2 ∼ 0,

m̃(2)
x (−x + 2x02,t), η2  η1 ∼ 0.

The applicability of the above procedure to study the asymp-
totic evolution of a single DW is easy to verify since any
single-DW solution satisfies

m+(x,t) = −m̃+(−x + 2x01,t),
(20)

mx(x,t) = −m̃x(−x + 2x01,t).

Typically, one should consider the formulas (15) and (19)
with relevance to the case β1  β2, and thus k1 ≈ −k2,
which corresponds to commonly studied crystalline magnetic
nanowires, e.g., for Fe and FePt, β2/β1 ∼ 10−1 [31]. For
noncrystalline (Permalloy) nanowires Fe1−xNix deposited
on a crystalline substrate, the easy-axis anisotropy constant
determined from uniform-resonance measurements was found
to be, unexpectedly, as big as in the crystalline nanowires [32].
Therefore, even when neglecting structural effects in real
systems, which lead to the saturation of the spin alignment in

the DW area to the easy or hard plane (the Walker breakdown),
thus suppressing their spontaneous motion, the spectrum of
spontaneously propagating DWs in nanowires will be very
narrow and their velocities very small.

According to (15) and (19), two initially closing up DWs
have to diverge after the collision. If one of the colliding
DWs was initially, for t → −∞, described with the field
ingredient m̃(j )

+ ,m̃(j )
x , it is finally, for t → ∞, described with the

field ingredient m(j )
+ ,m(j )

x . Therefore, reflecting DWs exchange
their parameters x01 ↔ x02, w1 ↔ w2, k1 ↔ −k2. This is
connected to exchanging the directions of the spin orientation
in the yz plane in the wall areas (after the collision the Néel
wall changes it into the Bloch wall and vice versa as shown in
Fig. 1). My prediction corresponds to the result of the collision
analysis performed for spontaneously propagating DWs (in
the absence of external field, electric current, and dissipation).
According to findings of [24,33], the DWs reflect during the
collision in such a way that one can say they pass through each
other without changing their widths and velocities; however,
they do change their character from the head-to-head to the
tail-to-tail one, and vice versa.

Up to now, I have considered systems of infinite domains
whose energy cannot be defined. However, the smaller a
domain is the bigger percentage of the Zeeman part of
its energy is lost per time unit due to the DW motion.
The condition of domain-energy minimization determines the
direction of this motion. The domains aligned parallel to the
external field grow while the domains aligned antiparallely to
the field diminish. Any DW reflection induces a motion which
contradicts this rule. Such a motion has to be decelerated and,
eventually, it has to be suppressed when the decrease of the DW
interaction energy equals the increase of the Zeeman energy.
The outcome of a many-collision process in a finite-size system
is the appearance of a 1D magnetic-bubble structure similar
to the widely known 2D bubble structures [34]. The bubble
size and concentration depend on the magnetic-field intensity.
Each bubble is ended with a Néel DW at one of its sides

m

mz

y

x

t=0

t= t

t=2 t

t=3 t

v2

v1

mx

x

t=0

t= t

t=2 t

t=3 t

v1

v2

v2

v2

v1

v1

v1

v1 v1

v1

v2

v2

v2

v2

FIG. 1. The magnetization dynamics of a system of one Néel and one Bloch DW in a longitudinal field above the Walker breakdown. Their
reflection takes place in the time region (	t,2	t) and it is accompanied by a change of the Bloch wall (of velocity v2) into the Néel wall (of
velocity v1) and vice versa. Since |Hx | > HW , the spin structure monotonically rotates about the x axis.
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and with a Bloch DW at the other. Some analogy with a
complex boundary of hard (quasi-2D) magnetic bubbles can be
noticed since such a border contains alternating Néel and Bloch
points in its structure [35]. Let me mention that interesting
concepts of storing and transforming binary information were
developed several decades ago with relevance to 2D magnetic
bubble systems, although they were abandoned because of
technological problems of the time [36].

Numerical analyses of the field-induced DW collision
(micromagnetic studies) have been performed with relevance
to flattened nanowires (quasi-1D nanostripes) below and
just above the Walker breakdown using the dissipative LL
equation [10]. The systems below threshold correspond to
the plane-rotator model studied in Sec. IV, while the systems
above threshold are qualitatively described with the present
model. The mentioned simulations focus on the collisions of
similar-type (Néel or Bloch) DWs, neglecting the anisotropy.
They predicted mutual annihilation or reflection of the walls
depending on the (parallel or antiparallel) spin alignments
in both the DW centers. This result is partially supported
by a perturbation analysis of Bloch-wall interactions within
the XY model which showed that such DWs repel or attract
each other depending on their chiralities [29]. The method of
the present study cannot be applied to these collisions since
one is unable to determine either the double-Néel- or double-
Bloch-wall analytical solutions to the dynamical equations.
However, except in the case of periodically distributed DWs,
multi-Bloch or multi-Néel structures are unstable because
of unbalanced DW interactions; thus, they seem to be less
suitable for information-storing purposes than the Néel-Bloch
DW structures. To the best of the author’s knowledge, the
field-induced collision of the Néel DW with the Bloch DW
has not been simulated.

IV. PLANE-ROTATOR MODEL

In order to describe the DW dynamics below the Walker
breakdown, I consider a system of plane rotators. Let me
reduce the primary (LLG) dynamical system to its single
component. Saturating the magnetization dynamics to the easy
plane (my = 0), I neglect the spin rotation about the x and
z axes since the relevant torque components are equal to zero.
For H = (Hx,0,0), inserting

mx = M
1 − a2

1

1 + a2
1

, my = 0, mz = 2M
a1

1 + a2
1

(21)

(where a1 takes real values) into the y component of (1), one
arrives at a nonlinear diffusion equation,(

−α
∂a1

∂t
− γHxa1 − δβ

∂a1

∂x
+ J

∂2a1

∂x2

) (
1 + a2

1

)

−2Ja1

(
∂a1

∂x

)2

− β1a1
(
1 − a2

1

) = 0. (22)

I use another Ansatz describing the dynamics constrained to
the xy plane (a hard plane),

mx = M
1 − a2

2

1 + a2
2

, my = 2M
a2

1 + a2
2

, mz = 0. (23)

Then, I insert it into the z component of (1) and arrive at(
−α

∂a2

∂t
− γHxa2 − δβ

∂a2

∂x
+ J

∂2a2

∂x2

) (
1 + a2

2

)

−2Ja2

(
∂a2

∂x

)2

− (β1 + β2)a2
(
1 − a2

2

) = 0, (24)

which differs from (22) by a constant at the anisotropy term.
With relevance to the case δ = 0, one finds the two-domain
solution

a1(2) = wek1(2)x−γHxt/α,
(25)

|k1| =
√

β1

J
, |k2| =

√
β1 + β2

J
,

which correspond to the Bloch (Néel) DW. When Hx 	= 0, the
DW propagates with the velocity

c1(2) = γ |Hx |
|k1(2)|α . (26)

The applicability of the plane-rotator model is limited by the
Walker-breakdown condition. The magnetic field |Hx | cannot
exceed a critical value HW [see Fig. 2(a)] which corresponds
to the spin deviation from the basic magnetization plane (a
canting) at the center of the DW about a limit angle equal to or
smaller than π/4. I estimate an upper limit of the Walker
critical field by considering the x component of the LLG
equation at the DW center

∂mx

∂t

∣∣∣∣
x=x01(2)

≈
[

β2

M
mymz − δ

∂mx

∂x

] ∣∣∣∣
x=x01(2)

, (27)

where x01(2) ≡ −ln(w)/k1(2). Let ϕ denotes the angle of the
spin deviation (canting) at the DW center. Inserting (21) and
transforming mymz → m2

z sin(ϕ) cos(ϕ) in (27) or inserting
(23) and transforming mzmy → m2

y sin(ϕ) cos(ϕ) in (27), one
arrives at

∂a1(2)

∂t
= β2

2
sin(2ϕ)a1(2) − δ

∂a1(2)

∂x
(28)

|H |

c

HW

1(2)

x

c

W

(a) (b)

FIG. 2. (a) A scheme of the longitudinal-field dependence of the
DW velocity for wires with single-axis anisotropy (solid line) and
double-axis anisotropy (dashed line). (b) A scheme of the current-
intensity dependence of the DW velocity for wires with single-axis
anisotropy (solid line) and double-axis anisotropy; β > α (dashed
line), β < α (dotted line), β = 0 (dash-dotted line).
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and finally, assuming |ϕ| � π/4, at

|Hx | � HW � maxHW ≡ αβ2

2γ
+ αδ

γ
|k2|. (29)

This expression corresponds to the one given in [30,37,38].
However, notice that, for typical nanowires whose width-to-
thickness ratio is bigger than 20 (double-atomic or triple-
atomic layers of submicrometer width), in measuring HW ,
one has estimated the canting angle to take a value of a few
degrees at most [14,30,39].

For H = 0, δ 	= 0, the two-domain solution to (22)–(24)
takes the form

a1(2) = wek1(2)(x−δβt/α),

|k1| =
√

β1

J
, |k2| =

√
β1 + β2

J
. (30)

It is seen that only the nonadiabatic part of the spin-transfer
torque contributes to (22), (24) since the current-dependent
term is proportional to β. From (28), the current-induced
Walker breakdown corresponds to the critical current intensity

δW � β2/[2|k1|(1 + β/α)] (31)

if Hx = 0 [see Fig. 2(b)]. It has been observed that HW

and δW decrease with decreasing nanowire width-to-thickness
ratio [39,40], because this ratio determines the strength of
the easy-plane anisotropy while HW,δW → 0 with β2 → 0
[41]. Notice that analytical calculations using the 2D XY
model, experimental observations, and simulations of the spin
ordering in nanostripes show this ordering to vary along the
cross section width of the nanostripe in the DW area, thus
revealing a complex topological structure [10,42]. Therefore,
in terms of the application to nanostripes, my plane-rotator
description is valid for a qualitative analysis of the DW
dynamics at most.

Neither finding nonstationary double-Bloch nor double-
Néel solutions in the form of the Hirota expansion (including
its second order) does not manage. In particular, insertion of

a1(2) = w1e
k1(2)x + w2e

k
′
1(2)x

1 + v1(2)e
k1(2)x+k

′
1(2)x

e−γHxt/α (32)

into (22), (24), for k1 = −k
′
1 = ±√

β1/J , k2 = −k
′
2 =

±√
(β1 + β2)/J , leads to the divergence of v1(2) as follows

from the approach of Sec. III. In order to describe the collision
of Bloch and Néel walls below the Walker breakdown,
I propose to apply an effective 1D model assuming the
magnetization precession to be overdamped, and thus, taking
the LHS of (1) to be equal to zero. Inclusion of the constraint
|m| = M leads to the modified (by neglecting the first terms
on the LHS) system (4) and (5). Solving it, I predict the
field-induced DW collision below the Walker breakdown to
result in their reflection similar to the one described in Sec. III.
The reflection is accompanied by the change of the Bloch wall
into the Néel wall and vice versa. Let us emphasize that there
is no spontaneous DW motion below the Walker breakdown
when magnetostatic effects are neglected [43].

The technological challenge of increasing the DW speed
is especially important below the Walker breakdown, where
the driving field is relatively weak. Referring to this purpose, I
mention an attempt utilizing an increase of the nanostripe-edge
roughness, and thus an increase of the damping constant α [44].
This approach fails since, according to simulations of [39], the
maximum of the field-induced DW velocity is insensitive to
α below the breakdown. It is because c1(2) ∝ α−1|Hx | while
|Hx | � HW ∝ α. On the other hand, since β grows with α (the
nonadiabatic part of the spin-transfer torque is of dissipative
origin), the velocity of the current-induced DW motion,

c = δβ/α, (33)

can be insensitive to the increase of the nanostripe-edge
roughness as well. The reported DW-velocity increase due to
the nanostripe-edge roughness has been attributed to a decrease
of its effective cross-section width. Another attempt utilized an
increase of HW due to the increase of the anisotropy constant
β2. This was done via nanowire deposition on a specific
crystalline substrate [45]. However, the most efficient method
of influencing the maximum DW velocity below the Walker
breakdown is the application of the transverse magnetic field,
which is considered in the next section [46].

V. DOMAIN WALL IN PERPENDICULAR
TO EASY-AXIS FIELD

Let me define H± ≡ Hy ± iHz. For Hx = 0, we search for a
two-domain solution to (1) using a different multilinearization
than used in the previous sections:

f2
[ − iDt + JD2

x + δ(β − i)Dx + αDt

]
f ∗

1 · g1 + γH+
2

f ∗
1

(
f ∗

1 f2 + g∗
2g1

) −
(

β1 + β2

2

)
f2f

∗
1 g1 − β2

2
f ∗2

1 g∗
2 = 0,

g∗
2

[ − iDt − JD2
x + δ(β − i)Dx + αDt

]
f ∗

1 · g1 − γH−
2

g1
(
f ∗

1 f2 + g∗
2g1

) +
(

β1 + β2

2

)
g∗

2g1f
∗
1 + β2

2
g2

1f2 = 0, (34)

f2g1D
2
xf

∗
1 · f ∗

1 − f ∗
1 g∗

2D
2
xg1 · g1 = 0.
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Let us focus our attention on the case α,β,δ = 0 for simplicity.
Then one has f1 = f2 = f , g1 = g2 = g, while in the general
case the relations (6), (7) apply. I analyze the two cases of
the external-field direction; the one parallel to the easy plane
H+ = iHz, and the one perpendicular to the easy plane H+ =
Hy .

In the case of H+ = iHz, I apply the Ansatz

f ∗
1 = f2 = q1 + s1e

k1x−l1t ,

g1 = −g∗
2 = i(s1 + q1e

k1x−l1t ), (35)

where k1, q1, and s1 denote real constants, (the parameter l1 can
take complex values when α 	= 0). The solution in the form
(35) describes the wall between two domains whose spins are
deviated from the easy axis onto the external-field direction
about an angle which grows with |H+|. Inserting this Ansatz
into (34), one finds

s1 =
β1 −

√
β2

1 − γ 2H 2
z

γHz

q1. (36)

Considering the solutions which are static in the absence of
the electric current, l1 = 0 for δ = 0, one arrives at

|k1| =
√

β2
1 − γ 2H 2

z

β1J
. (37)

In the case of H+ = Hy , the Ansatz relating to the deviation
of the domain magnetization from the easy axis onto the
external-field direction takes the form

f ∗
1 = f2 = q2 + s2e

k2x−l2t ,

g1 = g∗
2 = s2 + q2e

k2x−l2t (38)

with real k2,q2,s2. From (34), I find

s2 =
β1 + β2 −

√
(β1 + β2)2 − γ 2H 2

y

γHy

q2. (39)

The static solutions correspond to

|k2| =
√

(β1 + β2)2 − γ 2H 2
y

(β1 + β2)J
. (40)

The transverse external field does not drive the DW motion
even in the presence of the magnetic dissipation (α 	= 0). When
the current through the wire and the dissipation are applied,
under the transverse magnetic field, the DW moves with the
velocity c given by (14), which is independent of the value of
this field. Then the solution to (34) satisfies the bilinearized
LLG system [Eqs. (3) with additional H+-dependent terms] at
the time points of the discrete set t = πn/Iml1, where n =
0, ± 1, ± 2, . . . , since f1 = f2 = f , g1 = g2 = g at these
points. Including a longitudinal component of the magnetic
field Hx , additional to H+, drives the DW motion. For the
realistic case HW ∼ |Hx | < |H+| � |β1/γ |, neglecting small
contributions to the Hx-dependent part of the torque, one finds
the velocity of such a DW propagation (13) or (26) above and
below the Walker breakdown, respectively, with |k1(2)| given
by (37) and (40). This velocity nonlinearly increases with |H+|

[47]. Searching for c1(2), in the case |Hx | < HW , additionally,
I have taken the LHS of (1) equal to zero as discussed in
Sec. IV. The manipulation of c1(2) via the application of the
transverse magnetic field is potentially useful for speeding
up the processing with a magnetically encoded information. I
also note that the transverse-field dependence of |k1(2)| enables
influencing the magnitude of the critical current of the Walker
breakdown δW , following (31).

VI. CONCLUSIONS

I have analytically studied the DW dynamics in the
presence of an external magnetic field and an electric current
along a magnetic wire within the LLG approach. It has
required overcoming the difficulty arising from breaking
the time-reversal symmetry by inclusion of the magnetic
dissipation. I removed this asymmetry of the dynamical
system by introducing additional (virtual) dynamical variables,
which is a similar trick to the Lagrangian approach to
the damped harmonic oscillator. Determining the connection
of the additional dynamical variables to the evolution of
the magnetization vector in specific ranges of time, I have
analyzed the dynamics of a single DW and of a pair of
DWs.

The magnetic-field-induced velocities of the DWs, the
formulas (13) and (26), and the current-induced velocities
(14) and (33) are found to correspond to those of the Walker
approach above and below the breakdown, respectively.
According to [28], static three-domain solutions to the 1D
LLG equation describe pairs of Néel and Bloch walls. For the
purposes of the qualitative dynamics analysis of a number
of DWs below the Walker breakdown, especially of the
Néel-Bloch pairs, I have proposed a dynamical equation which
differs from the LLG one by neglecting the LHS in (1).
Below and above the breakdown, the neighboring Néel and
Bloch walls move in the presence of a longitudinal external
field in opposite directions. Their collision results in the DW
reflection accompanied by the reorientation of the Néel wall
into the Bloch wall and vice versa. In other words, the DWs
pass through each other without changing their widths and
velocities; however, the head-to-head DW structure changes
into the tail-to-tail one and vice versa.

The present method is useful for the analysis of two-domain
systems under a transverse (with respect to the easy axis)
external field, which enables a verification of numerical and
experimental results [46–48]. A reorientation of the magnetic
domains due to the transverse field induces a widening of
the DW area whose width diverges when the field intensity
approaches the coercivity value. The consequence of the
transverse-field application is an increase of the DW mobility
(the ratio c1(2)/|Hx |) and an increase of the critical current (a
shift of the current-driven Walker breakdown).
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