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Quantized representation of some nonlinear integrable evolution equations on the soliton sector
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The Hirota algorithm for solving several integrable nonlinear evolution equations is suggestive of a simple
construction of a quantized representation of these equations and their soliton solutions over a Fock space of
bosons or of fermions. The classical nonlinear wave equation becomes a nonlinear equation for an operator. The
solution of this equation is constructed through an operator analog of the Hirota transformation. The classical
N-soliton solution is the expectation value of the solution operator in an N-particle state in the Fock space. The
effect of perturbations that modify soliton identity is demonstrated.
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I. INTRODUCTION

The issue of the extension of quantum mechanics to
a nonlinear variety is decades old [1–4]. A subset of the
discussion of this topic has evolved in the form of many
attempts at rigorous quantization of integrable nonlinear
evolution equations, involving powerful tools from canonical
procedures, to inverse scattering and symmetry groups (see,
e.g., [5–25]). The purpose of this paper is to propose that a
simple way exists for obtaining a quantized representation
for a family of equations over the soliton sector, when
the solution for these equations can be constructed through
Forsyth-Hopf-Cole [26–28]-Hirota [29]-type transformations.
In the representation discussed here, the coordinates, t and x
are mere parameters.

As an example, consider the Korteweg–de Vries (KdV)
equation [30],

ut = 6 u ux + uxxx. (1)

Whereas the structure of the single-soliton solutions of
Eq. (1) is simple, the structure of its multiple-soliton solution is
rather cumbersome. However, using the Hirota algorithm [29]
for u(t,x),

u (t, x) = 2 ∂2
x ln [f (t, x)] , (2)

the function f (t,x) may be given a simple physical interpreta-
tion. For an N-soliton solution, with soliton wave numbers
ki 1 � i � N, all different from one another, it is given
by

f (t, x) = 1 +
N∑

i=1

ϕ (ki ; t, x) +
N∑

n=2

( ∑
1�i1<···<in�N

{
n∏

j=1

ϕ
(
kij ; t, x

) ∏
il<im

V
(
kil , kim

)})

(
ϕ (k; t, x) = e2 k (x + v(k) t), v (k) = 4 k2, V (k1, k2) =

(
k1 − k2

k1 + k2

)2)
. (3)

As one has V
(
k,k′) � 1, f(t,x) is bounded by

f (t, x) � 1 +
N∑

n=1

1

n!

(
N∑

i=1

ϕ (ki ; t, x)

)n

� e
(

N∑
i=1

ϕ(ki ; t, x))
.

(4)

Equation (3) looks like a sum of Feynman diagrams con-
taining single- and multiparticle contributions of all possible
subsets of n � N of the particles. The functions ϕ(ki ;t,x) may
be viewed as real “plane waves,” and V

(
k,k′) may be viewed

as a “two-particle coupling coefficient.”

II. QUANTIZED REPRESENTATION OF KdV EQUATION

With this observation in mind, it is suggestive of the
following simple quantized representation of the solution of
Eq. (1) over a Fock space of bosons or of fermions, with
creation and annihilation operators ak

† and ak , respectively,
and number operators Nk , defined by

Nk = a
†
kak,

⎛
⎝[ak, a

†
k′ ] = δ(k − k′) (Bosons)

{ak, a
†
k′ } = δ(k − k′) (Fermions)

⎞
⎠ . (5)

In Eq. (5), [,] stands for the commutator, and {,} for the
anticommutator.

Consider the following operator:

F (t, x) = 1 +
∫ ∞

0
ϕ (k; t, x) Nk dk

+
∞∑

n=2

1

n!

∫ ∞

0

∫ ∞

0
· · ·

∫ ∞

0

{(
n∏

i=1

ϕ (ki ; t, x) Nki

)

×
( ∏

1�l<m�n

V (kl, km)

)}
dk1 dk2 · · · dkn. (6)

As V (kl,km) � 1, integration down to k = 0 does not pose
any problem. To improve the convergence properties of the
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integrals one may multiply ϕ(k;t,x) by a function of k that falls
off sufficiently fast as k → ∞, e.g.,

ϕ (k; t, x) → ϕ (k; t, x) e−α k4
(α > 0) . (7)

This amounts to a mere phase shift in the trajectory of
a soliton. For any state with a finite number of particles, the
matrix element of the operator F(t,x) is a finite sum of bounded
terms. Hence after calculating matrix elements one may set α

to zero.
As V (k,k′) � 1, a majorant to the operator F(t,x) is the

following operator, the matrix elements of which in states
with a finite number of particles are the upper bounds in
Eq. (4):

M = e
∫ ∞

0 ϕ(k; t, x) Nk dk. (8)

Denoting a state with r particles with a given wave number
q by |{q, r}〉 (for fermions, obviously, only r = 1 is possible),
the matrix element of F(t,x) in a single-particle state is

〈{q, 1} |F (t, x)| {q, 1}〉 = 1 + ϕ (q; t, x) . (9)

Equation (9) is identical to the expression for f(t,x) of
Eq. (2), when u(t,x) is a single-soliton solution of Eq. (1) [29].
Similarly, the matrix element in a state of two particles with
different wave numbers is identical to the expression for f(t,x)
when u(t,x) is a two-soliton solution:

〈{q1, 1} , {q2, 1} |F (t, x)| {q1, 1} , {q2, 1}〉
= 1 + ϕ (q1; t, x) + ϕ (q2; t, x)

+ϕ (q1; t, x) ϕ (q2; t, x) V (q1, q2) . (10)

Extension to N > 2 is straightforward: 〈{q1, 1}, . . . ,{qN, 1}
|F (t, x)| {q1, 1}, . . . ,{qN, 1}〉, with qi �= qj (1 � i, j � N,
i �= j), is the expression for f(t,x) corresponding to an N-soliton
solution of Eq. (1).

If the particles are bosons, then a given momentum state
may be occupied by more than one particle. A matrix element
in a state, in which a given wave number is occupied by several
bosons, yields a soliton solution with a simple phase shift. For
example, the matrix element

〈{q, nq} |F (t, x)| {q, nq}〉
= 1 + nqϕ (q; t, x)

= 1 + ϕ (q; t, x + δ) {δ = ln[nq]/(2q)} (11)

is equal to f(t,x) for a single-soliton solution with a phase shift
δ in the soliton trajectory. The same applies to a state with
several distinct wave numbers. For every wave number that is
occupied by more than one boson, the corresponding soliton
is subjected to a similar phase shift.

The fact that the expression for f(t,x) in the classical case
is obtained as the expectation value of a quantum-mechanical
operator leads directly to an operator version of Eq. (1). To
this end, consider the operator analog of Eq. (2):

U (t, x) = 2∂x[F (t, x)x F (t, x)−1]. (12)

As F(t,x) is a diagonal operator, the order of multiplication
in Eq. (12) is unimportant, and U(t,x) obeys Eq. (1) on any

state with a finite number of particles. Finally, the N-soliton
solution of Eq. (1) is equal to the expectation value

u (t, x) = 〈{q1,1} , . . . , {qN,1}|U (t, x)|{q1, 1} , . . . , {qN, 1}〉 .

(13)

Using Eq. (12), one can construct a Hamiltonian operator
from the classical Hamiltonian, from which Eq. (1) can be
derived [31,32], by replacing the classical solution u by the
operator U:

H [u] =
∫ ∞

−∞

(
u3 − 1

2
(ux)2

)
dx

⇒ H [U ] =
∫ ∞

−∞

(
U 3 − 1

2
(Ux)2

)
dx. (14)

Similarly, the infinite sequence of conserved quantities
that characterize the soliton solutions of Eq. (1) [33,34]
corresponds to an infinite sequence of operators. When u
is an N-soliton solution, with soliton wave numbers q1, . . .,
qN , the conserved quantities cn(q1, . . ., qN ) are integrals of
known differential polynomials in u, denoted by hn[u]. The
corresponding operators are obtained, again, by replacing u by
the operator U:

cn (q1, q2, . . . qN ) =
∫ ∞

−∞
hn [uN−solitons] dx

⇒ Cn =
∫ ∞

−∞
hn [U ] dx. (15)

For any multiparticle state in the Fock space, one has

Cn |{q1, 1} , . . . , {qN, 1}〉
= cn (q1, q2, . . . qN ) |{q1, 1} , . . . , {qN, 1}〉 . (16)

For example, the first conserved quantity

c1 =
∫ +∞

−∞
u (t, x) dx (17)

is now replaced by the operator

C1 =
∫ +∞

−∞
U (t, x) dx. (18)

Its action on any state yields

C1 |{q1, 1} , . . . , {qN, 1}〉
= c1 (q1, . . . , qN ) |{q1, 1} , . . . , {qN, 1}〉 , (19)

where c1(q1, . . . , qN ) is the value of c1 for the corresponding
N-soliton solution.

III. MULTIPLE-SOLITON PROJECTION OPERATORS:
KdV CASE

In classical soliton dynamics, the single-soliton solution
plays a unique role. There is an infinite hierarchy of differential
polynomials in u, the solution of an evolution equation, which
vanish identically when u is a single-soliton solution (“special
polynomials” [35,36]). In the quantized representation, these
polynomials correspond to an infinite hierarchy of commuting
projection operators. As an example, consider the case of the
KdV equation. The lowest scaling weight, in which special
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polynomials exist, is 3. There are only two of them, given by

R(3,1) [u] = ux + q(1,1) u, R(3,2) = 3

2

(∫ x

−∞
q(1,1) R(3,1) [u] dx −

∫ ∞

x

q(1,1) R(3,1) [u] dx

)
(

q(1,1) = 1

2

(∫ x

−∞
u (t, x) dx −

∫ ∞

x

u (t, x) dx

))
. (20)

[In each superscript (W,i), W is the scaling weight, and i
counts the polynomials with this scaling weight.] Replacing in
Eq. (20) the function u(t,x) by the operator U(t,x) of Eq. (12),
both special polynomials become operators, which project the
full Fock space into its multiparticle subspace.

The polynomials in Eq. (20) contain nonlocal functionals
of u. (They are all bounded.) A local special polynomial
(containing only powers of u and of its spatial derivatives)
first appears at scaling weight 6. It is given by [35,36]

R(6, 1) [u] = u3 + u uxx − (ux)2 . (21)

Using Eq. (12), one can construct the corresponding
projection operator:

R(6, 1) [U ] = U (t, x)3 + U (t, x) ∂2
xU (t, x) − [∂xU (t, x)]2 .

(22)

Again, the action of this operator on any single-particle
state is readily found to vanish:

R(6, 1) [U ] |{q,1}〉 = 0. (23)

IV. OTHER INTEGRABLE EVOLUTION EQUATIONS

The same ideas apply to several other integrable equations.
Sawada-Kotera equation [37,38].

ut = 45 u2 ux + 15 u uxxx + 15 ux uxx + uxxxxx . (24)

Equation (24) is integrable [37,38]. Its soliton solutions are
also given by Eqs. (2) and (3), with

V
(
k, k′) =

(
k − k′

k + k′

)2 (
k2 − k k′ + k′2

k2 + k k′ + k′2

)
. (25)

Hence the quantization procedure described in the case of
the KdV equation applies.

mKdV equation [39,40].

ut = 6 u2 ux + uxxx. (26)

Equation (26) is integrable [39,40]. Its soliton solutions are
given by

u (t, x) = 2 ∂x tan−1 (g (t, x)/f (t, x)). (27)

In Eq. (27),

g (t, x) =
N∑

i=1

ϕ (ki ; t, x) +
N∑

n = 3
n odd

( ∑
1�i1<···<in�N

{
n∏

j=1

ϕ
(
kij ; t, x

) ∏
il<im

V
(
kil , kim

)})
, (28)

f (t, x) = 1 +
N∑

n = 2
n even

( ∑
1�i1<···<in�N

{
n∏

j=1

ϕ
(
kij ; t, x

) ∏
il<im

V
(
kil , kim

)})
, (29)

V (k1, k2) = −
(

k1 − k2

k1 + k2

)2

. (30)

In this case, corresponding to the functions f (t,x) and
g(t,x), there are two operators, F(t,x) and G(t,x), which
contain terms with, respectively, even and odd n in
Eq. (6).

Bidirectional KdV equation [41,38].

utt − uxx − ∂x (6uux + uxxx) = 0. (31)

Equation (31) is integrable [41,38]. Its soliton solutions are
given by Eqs. (2) and (3). The solitons may move in either
direction along the x axis. Hence their velocities are given by

v (k, σ ) = σ4k2, σ = ±1. (32)

In addition, the “coupling coefficients” V (k,k′) are replaced
by ones that depend on the wave numbers, as well as on the
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velocities. For the scaling employed in Eq. (31), they are given
by

V (k, σ,k′, σ ′) = 12(k − k′)2 + [v (k, σ ) − v(k′, σ ′)]2

12(k + k′)2 + [v (k, σ ) − v (k′, σ ′)]2
.

(33)

These coefficients vanish in the single-particle limit (k′ =
k, σ = σ ′). Therefore the quantized representation described
above can be constructed, with particle states characterized by
two “quantum numbers”: k and σ . The fundamental operators
are denoted by a

†
k, σ , ak, σ , and Nk, σ , and an N-particle state

by|{q1, σ1, 1} , . . . , {qN, σN, 1}〉. The operator in Eq. (6) is
replaced by

F (t, x) = 1 +
∑

σ=±1

∫ ∞

0
ϕ (k, σ ; t, x) Nk, σ dk

+
∞∑

n=2

1

n!

n∑
i=1

∑
σi=±1

∫ ∞

0

∫ ∞

0
. . .

∫ ∞

0

⎧⎪⎪⎨
⎪⎪⎩

(
n∏

i=1

ϕ (ki, σi ; t, x) Nki, σi

)⎛
⎜⎜⎝ ∏

1�l<m�n
σl , σm=±1

V (kl, σl, km, σm)

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭ dk1 dk2 · · · dkn. (34)

The fact that σ has two values is suggestive of a formulation
in terms of spin-1/2 fermions.

The quantized representation depends crucially on the fact
that the “coupling coefficients” in Eq. (3) vanish in the limit
ki = kj , i �= j. Hence such a representation is not possible if
this requirement is not satisfied. Two examples are given in
the following.

Kaup-Kupershmidt equation [42,43].

ut = 180 u2 ux + 30 u uxxx + 75 ux uxx + uxxxxx . (35)

Equation (35) is integrable [42–49]. Its multiple-soliton
solutions are given by

u (t x) = 1
2∂2

x ln [f (t, x)] . (36)

The “plane waves,” ϕ(k;t,x), are defined as in Eq. (3), with
soliton velocities given by

v (k) = 16k4. (37)

However, the structure of f(t,x) does not follow the pattern of
Eq. (3). For the single-soliton solution one has

f (t, x) = 1 + ϕ (q ,t, x) + 1
16 ϕ (q ,t, x)2 . (38)

For the two-soliton solution, the expression for f (t,x) is:

f (t, x) = 1 + ϕ (q1; ,t, x) + ϕ (q2; ,t, x) + 1

16
ϕ (q1; ,t, x)2

+ 2q4
1 − q2

1q2
2 + 2q4

2

2 (q1 + q2)2
(
q2

1 + q1q2 + q2
2

)
× ϕ (q1; ,t, x) ϕ (q2; ,t, x) + 1

16
ϕ (q2; ,t, x)2

+ V (q1, q2) [ϕ (q1; ,t, x)2 ϕ (q2; ,t, x)

+ ϕ (q1; ,t, x) ϕ (q2; ,t, x)2]

+ V (q1, q2)2 ϕ (q1; ,t, x)2 ϕ (q2; ,t, x)2(
V (q1, q2) = (q1 − q2)2

(
q2

1 − q1q2 + q2
2

)
16 (q1 + q2)2

(
q2

1 + q1q2 + q2
2

)
)

.

(39)

Obviously, not all two-wave “coupling coefficients” vanish in
the limit q1 = q2.

Caudrey-Dodd-Gibbon equation [38].

ut = 420 u3 ux + 210 u2 uxxx + 420 u ux uxx + 28 u uxxxxx

+ 28 ux uxxxx + 70 uxx uxxx + uxxxxxxx . (40)

The integrability of Eq. (40) is still an open question. The
single- and two-soliton solutions do follow the Hirota structure
of Eqs. (2) and (3). The two-particle “coupling coefficient” is
[38]

V (k, k′) =
(

k − k′

k + k′

)2 (
k2 − kk′ + k′2

k2 + kk′ + k′2

)2

. (41)

Attempting to construct a three-soliton solution of Eq. (40),
one finds that the coefficients of the second-order terms,
g(ki ;t,x)· g(kj ;t,x) (1 � i, j � 3, i �= j), are of the Hirota form
with V(ki ,kj ) of Eq. (41). However, although the coefficient of
the third-order term, g(k1;t,x)·g(k2;t,x)·g(k3;t,x), does vanish if
any of the two wave numbers are equal, it cannot be factorized
into a product of the two-particle coefficients V(ki ,kj ). The
same applies to the (necessary) fourth-order terms.

Burgers equation [50]. The Burgers equation

ut = 2u ux + uxx (42)

is not integrable. Yet, a very simple quantized representation
exists in that case as well. Shock-front solutions of Eq. (42)
are obtained through the Forsyth-Hopf-Cole transformation
[26–28]

u (t, x) = ∂x ln [f (t, x)] . (43)

Here, f(t,x) has the following simple structure:

f (t, x) = 1 +
N∑

i=1

ϕ (ki ; t, x)

(
ϕ (k; t, x) = ek (x + v(k) t),v (k) = k

)
. (44)
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Consequently, the operator F(t,x) is given by

F (t, x) = 1 +
∫ ∞

−∞
ϕ (k; t, x) Nk dk. (45)

V. NONDIAGONAL PERTURBATIONS

In classical systems, the perturbation added to an integrable
evolution equation is a functional of the unknown solution,
typically, a differential polynomial in the latter. A common way
for analyzing the effect of the perturbation is through a normal
form expansion [51–56,35,36]. In this approach, the zero-
order approximation is a single-soliton or a multiple-soliton
solution of the normal form. To this solution, one may apply
the quantization procedure delineated above. However, the
classical perturbation, as well as the higher-order corrections
to the solution in the normal form expansion, cannot lead to
a change in soliton parameters, or in the number of solitons.
The reason is that, in the quantized version presented here, as
in the case of the unperturbed evolution equations, they are
diagonal operators, functions of the number operator Nk .

However, the proposed quantum-mechanical representation
opens a new vista for adding perturbations to a nonlinear wave
equation. One may add nondiagonal perturbations, containing
terms that destroy one soliton, and generate another one
instead, e.g., a

†
k2

ak1 , or terms that change the number of

solitons, such as a
†
k3

a
†
k2

ak1 .
As an example, consider the case of the perturbed KdV

equation, and focus on the following perturbed operator
equation, which contains the operator R(6,1) [see Eq. (22)]:

Ut = 6UUx + Uxxx + ε∂xR
(6. 1) [U ]

∫
r(k, k′)a†

kak′ dk dk′,

ε 	 1,

∫
|r(k, k′)2| dk dk′ < ∞. (46)

To understand the motivation for this choice, let us begin
with the classical equation:

ut = 6uux + uxxx + εR(6. 1) [u] . (47)

R(6,1) is given in Eq. (21). To solve Eq. (47) through O(ε),
one writes

u (t, x) = u(0) (t, x) + εu(1) (t, x) . (48)

The first reason for the choice of the perturbation in
Eqs. (46) and (47) is that R(6,1) is localized around the
soliton-collision region, and falls off exponentially away from
that region [35,36]. The second reason is the simplicity of
the equation obeyed by the zero-order approximation u(0). As
R(6,1) does not contain linear, higher-derivative terms, such as
uxxxxx, u(0) obeys the unperturbed equation [51–56,35,36]:

u
(0)
t = 6 u(0) u(0)

x + u(0)
xxx. (49)

The third reason is the simplicity of the solution for the first-
order correction u(1), which is given in terms of R(3,1) [see
Eq. (20)] by [35,36]

u(1) = − 1
3 ∂xR

(3, 1). (50)

The fourth reason is that R(6,1) generates a genuinely
inelastic, multiple-soliton effect. The asymptotic form of u(1),

away from the soliton-collision region, has a simple structure.
For example, when u(0) is a two-soliton solution, one has
[35,36]

u(1) (t, x) →
|t |→∞

∂x[2k2usingle (t, x; k1)

−2k1usingle (t, x; k2)] sgn (t), (k2 > k1) . (51)

In Eq. (51), usingle(t,x;k) is the single-soliton solution with
wave number k. Thus the asymptotic form preserves the
profiles of the zero-order solitons, but modifies their amplitude
in an inelastic manner [57,35,36]; each soliton profile is
affected by the wave numbers of the other solitons, and the
whole contribution changes sign after the collision.

Turning to the operator version, Eq. (46), its solution is,
again, expanded through O(ε):

U (t, x) = U (0) (t, x) + εU (1) (t, x) . (52)

Again, the zero-order term is the solution of the operator
version of Eq. (1):

U
(0)
t = 6U (0)U (0)

x + U (0)
xxx. (53)

The first-order correction is

U (1) = −1

3
∂xR

(3, 1)[U (0)]
∫

r(k, k′)a†
kak′ dk dk′. (54)

Here R(3,1)[U (0)] is the operator version of the special
polynomial R(3,1)[u], given in Eq. (20).

The diagonal matrix element of this correction is

〈{q1, 1} , {q2, 1} |U (1) (t, x)| {q1, 1} , {q2, 1}〉
= − [r (q1, q1) + r (q2, q2)]

3
∂xR

(3, 1)[u(0) (q1, q2)], (55)

corresponding to the classical correction discussed above. In
Eq. (55), u(0)(q1,q2) is a two-soliton solution of the KdV
equation, with wave numbers q1 and q2.

On the other hand, off-diagonal matrix elements correspond
to the change in the identity of one of the particles. For
example,

〈{q3, 1} , {q2, 1} |U (1) (t, x)| {q1, 1} , {q2, 1}〉
= − r (q1, q3)

3
∂xR

(3, 1)[u(0) (q2, q3)]. (56)

VI. CONCLUDING COMMENTS

The quantized representation proffered here is a simple
consequence of the Hirota transformation [29]. It avoids the
need to resort to the powerful tools usually employed in
the formal quantization of a classical dynamical system. In
fact, it is a very trivial extension of the solution method
applied to the classical equations that have been discussed.
The reason is that the representation, although formulated in
quantum-mechanical terms, involves only diagonal, commut-
ing operators. In particular, in the representation discussed
here, the coordinates t and x are mere parameters.

This quantized representation has two attributes. First, the
solitons are not the solutions of a classical dynamical equation,
but the expectation values of the solution of the dynamical
equations obeyed by quantum-mechanical operators. Second,
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this approach allows for the introduction, in a very simple
manner, of perturbations of a type that does not have a classical
analog—interactions that lead to the “destruction” of solitons
and the “creation” of others instead, or to a change in the
number of solitons in a physical state. This opens the road to
using classical nonlinear evolution equations, the solutions of

which are known, as starting points for the study of toy field
theories.
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