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Frequency dependence of the subharmonic Shapiro steps
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Frequency dependence of the subharmonic Shapiro steps has been studied in the ac driven overdamped
Frenkel-Kontorova model with deformable substrate potential. As potential gets deformed, in addition to the
harmonic steps, subharmonic steps appear in the number and size that increase as the frequency of the external
force increases. It was found that size of both harmonic and subharmonic steps strongly depend on the frequency
where in the high-amplitude limit oscillatory dependence appears. When expressed as a function of period
these oscillations of the step size with frequency have the same form as the oscillations of the step size with
amplitude. Deformation of the potential has strong influence on these oscillations, and as in the case of amplitude
dependence, with the increase of deformation, the same three distinctive types of behavior have been classified.
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I. INTRODUCTION

Due to the great significance for technical applications
of interference phenomena, properties of the Shapiro steps,
particularly their amplitude and frequency dependence have
been matter of many theoretical and experimental studies in
systems such as charge-density wave conductors [1,2], systems
of Josephson-junction arrays biased by external currents [3–8],
and, in recent years, superconducting nanowires [9,10]. In
order to gain some insight into the physics behind interfer-
ence phenomena, the attention has been always focused on
the simple many-body models among which the dissipative
(overdamped) Frenkel-Kontorova (FK) model is one of the
simplest but still capable of exhibiting all complexities of
interference effects [11].

The standard Frenkel-Kontorova model represents a chain
of harmonically interacting particles subjected to a sinusoidal
substrate potential. In the presence of an external ac+dc
driving force, the dynamics is characterized by staircase
macroscopic response or the appearance of the Shapiro steps
in the response function v̄(F̄ ) of the system [12–14]. These
steps are due to the dynamical mode-locking (interference or
synchronization) of the internal frequency that comes from
the motion of particles over the periodic substrate potential
with the frequency of an external ac force. If the locking
appears for integer values of frequency the steps are called
harmonic, while for the locking at noninteger rational values
they are called subharmonic. Though, the standard FK model
has been very successful in the studies of harmonic steps, it
could not be used for the studies of any phenomena related
to the behavior of subharmonic steps. In the standard FK
model, for commensurate structures with integer values of
winding number only harmonic steps exist [12], while in the
commensurate structures with noninteger values of winding
number, subharmonic steps also appear; however, their size
is so small that they are invisible on the regular plot of the
response function what makes analysis of their properties very
difficult.

The large subharmonic steps can appear in the presence
of nonsinusoidal or deformable substrate potential [15]. In
the real physical systems, the shape of the substrate potential

can deviate from the standard (sinusoidal) one, and the
application of standard FK model could be very restricted.
Introducing a family of nonlinear periodic deformable poten-
tials, Remoissenet and Peyrard [16] obtained in a controlled
manner by an adequate choice of parameters rich variety of
deformable potentials that allow the modeling of many specific
physical situations without employing perturbation methods
and are related to the physical systems such as charge-density
wave condensates, Josephson junctions, and crystals with
dislocations. They have shown that the shape of the substrate
potential was of great importance for the modeling of discrete
systems.

In our previous works on the FK model with deformable
potentials, we have studied the amplitude dependence of har-
monic and subharmonic steps [17]. We have shown that there
is a strong correlation between harmonic and subharmonic
steps, where, in their amplitude dependence, three differen
types of behavior have been classified. In the present paper,
following the similar procedure, we will examine frequency
dependence of both harmonic and subharmonic Shapiro steps
in the ac+dc-driven FK model with deformable substrate
potential.

In the theoretical and experimental studies of the interfer-
ence phenomena, contrary to the very extensive studies of
amplitude dependence, a relatively small number of studies
have been devoted to the dependence of frequency. Frequency
dependence of the Shapiro steps has been the subject of many
controversies. In the theoretical studies, two very competing
and fundamentally different groups of theories have been
proposed. In charge density wave systems, according to the
classical approach [18,19], which considers a deformable
charge elastic medium, with the internal degrees of freedom,
the step width and the critical depinning force should be
strongly frequency dependent and, after an initial increase,
decreases to zero at the high frequencies. In contrast, the
other theoretical approach based on single coordinate model
results in a frequency-independent mode locking at the
high frequencies [2]. In the same way, in the systems of
Josephson-junction arrays, according to the single junction
model [3–5,20], the widths of harmonic steps after a gradual
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increase at the high frequencies, saturate to the frequency
independent value. On the other side, according to many degree
of freedom theories, they are strongly frequency dependent and
disappear at the high frequencies [21–23].

In our previous works, frequency dependence of harmonic
Shapiro steps has been studied only in the standard FK model
where an interesting phenomenon, frequency oscillations of
the step size in the high amplitude limit have been observed
[24,25]. These oscillations appear in the high amplitude limit,
irrespectively of the number of degrees of freedom (they have
been also observed in the commensurate structure ω = 1 when
FK model reduces to a single-particle case). When expressed
as a function of period, these oscillations have the Bessel-like
form, the same as in the case of amplitude dependence. This
clearly proves that there is an analogy between the role of
the amplitude and the period in the dynamical-mode-locking
phenomena. Due to significance for technical application of
interference phenomena and experiments, our observation
of the oscillatory dependence in the standard FK model,
therefore, raises a question whether these oscillations could
appear in more realistic systems. Working in a model with
deformable potential gives us possibility not only to study more
realistic model but also to examine properties of subharmonic
Shapiro steps. In this work, we have shown that as deformation
of potential changes, frequency dependence of the harmonic
and subharmonic steps exhibits the same three different types
of behavior that we have observed in the studies of amplitude
dependence [17].

The paper is organized as follows. The model is introduced
in Sec. II. Simulation results are presented and analyzed in
Sec. III. Finally, Sec. IV concludes the paper.

II. MODEL

We consider the dissipative (overdamped) dynamics of se-
ries of harmonically interacting particles subjected in one from
the family of parameterized deformable periodic potentials, the
asymmetric deformable potential (ASDP) [16]:

V (u) = K

(2π )2

(1 − r2)2[1 − cos(2πu)]

[1 + r2 + 2r cos(πu)]2
, (1)

where K is the pinning strength and r is the shape parameter
(−1 < r < 1). In Fig. 1, the ASDP is presented for different
values of the shape parameter r . This potential refers to the
same physical systems as the overdamped FK model [16], and
by an appropriate choice of the shape parameter, it can be tuned
in a controlled manner from the simply sinusoidal (standard)
potential for r = 0 to an asymmetric periodic one for 0 <

|r| < 1 with a constant barrier height and two inequivalent
successive wells with a flat and sharp bottom, respectively. The
position ub of the potential barrier is determined by the relation
cos(πub) = 2r/(1 + r2). Precisely, here the asymmetry means
that the pinning in the two successive potential minima differs.
This type of potential is considered as a natural way to describe
lattice with diatomic basis or dual lattices by generalizing the
standard model that assumes simple sinusoidal potential [16].
In this model, particles during their motion interpolate between
two media with different physical properties. The model has
two energetically equivalent ground states, but these two states
are not physically equivalent; in particular, they do not have the

FIG. 1. Asymmetric deformable potential for K = 4, and differ-
ent values of the shape parameters r .

same dynamical properties [16]. The pinning of the particles
strongly depends on the shape of the potential well, and as it
was shown previously [16], in the potential with sharp maxima
and wide minima, even the very large kinks can be pinned.

The system is driven by dc and ac forces:

F (t) = F̄ + Fac cos(2πν0t), (2)

where F̄ is the dc force while Fac and 2πν0 are the amplitude
and frequency of the ac force, respectively. The equation of
motion is

u̇l = ul+1 + ul−1 − 2ul − V ′(ul) + F (t), (3)

where l = −N
2 , . . . ,N

2 . In the ac driven systems, the com-
petition between two frequency scales (the frequency ν0 of
the external periodic force and the characteristic frequency
of the motion over the periodic substrate potential driven
by the average force F̄ ) can result in the appearance of the
synchronization phenomena (resonance). The ac force induces
additional polarization energy into the system that differs
from zero (less than zero) only when the velocity reaches
the resonant values [12]:

v̄ = iω + j

m
ν0, (4)

where ω represents the interparticle average distance (winding
number) and i,j and m are integers (m = 1 for harmonic,
and m > 1 for subharmonic steps). The winding number ω is
rational for commensurate and irrational for the incommensu-
rate structures. The system will get locked since the average
pinning energy of the locked state (on the step) is lower than
of the unlocked state. As F̄ increases, the particles will stay
locked until the pinning force can cancel the increase in F̄ .

056604-2



FREQUENCY DEPENDENCE OF THE SUBHARMONIC . . . PHYSICAL REVIEW E 83, 056604 (2011)

Equations (3) have been integrated using the fourth-order
Runge-Kutta method with the periodic boundary conditions
for commensurate structure with ω = 1

2 . The time step used in
the simulations was 0.02τ for lower values of r and 0.0002τ

for r > 0.8 (τ was the period of ac force). The force was
varied with the step 10−4 (10−5 or 10−6 is used for the studies
of very small subharmonic steps) and a time interval of 100τ

was used as a relaxation time to allow the system to reach the
steady state. The appearance and frequency dependence of the
steps are analyzed in the different amplitude regimes and for
different shapes of the substrate potential.

III. RESULTS

When potential gets deformed large subharmonic steps
appear in the response function v̄(F̄ ) of the system. In our
previous works on amplitude dependence of the subharmonic
Shapiro steps [17], we have noticed that the number and size
of subharmonic steps significantly increase if the frequency
of applied ac force increases. The response function v̄(F̄ ) of
the system for two different values of frequency is presented
in Fig. 2. We can clearly see, particularly in Figs. 2(b) and
2(d), which represent enlarged curves in Figs. 2(a) and 2(c),
the significant increase in the step number and size with the
increase in frequency. The increase of the fractional Shapiro
steps in order and size with the frequency has been recently
observed in superconducting nanowires [9]. While at the
low frequencies only harmonic steps appear, at the higher
frequencies, steps of order 1/2, 1/3, 1/4, even 1/6 appear.
This effect is attributed to the nonsinusoidal and multivalued
current phase relation [9]. In the same way, in our case, the
subharmonic steps appear due to deformed and, therefore,
nonsinusoidal substrate potential.

In Fig. 3, frequency dependence of the step width for the
first harmonic, half-integer, the subharmonic step 1

3 , and the
critical depinning force is presented. As frequency increases,
harmonic, half-integer and subharmonic steps increase,

FIG. 2. Average velocity as a function of the average driving force
for ω = 1

2 , K = 4, Fac = 0.2, r = 0.2, and two different values of
the frequency: ν0 = 0.2 in (a) and (b) and 0.5 in (c) and (d).

FIG. 3. Frequency dependence of the step width for the first
harmonic �F1, half-integer �F 1

2
, subharmonic �F 1

3
steps, and the

critical depinning force Fc for ω = 1
2 , K = 4, Fac = 0.2, and r = 0.2.

reaching their maximum values, and then slowly decrease
toward zero at the high frequencies. Meanwhile, critical
depinning force increases and then saturates to the frequency
independent threshold value for dc driven system Fc0 for
r = 0.2. When ν0 → 0, it reaches the value Fc0 − Fac. What
is particularly interesting is that with the increase of frequency,
the half-integer step not only increases but, around the value
that corresponds to the maximum of first harmonic step,
becomes even larger than the harmonic step.

It was shown in our previous work [17] that dynamical dc
threshold increases as deformation of potential increases and
diverges when r → 1. For the deformable substrate potential
with the deformation parameter r = 0.2, the dynamical dc
threshold is Fc0 = 0.289. If we apply the ac force with
the amplitude larger than the dynamical dc threshold, the
oscillatory dependence appears at the low frequencies [24].
In Fig. 4, the frequency dependence of the step width for the
first harmonic, half-integer, and subharmonic step 1

3 , and the
critical depinning force is presented for Fac = 0.3. Contrary
to the results in Fig. 3, where Fac

Fc0
< 1, in Fig 4, the system is

in the high-amplitude regime Fac

Fc0
> 1, and we can clearly see

the change in the behavior at the low frequencies.
If we increase the ac amplitude even more, these oscillations

become more pronounced. In Fig. 5, the frequency dependence

FIG. 4. Frequency dependence of the step width for the first
harmonic �F1, half-integer �F 1

2
, subharmonic �F 1

3
steps, and

the critical depinning force Fc for ω = 1
2 , K = 4, Fac = 0.3, and

r = 0.2.
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FIG. 5. (Color online) The width of the first harmonic �F1,
halfinteger step �F1/2, subharmonic �F1/3 steps and the critical
depinning force Fc as a function of the ac frequency for ω = 1

2 ,
K = 4, Fac = 0.5, and r = 0.05,0.1,0.2, and 0.4 in (a-d) respectively.
Dashed line in (a) corresponds to the case r = 0.

of the critical depinning force, the first harmonic, half-integer,
and 1

3 subharmonic steps is presented for different values of the
shape parameter. Frequency dependence for the standard case
(r = 0) is presented by dashed line in Fig. 5(a). These results
clearly show how the frequency dependence evolves as the
size of subharmonic steps increases with the deformation. For
the small deformation r = 0.05 and very small subharmonic
steps in Fig. 5(a), the behavior of the system is still like in
the standard FK model [24], where the maxima (minima) of
the oscillations for the step size correspond to the minima
(maxima) of the critical depinning force. As the deformation
increases for r = 0.1 in Fig. 5(b), and large half-integer steps
start to appear at the minima of the critical depinning force,
the form of oscillations starts to change, and new lobes in
curves for �F and Fc to develop. For r = 0.2 and the very
large half-integer step (they even oversize the harmonic step)
in Fig. 5(c), the behavior of �F and Fc is completely changed;
now the maxima of one curve corresponds to the maxima of
another. However, the increase of deformation will also affect
the dynamical dc threshold Fc0 and therefore the ratio Fac

Fc0
.

Since Fc0 starts to increase, at some point, for a given ac
amplitude, the system will transfer from the high-amplitude
limit Fac

Fc0
> 1 to the low-amplitude limit Fac

Fc0
� 1 when this

oscillatory behavior disappears. In Fig. 5(d), the oscillations
start to change and disappear as the ratio Fac

Fc0
changes, and

the system is approaching to the low amplitude limit. For

r = 0.2, Fac

Fc0
= 1.731, while for r = 0.4, Fac

Fc0
= 1.031, and the

behavior in Fig. 5(d) is similar to the behavior in Fig. 4, where
Fac

Fc0
= 1.038. In the limit of very large deformation, when r →

1, Shapiro steps disappear. For the commensurate structure
ω = 1

2 , we have two particles per one potential minima, and for
small values of r , the half of particles are still in sharp minima
and the half in the wide minima. With the further increase of r ,
as the sharp minima become more and more narrow, there will
be one particle in sharp and three in wide minima. For very
large deformations, when r → 1, the sharp minima practically
disappear, and all particles are strongly pinned in the wide
minima with very sharp potential maxima. In this limit, the
critical depinning force diverges and dynamical-mode locking
disappears.

If the results in Fig. 5 are expressed as a function of
period 1

ν0
, the physical origins of these oscillations can be

understood and an analogy with the amplitude dependence
revealed. In Fig. 6, the critical depinning force, the first
harmonic, half-integer, and 1

3 subharmonic steps are presented
as a function of period 1

ν0
for different values of the shape

parameter. The appearance and the physical origin of these
oscillations have been discussed in detail in our previous
works [24]. These oscillations of the step size with frequency
(period) are the result of the simultaneous competition and
contributions of the dc and ac components of the force F (t) to

FIG. 6. (Color online) The width of the first harmonic �F1, half-
integer �F1/2, subharmonic �F1/3 steps, and the critical depinning
force Fc as a function of period 1

ν0
for ω = 1

2 , K = 4, Fac = 0.5, and
r = 0.05,0.1,0.2, and 0.4 in (a)–(d) respectively. The dashed line in
(a) corresponds to the case r = 0.
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the pinning energy. When Fac

Fc0
> 1, the ac contribution, which

is responsible for the appearance of these oscillations, will
dominate in the pinning energy. The oscillations appear due to
the backward and forward motions of particles induced by the
ac force. Namely, in the presence of the ac+dc driving forces,
dynamics of particles is characterized by two types of motion:
linear motion in the direction of the dc force and the back and
forward jumps due to the presence of the ac force. Therefore,
during one period, particle at site i will jump n sites back, reach
the i − n site, and then hop again n + 1 sites forward to the
site i + 1. In that way, by repeating these back-forward jumps
with every period of the ac force it will move. It was already
known that the amplitude determines how much this motion
is retarded [2]. However, our previous results [24] have shown
that the distance over which particle moves was determined not
only by the ac amplitude but also by the period or frequency.
Particles will jump between more distant sites not only if the
amplitude is large enough but also if they have enough time,
which means if the period is long enough [24]. Therefore,
for the values of period that correspond to the first maximum
in Fig. 6, particles will spend most of the time pinned, and
then hop to the next well, while for the values at the second
maximum, particles will jump one site back and two forward.
As the period increases, the particles will hop between the
wells that are more and more distant while staying less and less
time pinned and, consequently, the step width will decrease.

As in the case of the amplitude dependence [17], the
deformation will affect in the same way the frequency
dependence. As deformation increases in Fig. 6, we can
distinguish three types of behavior:

(i) Standard behavior for small half-integer steps when r =
0.05 in Fig. 6(a). Though the shape and the size of maxima
start to change, the oscillations are still almost as in the case
of the pure sinusoidal potential (r = 0), where the maxima
(minima) of �F1 correspond to the minima (maxima) of Fc.

(ii) Behavior for intermediate half-integer steps when r =
0.1 in Fig. 6(b). As half-integer steps increase, the Bessel-like
form of �F1 and Fc is completely deformed and new maxima
start to develop.

(iii) Behavior in the presence of large half-integer steps for
r = 0.2 in Fig. 6(c). The harmonic step and critical depinning
force oscillate, however, contrary to the standard case (r = 0),
the maxima (minima) of one curve corresponds to the maxima
(minima) of another [in Fig. 6(d) oscillations start to disappear
as system is approaching to the low-amplitude limit].

These three types of behavior were first observed and
classified in the experimental studies of amplitude dependence
of the Shapiro steps in the high-Tc grain-boundary junctions
[6]. Dissipative dynamics of the Frenkel-Kontorova model
is closely related to the many phenomena observed in the
Josephson-junction arrays. These systems are often described
by the system of equations usually referred to as a discrete
sine-Gordon model that are actually equations of motion of
the driven FK model [12]. In our previous works on the
amplitude dependence of the subharmonic Shapiro steps in
the ac-driven FK model [24], we not only have observed
the same types of behavior but also have given a detailed
explanation of the physical processes behind the results. The
great analogy between results in Fig. 6 and our previous results

for amplitude dependence [17] as well as those experiments [6]
clearly proves that the amplitude and the frequency play the
same role in the ac-driven dynamics. This work together with
our works on amplitude dependence [17] provides a detail
presentation of the dynamical mode locking phenomena in
the FK model with asymmetric deformable substrate potential.
Since we have considered only one particular type of potential,
in order to get a complete answer about behavior of the Shapiro
steps in realistic systems, other types of substrate potentials
also have to be studied. These problems will be part of our
future examinations.

IV. CONCLUSION

In this paper we have presented the studies of the frequency
dependence of the Shapiro steps in the ac-driven Frenkel-
Kontorova model with a deformable substrate potential. As the
potential becomes deformed, with the appearance of subhar-
monic steps the behavior of harmonic steps begins to change.
While both harmonic and subharmonic steps increase and after
reaching their maxima disappear at the high frequencies, in the
high-amplitude limit they exhibit oscillatory dependence at the
low frequencies. When expressed as a function of period these
oscillations have the same form as in the case of the amplitude
dependence. The steps are strongly correlated and the appear-
ance of large half-integer steps will cause deviation from the
standard behavior of harmonic steps. As deformation changes,
we could observe how the frequency (period) dependence of
the harmonic steps and the critical depinning force evolves
and classify three distinctive types of behavior. In the presence
of large half-integer steps, in the oscillatory dependence of
harmonic steps and the critical depinning force, new maxima
develop where, contrary to the standard case, now the maxima
(minima) of one curve correspond to the maxima (minima)
of another. The great analogy of the above results with the
results obtained in the theoretical [17] and experimental [6]
studies of the amplitude dependence clearly prove that the
period (frequency) of the ac force plays the same role as the
amplitude in the dynamical mode locking phenomena.

Presented results could be important for studies of charge-
or spin-density waves systems and systems of Josephson-
junction arrays that are particularly motivated by technical
applications of the interference phenomena [1,12]. Any fab-
rication of synchronization and superconducting Shapiro step
devices requires a theoretical guideline for the observation
of Shapiro steps. Our aim was not to favor or criticize any
of the existing theoretical approaches. The results that we
have obtained are universal and should be observed in any
system and irrespectively of the number of degrees freedom.
Our studies of frequency dependence of the Shapiro steps in
realistic models could not only contribute to the understanding
of their behavior in real systems but also bring insight to the
theory of Shapiro steps and the continuing debate about their
frequency dependence.
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