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Approximate action-angle variables for the figure-eight and periodic three-body orbits
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We use the maximally permutation-symmetric set of three-body coordinates that consist of the “hyper-radius”
R =

√
ρ2 + λ2, the “rescaled area of the triangle”

√
3

2R2 |ρ × λ|), and the (braiding) hyperangle φ = arctan( 2ρ·λ
λ2−ρ2 )

to analyze the “figure-eight” choreographic three-body motion discovered by Moore [Phys. Rev. Lett. 70, 3675
(1993)] in the Newtonian three-body problem. Here ρ,λ are the two Jacobi relative coordinate vectors. We show
that the periodicity of this motion is closely related to the braiding hyperangle φ. We construct an approximate
integral of motion G that together with the hyperangle φ forms the action-angle pair of variables for this problem
and show that it is the underlying cause of figure-eight motion’s stability. We construct figure-eight orbits in
two other attractive permutation-symmetric three-body potentials. We compare the figure-eight orbits in these
three potentials and discuss their generic features, as well as their differences. We apply these variables to two
new periodic, but nonchoreographic, orbits: One has a continuously rising φ in time t , just like the figure-eight
motion, but with a different, more complex, periodicity, whereas the other one has an oscillating φ(t) temporal
behavior.
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I. INTRODUCTION

The three-body problem is one of the oldest and most
challenging in classical mechanics [1]. Until recently, only a
few periodic three-body solutions were known [1] in Newton’s
gravitational interaction potential. A new periodic, “figure
eight,” trajectory was found in 1993 by Moore [2] in the
case of three equal masses and gravitational −1/r potential,
using numerical methods. Its existence and stability were later
proven formally by way of variational arguments [3], but no
closed (analytic) form of this solution has been shown as
yet. Moreover, the figure-eight solution has also been found
in the general-relativistic three-body dynamics [4], and its
bifurcations have been studied as a function of the mass
asymmetry [5]. Proofs of existence, as well as some properties
of figure-eight orbits in pairwise sums of −1/rα two-body
potentials with α �= 1, have been studied in Refs. [6–8]. Any
new solution and/or insight into the existing ones should be of
intrinsic interest.

Of course, the figure-eight orbit is highly symmetric, but it
is not immediately clear what the reason is for the underlying
dynamical symmetry. It is an empirical fact, however, that
all known figure-eight orbits exist only in (three-body)
permutation-symmetric potentials. Indeed, it is known that the
figure-eight orbit bifurcates into new, less symmetric, orbits
as one changes the mass ratio(s) of the three particles and
thus breaks the permutation symmetry; see Refs. [5], [9]. We
explore this connection between the permutation symmetry
and the figure-eight orbit and make it more explicit. In the
process we have found new solutions with lesser symmetry,
much like those in Ref. [9], and obtained new insights into
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the role of permutation symmetry in the classical three-body
problem.

In this paper we report our studies of figure-eight orbits
in three kinds of three-body potentials: (i) the Newtonian
gravity, i.e., the pairwise sum of −1/r two-body potentials;
(ii) the pairwise sum of linearly rising r two-body potentials
(also known as the �-string potential); and (iii) the Y-junction
string potential [10,11] that contains both a genuine three-body
part, as well as two-body contributions (this is the first
time that the figure-eight has been found in these string
potentials, to our knowledge). These three potentials share
two common features, viz. they are attractive and symmetric
under permutations of any two or three particles.1

A set of variables makes this permutation symmetry
manifest and we use them to plot the motion of a numerically
calculated figure-eight orbit. As there are three independent
three-body variables, and there can be at most two indepen-
dent permutation-symmetric three-body variables,2 the third
variable cannot be permutation symmetric. In other words,
the third variable must change under permutations. Moreover,
it must be a continuous variable and not be restricted only
to a discrete set of points, as is natural for permutations.
Thus it must provide a smooth interpolation between (discrete)
permutations. We identify here the third independent variable
as φ = arctan( 2ρ·λ

λ2−ρ2 ) and show that it grows/descends (almost)
linearly with the time t spent on the figure-eight trajectory and
reaches ±2π after one period T . Thus, φ is, for most practical
purposes, interchangeable with the time variable t on the

1The Coulomb interaction among three identical charged particles
is permutation symmetric but repulsive.

2There are two irreducible one-dimensional representations of the
permutation group s3.
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figure-eight orbit. The hyperangle φ is the continuous braiding
variable that interpolates smoothly between permutations and
thus plays a fundamental role in the braiding symmetry of the
figure-eight orbits [2,12].

We then construct the hyperangular momentum G3 =
1
2 (pρ · λ − pλ · ρ) conjugate to φ, the two forming an (approx-
imate) pair of action-angle variables for this periodic motion.
Here we calculate numerically and plot the temporal variation
of φ, as well as that of the hyperangular momentum G3(t),
the hyper-radius R(t) and r(t). We show that the hyper-radius
R(t) oscillates about its average value R with the same angular
frequency (3φ) and phase, as the new (“reduced area”) variable
r(t). Thus, we show that φ(t) is, for most practical purposes,
interchangeable with the time variable t , in agreement with the
tacit assumption(s) made in Refs. [3,7], though the degree of
linearity of this relationship depends on the precise functional
form of the three-body potential; see Sec. III B.

As stated above, φ is not exactly proportional to time t

but contains some nonlinearities that depend on the specifics
of the three-body potential; consequently, the hyperangular
momentum G3 is not an exact constant of this motion
but oscillates about the average value G3, with the same
basic frequency 3φ. Thus, the time-averaged hyperangular
momentum G3 is the action variable conjugate to the linearized
hyperangle φ

′
.

We use these insights to characterize two new planar
periodic, but not choreographic, three-body motions with
vanishing total angular momentum. One of these orbits
corresponds to a modification of the figure-eight orbit with
φ(t) that also grows more or less linearly in time but has a
more complicated periodicity pattern defined by the zeros of
the area of the triangle formed by the three particles (also
known as “eclipses,” “conjunctions,” or “syzygies”). Another
new orbit has φ(t) that grows in time up to a point and then
stops and “swings back.” We show that this motion, and the
other two, can be understood in view of the analogy between
the three-body hyperangular (“shape space”) Hamiltonian on
one hand and a variable-length pendulum in an azimuthally
periodic in-homogeneous gravitational field, on the other.

This paper is divided into five parts: after the Introduction in
Sec. II we introduce a complete (maximal) set of permutation-
symmetric three-body variables and illustrate them with two
examples: (i) the curves in the “shape space” of triangles
depicting those triangles with one of its three angles equal
to a particular value in the range ( π

3 ,π ) and (ii) the contour
plots of the Newtonian gravity, the Y-junction string, and the
�-string potentials. In Sec. III we show the time dependence
of the figure-eight motion in Newton’s gravity and the Y-string
potentials. In Sec. IV we show and discuss the new solutions.
Finally, in Sec. V, we summarize and draw conclusions.

II. PERMUTATION-SYMMETRIC THREE-BODY
COORDINATES

As the static three-body potential depends on three in-
dependent scalar variables, e.g., the pairwise relative dis-
tances/separations, the choice of appropriate (relative) vari-
ables is a crucial one. A number of three-body relative variables
have been devised, starting with those introduced by C. G.
Jacobi in the 19th century [13] and extending to the so-called

hyper-spherical coordinates introduced in the 1960s [14–16].
These variables were introduced in attempts at solving certain
quantum mechanical three-body problems that demand special
attention to be paid to the permutation symmetry. Nevertheless,
only one, Ref. [14], of these sets is manifestly permutation
symmetric and yet it has not been widely used.

Here we use the manifestly permutation-symmetric three-
body variables, apparently first introduced by Hopf: the
hyper-radius R, the “scale-invariant area” of the triangle√

1 − r2 = 2R−2|ρ × λ|, where we find as the hyperangle
φ = arctan( 2ρ·λ

λ2−ρ2 ), which is conjugate to the generalized

hyperangular momentum G3 = 1
2 (pρ · λ − pλ · ρ). One may

relate these to the hyperspherical variables x
′ = 2ρ·λ

R2 and

z
′ = λ2−ρ2

R2 that have the circle with unit radius as their natural

domain. Then the area of the triangle
√

3
2 |ρ × λ| and the

hyper-radius R are related to the the new variables r , φ as
follows:

r2 = (x
′2 + z

′2) = 1 −
(

2|ρ × λ|
R2

)2

(1)

φ = tan−1

(
x

′

z
′

)
. (2)

The hyperangle φ is zero at the (x = 0,z = 1) point (“12
o’clock”) and increases as one moves clockwise.

A. The shape space of triangles

The natural domain of the permutation-symmetric variables
is a circle with unit radius; see Fig. 1. The points on the unit
circle correspond to collinear configurations (“triangles” with
zero area).

The two straight lines at angles of ± 2π
3 , together with

the vertical axis, are the three (reflection) symmetry axes;
these reflections correspond to the three “two-body permu-
tations”/transpositions in the s3 permutation group. The two
cyclic permutations of the s3 permutation group correspond to
the rotations through ± 2π

3 .
The six points where the symmetry axes cross the big circle

in Fig. 1 correspond to either (a) three collinear configurations
(“shapes”) in which one pair of particles has vanishing
separation (big solid circles), i.e., “sits on top of each other,”
or (b) three collinear configurations (“shapes”) in which one
particle has equal separation from the other two, i.e., “sits
in the middle between the other two” (small solid circles).
The center of the circle corresponds to the equilateral triangle
configuration (“shape”), which turns into a point when the
hyper-radius R → 0

B. Newton’s, �, and Y-string potentials

In Figs. 2, 3, and 4 we show three attractive three-body
potentials that are either pairwise sums of two-body terms,
viz. Newton’s

VNewton = −g

3∑
i<j

1

|xi − xj | , (3)
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FIG. 1. (Color online) The curves and lines in shape space of
triangles depicting triangles with one fixed angle: (a) the outer blue
(short dashed) line, for the fixed angle equal to 109.5◦; (b) blue
(solid) lines for the fixed angle equal to π

2 , as functions of z′ = z =
cos 2χ (ordinate = vertical axis) and x ′ = x

√
1 − z2 = cos θ sin 2χ

(abscissa = horizontal axis). The domain of these variables is a
magenta (dark gray) circle of radius unity. The two straight red
(long dashed) lines at angles of ± 2π

3 , and the vertical axis are the
symmetry axes, i.e., s2 subgroups of the s3 permutation group, and
of the “constant angle curves” in shape space, as well. The three
collinear configurations in which one pair of particles has vanishing
separation are denoted by big solid circles, and the three collinear
configurations in which one particle has equal separations from the
other two are denoted by small solid circles.

and the � string

V� = σ�

3∑
i<j

|xi − xj |, (4)

or contain such a two-body component in a limited part of the
configuration (shape) space, such as the Y string

VY = σY min
x

3∑
i=1

|xi − x| = σY

3∑
i=1

|xi − xT|, (5)

where the minimum of the sum occurs at the Torricelli point
x = xT; see Ref. [11].

Note that the Y-string potential has perfectly concentric
contour lines within a pear-shaped region of shape space
delineated by the blue dashed line in Fig. 2. As shown in
Ref. [17], that “hyper-rotational” symmetry leads to a new
constant of motion in this part of shape space. A clear
discrimination of the Y-string from the �-string three-quark
potentials had been a problem in lattice QCD until Ref. [17]
showed that the two kinds of potentials have essentially
different hyperangular dependencies. The separation of one
kind of three-body potential from another is facilitated by the
use of the new variables r and φ. Then the Y-string component
is manifested through the sole dependence on r , whereas the �

string is manifested through the dependence of the potential on
the hyperangle φ, within the confines of the “central potential”
boundary in terms of “old” variables (χ,θ ) [10].
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FIG. 2. (Color online) The equipotential contours for the central
Y-string potential, and the boundary between the central Y-string and
two-string potentials as functions of z′ = z = cos 2χ (vertical axis)
and x ′ = x

√
1 − z2 = cos θ sin 2χ (horizontal axis). The blue (short

dashed) curve denotes the boundary between the two-body and the
three-body components of this potential; see Ref. [10]. The rotation
symmetry about the axis pointing out of the plane of the figure should
be visible to the naked eye.

Note that all three potentials in Figs. 2, 3, and 4 have essen-
tially (topologically) the same form in the two hyperangular
(“shape space”) variables:

V (r,φ) = V (r) + δV (r) cos(3φ) + · · · . (6)

This is a consequence of their permutation symmetry. Any
attractive permutation-symmetric potential has its highest
value at the center of the circle (r = 0) and it decreases
monotonically as one moves radially toward the r = 1 circle.
Moreover, a permutation-symmetric potential is circularly
symmetric at the center [δV (0) = 0] and is increasingly
broken by a periodic φ angular (“two-body”) component
δV (r) cos(3φ) as one moves radially toward the r = 1 circle.

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

x′

z′

FIG. 3. (Color online) Contour plot of the �-string potential as
a function of z′ = z = cos 2χ (vertical axis) and x ′ = x

√
1 − z2 =

cos θ sin 2χ (horizontal axis) for any fixed value of the hyper-radius
R. The rest of the legend is as for Figs. 1 and 2. The center of the
circle is the point with the highest value of the potential.
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FIG. 4. (Color online) Contour plot of the logarithm of the sum
of Newton’s two-body potentials as a function of z′ = z = cos 2χ

(vertical axis) and x ′ = x
√

1 − z2 = cos θ sin 2χ (horizontal axis) at
any fixed value of the hyper-radius R. The rest of the legenda is as in
Figs. 1 and 2. As one approaches the two-body collision points (three
large solid points on the big circle), the equipotential contour lines
become more and more dense and parallel, finally reaching infinite
density at these points, due to the singularities (poles) present.

As a consequence of this “topological equivalence” these
potentials lead to certain kinds of orbits, such as the “figure-
eight” one, that are essentially identical. The hyper-radial part
of the potential does not seem to be very important, so long as it
is attractive, because the stability of the orbit is ensured by the
approximate (dynamical) O(2) symmetry of these potentials.
The details of these potential differ, of course, and therefore
lead to different detailed properties of the amplitude and
phase variations but not so for the qualitative properties of the
motion. Indeed, if the potential does not contain the periodic φ-
dependent “two-body” component near the “outer edge” of the
shape space circle (or near the equator of the shape space hemi-
sphere), then there is no “figure-eight” orbit in that potential.

C. Approximate dynamical O(2) symmetry

The sum of Newton’s or �-string two-body potentials is
approximately symmetric under infinitesimal rotations in the
shape space, at least in the central (r � 0) part of the “shape
space,” as can be seen in Figs. 3 and 4, whereas the Y string
is exactly symmetric in the same region; see Fig. 2. Of course,
the two-body potentials are exactly invariant under the finite
(“kinematic”) rotations through φ = ± 2π

3 , which correspond
to cyclic permutations, as well as under reflections about the
three symmetry axes, which correspond to binary/two-body
permutations (“transpositions”).

Independence of the potential on the variable φ is equivalent
to its invariance under (infinitesimal) “kinematic rotation”
O(2) transformations

δx ′ = 2εz′ (7)

δz′ = −2εx ′, (8)

or, in terms of the original Jacobi variables,

δρ = ελ (9)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-1.5 -1 -0.5  0  0.5  1  1.5

Newton
Y

Y new
Δ

FIG. 5. (Color online) Real-space trajectories of the figure-eight
and one new solution that passes through the figure-eight initial
configuration for three different potentials. [Red (dark gray) solid
curve] Newtonian potential figure-eight; (dark gray long dashed
curve) Y-string potential figure-eight; [blue (gray) medium-length
dashed curve] Y-string potential new solution; and [magenta (light
gray) short dashed curve] �-string potential figure-eight.

δλ = −ερ. (10)

in the six-dimensional hyperspace. This invariance leads to the
new integral of motion G3 = 1

2 (pρ · λ − pλ · ρ), associated
with the dynamical symmetry (Lie) group O(2) that is a
subgroup of the (full hyperspherical) O(6) Lie group.

This O(2) symmetry transformation is an infinitesimal
version of the “kinematic rotations,” see Ref. [14], that operate
in two ordinarily different planes at the same time3: (a) in the
plane of Jacobi vectors ρ,λ and (ii) in the plane of Jacobi
momenta pρ − pλ (these two planes need not coincide in
general). It is only in the special case of planar motions
that these two planes coincide, and it is only in the (even
more special) case of vanishing (total) angular momentum
that the new constant of motion has presently discernible
consequences.

In the case of the sum of two-body potentials, such as the
Newtonian gravity or the �-string potential, this generalized
hyperangular momentum G3 is not an exact integral of motion
but an approximate one. The precise consequences of such
an approximate symmetry depend on the initial conditions of
motion, as we shall see below.

III. FIGURE-EIGHT MOTION

A periodic “figure-eight” orbit (Fig. 5), with vanishing total
angular momentum (L = 0) has been found by Moore [2]
in the case of equal masses and gravitational potential.It
was shown in Ref. [6] that the hyper-radius R is close to
being constant along the figure-eight trajectory: It makes only
small-amplitude oscillations in lockstep, i.e., with the same

3An ordinary space rotation rotates both position and velocity
vectors about the same axis and through the same angle.
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FIG. 6. (Color online) The time dependence of the hyperangular
radius r red (solid) and the hyperangles α = sin−1 r [blue (long-
dashed) line] and φ [gray (short-dashed) line] of the figure-eight
solution in Newton’s potential.

frequency and locked in phase, with the area of the triangle
and the hyperangle φ; see below.

A. Time dependence of the hyperangular motion

We take (rinit.,φinit.) = (1, 1
3π ) as the initial condition, which

is one of three identical configurations, up to permutations.
This is a collinear configuration with one particle in the middle
of the other two. The initial velocities are such that the total
angular momentum vanishes, see Table I.

1. Newtonian gravity

In Fig. 6 we see that both hyperangular variables (r,φ)
oscillate with the same frequency and locked in phase along
the figure-eight trajectory.

2. The Y- and �-string potentials

A similar situation is present in the other two potentials:
the hyper-radius R(t) is almost constant along this trajectory:
it makes small-amplitude oscillations in phase with the area of
the triangle, Fig. 7 (similarly for the � string, see Fig. 8).

B. Hyperangular φ dependence

One can see in Fig. 9 that the periodicity of the figure-eight
motion is determined by the braiding angle φ.Here one can
also see that the actual path in the shape space, Fig. 9, taken by
the Newtonian three-body system is remarkably close to the
Newtonian isopotential lines in Fig. 4. If this were exactly true,
then the hyper-radius would be constant along the figure-eight
orbit, but it is not: R(t) and r(t) are periodic functions, with
the same basic frequency of 3φ(t) and locked in phase, i.e.

-2

-1.5
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-0.5

 0

 0.5

 1

 1.5

 2

 0  500  1000  1500  2000  2500

r φ α

FIG. 7. (Color online) The time dependence of the hyperangular
radius r red (solid) and the hyperangles α = sin−1 r [blue (long-
dashed) line] and φ [gray (short-dashed) line] of the figure-eight
solution in the Y-string potential.

they oscillate about their average values as follows

φ = 〈φ̇〉t + δφ sin(3φ) + · · ·
r(φ) = r + δr sin(3φ) + · · ·

R(φ) = R + δR sin(3φ) + · · · . (11)

This phase- and frequency locking provide an important
constraint that effectively reduces the number of independent
degrees of freedom to two. In other words φ is the (ap-
proximate) cyclic, or “ignorable” variable of the figure-eight
periodic motion that may be integrated out/ignored/. The
conjugate action variable G3 is the associated (approximate)
integral of motion.
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 0
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 0  20  40  60  80  100

r φ α

FIG. 8. (Color online) The time dependence of the hyperangular
radius r red (solid) and the hyperangles α = sin−1 r [blue (long-
dashed) line] and φ [gray (short-dashed) line] of the figure-eight
solution in the �-string potential.
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FIG. 9. (Color online) Trajectories of the figure-eight and one
new solution in three different potentials in terms of z′ = z = cos 2χ

(vertical axis) and x ′ = x
√

1 − z2 = cos θ sin 2χ (horizontal axis).
[Red (dark gray) solid curve] Newtonian potential figure-eight;
(dark gray long-dashed curve) Y-string potential figure-eight; [blue
(gray) medium-length dashed curve] Y-string potential new solution;
[magenta (light gray) short-dashed curve] �-string potential figure-
eight; [magenta (dark gray) solid curve] unit circle.

C. The action variable conjugate to φ

In order to find the appropriate action variable we look at
the (“kinematic”) hyper-angular momentum G3 that reads

G3 = m

4
(Rr)2φ̇ = m

4
(R sin α)2φ̇ (12)

(with vanishing angular momentum L = 0) as a function
of permutation-symmetric variables R,r = sin α and φ and
oscillates as a periodic function of the hyperangle 3φ. Hence,
it follows that G3 and φ̇ must be (almost) constant in orbits
with L = 0, R � const., and r � 1. In other words, the angle
φ grows (or decreases, depending on the orientation of the
motion) almost linearly in time, which is confirmed by our
numerical results.

The time/hyperangle average G3

G3 = 1

T

∫ T

0
G3dt = 1

T

∫ T

0

m

4
(Rr)2φ̇dt

= 1

2π

∫ 2π

0

m

4
(Rr)2dφ (13)

is a nonvanishing constant on the figure-eight orbit, furnishing
the (approximate) action variable that goes together with
the (linearized) hyperangle φ for this periodic motion. The
approximate constancy of G3 � G3 �= 0 is the cause of
dynamical stability of the figure-eight orbit: The vanishing

 1.1
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R G

FIG. 10. (Color online) The time dependence of the hyper-radius
R (red solid line) and the hyper-angular momentum G (gray dashed
line) of the figure-eight solution in Newton’s potential. The legenda
are explicitly shown below the figure.

angular momentum (L = 0) three-body relative motion kinetic
energy

Tkin = m

2

{
Ṙ2 +

(
R

2

)2[
ṙ2

1 − r2
+ (r φ̇)2

]}

= m

2

{
Ṙ2 +

(
R

2

)2

[α̇2 + (φ̇ sin α)2]

}
(14)

has the form of the single-particle kinetic energy in polar
coordinates, albeit with polar radius R

2 reduced by half in the
“hyperangular kinetic energy” m

2 (R
2 )2[α̇2 + (φ̇ sin α)2]. This

means that another (hyper-) angular-momentum-like three
vector G is conserved when the potential does not depend
on the two angles (α, φ).

In the case when the potential depends on α but does
not depend on φ, or has only small variations with φ,
then the “azimuthal hyperangular momentum” G3 = ∂Tkin

∂φ̇
is

approximately constant:

Ġ3 = −∂V (r,φ)

∂φ
= 3δV (r) sin(3φ) + · · · .

Then G3 � G3 �= 0 provides a repulsive term 2G2
3

mR2 in the

effective hyper-radial potential Veff(R) = 2G2
3

mR2 + V3−body(R)
that prevents the system from collapsing to a point, just as
the (ordinary) angular momentum L �= 0 does in the two-body
problem.

1. Newtonian gravity

The temporal variation of the hyper-radius R(t) and the
hyperangular momentum G(t) in the Newtonian gravitational
potential are shown in Fig. 10.

2. The Y- and �-string potentials

The temporal variation of the hyperangular momentum
G(t) and R(t), the former reduced by factor 3 to emphasize
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FIG. 11. (Color online) The time dependence of the hyper-radius
R (red solid line) and one-third of the hyperangular momentum G/3
(gray dashed line) of the figure-eight solution in the Y-string potential.

the small variation of R in the Y-string potential, are shown in
Fig. 11.

Note the cutoff peaks of the sines (“flat tops”) of the
hyperangular momentum G/3 due to the exact dynamical O(2)
symmetry in that part of the configuration space.

IV. NEW Y-STRING PERIODIC ORBITS

Note, moreover, that the permutation-symmetric three-body
potential V3−body(sin α,φ) in the region of the figure-eight
orbit [i.e., on the outer fringes of the (r = sin α,φ) circle]
is attractive as a function of r = sin α, with a minimum at
the unit circle (r = 1) and a strictly periodic function of the
(triple) hyperangle 3φ.

It should be no surprise, then, that the figure-eight motion
of the three-body system, with its almost constant hyper-radius
R, has many similarities with that of the spherical pendulum in
an inhomogeneous (azimuthally periodic) gravitational field:
figure-eight orbit corresponds to rotations, but there are other
qualitatively different kinds of motions that we shall display
and briefly discuss in this section.

There is a small, yet pronounced, nonlinearity in the figure-
eight motion’s φ’s temporal dependence, particularly near the
φ = 0, ± 2π

3 points. These three points/lines in the (r,φ) circle
(see Fig. 9) correspond to the configurations of closest two-
body approach in real space. Of course, the figure-eight orbit
does not touch the “unit circle” at these three values of φ, so
there are no two-body collisions in this type of orbit.

Yet, this suggests that there might be other, perhaps multiply
periodic, solutions with “trajectories” in the (r,φ) plane that
touch the r = 1 circle at the hyperangle values other than
φ = ±π

3 ,π and/or approach the unit circle (the equator of
the shape hemisphere) even closer to the two-body collision
points. The latter fact means that the corresponding trajectories
in real space are “narrower” than the figure-eight one.

We have studied this region more closely and found several
new periodic solutions with lesser symmetry than the figure-
eight one that pass through the “infinitesimal” neighborhood
of the initial state but only in the Y-string and the �-string

TABLE I. The initial conditions for the solutions shown in this
paper: d is the value of the initial distance between the outer left
(or right) particle and the middle one and the velocities (both are
in dimensionless units where the masses and the coupling constants
have been set equal to unity); the angle θ is in radians.

Name d v θ (rad) Potential

Fig. 8 6 1.37 1.205 Y string
Type I 6 1.32 1.437 Y string
Type II 6 4.53 1.40 Y string
Fig. 8 1 0.6355 0.5736 Newton
Fig. 8 1 0.536 1.49287 � string

potentials (i.e., not in Newton’s gravity, as yet). We display
two interesting new orbits below. The initial conditions are
given in Table I.

A. Type I (“linear-in-φ”) reduced symmetry solution

First, note that the real-space trajectory of (“right-hand-
side”) particle number 1 in Fig. 12 differs from the one of the
(“central”) particle number 2 in Fig. 13, thus making it clear
that this is a periodic, but not a choreographic, motion.

In other words, this solution is symmetric “merely” under
the two-body permutation group s2 rather than under the three-
body permutation group s3. Due to the reduced symmetry, one
particle executes an “independent” motion, whereas the other
two move on orbits that are mirror images of each other, very
much like those in Ref. [9]. This means that this new solution
is probably a bifurcation of the figure-eight orbit as a function
of particle masses related to those found in the Ref. [5], i.e.,
as a function of explicit s3 permutation symmetry breaking.

The figure-eight orbit touches the unit circle at three points
of the equilateral triangle defined by φ = ± 1

3π,π (see Fig. 9),
whereas this new solution touches it at only one vertex of this
equilateral triangle viz. φ = 1

3π , and “cuts corners” at the other
two, only to touch the unit circle at four other values of φ that
differ from the two-body collisions points 0, ± 2

3π . This is still
a periodic solution with a period of 8π , i.e., it takes four cycles
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FIG. 12. (Color online) Real-space trajectory of particle number
2 of the type I new solution that passes through the figure-eight initial
configuration.
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FIG. 13. (Color online) Real-space trajectory of particle number
1 of the type I new solution that passes through the figure-eight initial
configuration. The trajectory of particle number 3 is a reflection about
the line dividing this trajectory vertically.

of the hyperangle φ to complete one period, but with several
different hyperangular frequencies, instead of the single basic
frequency 3φ. This fact may not be immediately visible to the
naked eye, as these frequencies are close to 3φ, but shows up
as “beats” in the time dependence of the amplitudes.

The hyperangle φ in this solution (still) grows (or descends)
indefinitely, so this solution also corresponds to a kind of
rotation of the pendulum, but with a changing angular velocity,
see Fig. 14.The time derivatives show the beats more clearly;
see Fig. 15.The temporal variation of the hyper-radius R(t) is
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r φ α

FIG. 14. (Color online) The time dependence of the hyperangular
radius r (red solid line), and the hyperangles α = sin−1 r [blue (long-
dashed) line] and φ [gray (short-dashed) line] of the type I new
solution in the Y-string potential that passes through the figure-eight
initial configuration. Note that φ moving from 0 to 2π corresponds
to two segments between vertical lines (discontinuities) due to the
numerical evaluation of inverse trigonometric functions. Note that one
complete period of the motion corresponds to eight such segments,
i.e., to φ changing from 0 to 8π , or to four complete revolutions
around the (r,φ) circle.
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r′ φ′ α′

FIG. 15. (Color online) The first derivatives of the time de-
pendence of the hyperangular radius ṙ (red solid line), and the
hyperangles α̇ = d

dt
sin−1 r (blue long-dashed line) and φ̇ (gray

short-dashed line) of the type-I new solution in the Y-string potential
that passes through the figure-eight initial configuration.

shown in Fig. 16 and that of the hyperangular momentum G(t)
is shown in Fig. 17.

Note the beats in the time evolution of R(t) and G(t), as
discussed.

B. Type II (“oscillating φ”) reduced symmetry solution

First note that the real-space trajectory of particle number 2
in this solution, Fig. 18, differs from the one of particle number
1, thus making it clear that this is also a periodic, but not a
choreographic, motion. The trajectory of particle number 3
(blue online) is a reflection of trajectory of particle number 1
about the origin.

At first, the aforementioned action-angle variables do not
seem appropriate for this new periodic orbit; indeed, the
(formerly) linear increase (decrease) of the hyperangle φ is
now subject to substantial modifications: After initial rapid

 8
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R

FIG. 16. (Color online) The time dependence of the hyper-radius
R of the type I new solution in the Y-string potential that passes
through the figure-eight initial configuration.
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G

FIG. 17. (Color online) The time dependence of the hyperangular
momentum G of the type I new solution in the Y-string potential that
passes through the figure-eight initial configuration. Note the cutoff
peaks of the sines (“flat tops”).

(hyper-) rotation in the clockwise direction starting from φ =
0, it slows down and stops around φmin � −0.764π (Fig. 19)
and then changes the direction of motion and swings back
yet again only to stop, this time around φmax � 1.431π , and
then repeating this cycle ad infinitum. Note that the maximal
difference (twice the amplitude) of φ is numerically close
to being a simple fraction of π , i.e., �φ = φmax − φmin =
13.0001 1

6π , whereas the average value φ = 1
2 (φmax + φmin) is

numerically close to 1
3π . We suspect that 13

6 π and 1
3π are the

exact values and that the deviations from our numerical values
are due to rounding-off errors. This resembles the oscillations
of a variable-length pendulum. Indeed, Fig. 19 shows that the
hyper-radius R(t) is oscillating with the same frequency and
phase as the hyperangle φ(t), thus extending the analogy with
the variable-length pendulum model.
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FIG. 18. (Color online) Real-space trajectories of particle num-
ber 1 (red solid line), particle number 2 [green (light gray) dashed
line], and particle number 3 [blue (dark gray) dashed line] line in
the type II new solution that passes through the figure-eight initial
configuration.
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FIG. 19. (Color online) The time dependence of the hyper-radius
R (red solid line) and 10×φ (gray short-dashed line) in the type II
“oscillating” solution in the Y-string potential.

V. CONCLUSIONS

We have studied the figure-eight motion in three different
three-body potentials in terms of permutation-symmetric
variables (R,r = sin α) and the braiding hyperangle φ. The
existence of this orbit depends on the periodic dependence
of the potential on the braiding hyperangle φ that “guides”
the figure-eight orbit(s) around the two-body collision
points.

The figure-eight orbits in the triangle shape space are
generally close to their isopotential lines, although formal
arguments show that they cannot be exactly identical [18].
Thus the exact analytic solutions ought to be sought among
(small) oscillations about the isopotential lines, with basic
frequency 3φ. The Hamiltonian of three identical particles in a
permutation-symmetric potential with vanishing total angular
momentum has certain similarities with that of a spherical
pendulum in inhomogeneous azimuthally periodic potentials,
which, in turn, suggests existence of other types of solutions.

We have found two new periodic solutions in the Y-string
potential that pass through the figure-eight initial state but
do not share its symmetry. One of these solutions (type I)
has a monotonically rising (descending) hyperangle φ, just
like the figure-eight orbit, but a different pattern of syzygies,
whereas the second (type II) new solution φ is oscillating about
its average value of π

3 , with the hyper-radius R following
suit. All of these orbits are clearly characterized by their
(R,r,φ) behaviors that display certain similarities, despite their
independent and seemingly random form of trajectories in the
configuration space. Thus we believe this to be a good set of
variables to mathematically simplify and describe all periodic
orbits of three identical bodies.

A few words about the history of this subject and our
approach to it might be in order now. In our study Ref. [17]
of the so-called Y-junction and the �-string potentials we
found an integral of three-body motion, when the three-body.
potential depends on only two, rather than three, independent
three-body variables, viz., the hyper-radius (or the moment of
inertia divided by the quark/particle mass) and the area of the
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triangle defined by the three bodies.4 As the static three-body
potential may depend on (at most) three independent scalar
variables, our observation naturally begged the question: What
is the third independent three-body variable in this set?5 It
was an attempt to answer this question that brought us to the
present permutation-symmetric variables. We are not the first

4The exact Y-string potential does not always conserve this new
integral of motion, due to its angle-dependent “two-body” parts, but
is valid in the major part of the “triangle shape space” and will be
shown to play a role in the existence of a new, figure-eight-shaped
closed trajectory.

5As the first two variables (the hyper-radius and the area of the
triangle) are manifestly invariant under permutations of the three
particles, we call this set “permutation symmetric.”

ones to use them, however: Chenciner and Montgomery have
used these variables (these authors call θ “our” variable φ) to
parametrize the triangle shape space in Ref. [3]. According to
Ref. [3], H. Hopf was the first one to introduce these variables;
Ref. [19].
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