
PHYSICAL REVIEW E 83, 056601 (2011)

Solitonic propagation and interaction for a generalized variable-coefficient forced Korteweg–de
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Under investigation is a generalized variable-coefficient forced Korteweg–de Vries equation in fluids and
other fields. From the bilinear form of such equation, the N -soliton solution and a type of analytic solution
are constructed with symbolic computation. Analytic analysis indicates that: (1) dispersive and dissipative
coefficients affect the solitonic velocity; (2) external-force term affects the solitonic velocity and background;
(3) line-damping coefficient and some parameters affect the solitonic velocity, background, and amplitude.
Solitonic propagation and interaction can be regarded as the combination of the effects of various variable
coefficients. According to a constraint among the nonlinear, dispersive, and line-damping coefficients in this
paper, the possible applications of our results in the real world are also discussed in three aspects, i.e., solution
with the constraint, solution without the constraint, and approximate solution.
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I. INTRODUCTION

With the inhomogeneities of media and boundaries taken
into account, the variable-coefficient Korteweg–de Vries
(KdV)-typed equations can be obtained [1–15]. Hereby, with
the aid of symbolic computation [14–17], we will investigate
the following generalized variable-coefficient forced KdV
equation [2–11]:

ut + a(t) u ux + b(t) uxxx + c(t) u + d(t) ux = f (t) (1)

where u is a function of the scaled “space” coordinate x and
“time” coordinate t , and a(t), b(t), c(t), d(t), and f (t) are the
analytic functions of t , representing the nonlinear, dispersive,
line-damping, dissipative, and external-force coefficients, re-
spectively [2–11].

With different forms of the coefficients, Eq. (1) has been
seen to describe the nonlinear waves in a fluid-filled tube [2–4],
weakly nonlinear waves in the water of variable depth [5,6],
trapped quasi-one-dimensional Bose-Einstein condensates
[7], internal gravity waves in lakes with changing cross
sections [8], the formation of a trailing shelf behind a
slowly-varying solitary wave [9], dynamics of a circular rod
composed of a general compressible hyperelastic material
with the variable cross sections and material density [10], and
atmospheric and oceanic dynamical systems [11]. Variable co-
efficients of Eq. (1) are caused by the geometrical and physical
inhomogeneities, e.g., varying radius, material density, and so
on [2–11]. Some special cases of Eq. (1) in fluids will be
discussed later, which are the one from the nonlinear inviscid
barotropic nondivergent vorticity equation [11], Eq. (24) from
an inviscid fluid in a fluid-filled tube [3,4], and Eq. (26) from
the water of variable depth [6].

In Ref. [18], Eq. (1) has been transformed into a variable-
coefficient KdV model just with the nonlinear and dispersive
terms, based on which the Bäcklund transformation and
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soliton solution in the Wronskian form have been derived. In
Ref. [19], Eq. (1) has been transformed into the cylindrical
and standard KdV equations with symbolic computation.
In Ref. [20], two Miura transformations from Eq. (1) to a
modified KdV equation have been constructed, through which
the auto-Bäcklund transformations, nonlinear superposition
formulas, Lax pairs, and soliton solutions have been presented.
In Ref. [21], a special case of Eq. (1), i.e., Eq. (24), has been
transformed into a potential KdV equation and solved.

However, to our knowledge, the N -soliton solutions for
Eq. (1) in the explicit bilinear forms have not been obtained
directly and the features of the solitonic propagation and
collision, caused by the variable coefficients, have not been
discussed. In this paper, we will investigate Eq. (1) under the
constraint

a(t) = 6 b(t)

ρ
e
∫
c(t)dt , (2)

where ρ is a nonzero constant. In Sec. II, a dependent variable
transformation will be proposed, Eq. (1) will be transformed
into its bilinear form, and the N -soliton solutions in the explicit
forms will be constructed, from which the characteristic-line
method [22,23] will be employed to investigate the effects of
the variable coefficients on the solitonic velocity, amplitude
and background. In Sec. III, a type of analytic solution will
be obtained when another kind of solution form is substituted
into the bilinear equation. Section IV will show the originality
of our results and the possible applications in the real world.
Finally, Sec. V will present the conclusions.

II. SOLITON SOLUTIONS

Through the dependent variable transformation

u = 2ρe− ∫
c(t)dt

[
(log�)xx+ 1

2ρ

∫
e
∫

c(t)dtf (t)dt+χ

]
, (3)
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where � is a real function of x and t , and χ is an arbitrary
constant, the bilinear equation of Eq. (1) turns out to be the
following form:{

DxDt + b(t) D4
x +

[
d(t) + 6b(t)

ρ

∫
e
∫
c(t)dtf (t)dt

+12χ b(t)

]
D2

x

}
� · � = 0 , (4)

where Dm
x Dn

t is the Hirota bilinear derivative operator [24,25]
defined by

Dm
x Dn

t a · b

≡
(

∂

∂x
− ∂

∂x ′

)m (
∂

∂t
− ∂

∂t ′

)n

a(x,t) b(x ′,t ′)
∣∣∣∣
x ′=x, t ′=t

.

(5)

We expand � in the power series of a small parameter ε as

� = 1 + ε �1 + ε2 �2 + · · · . (6)

Substituting Expansion (6) into Eq. (4) and collecting the
coefficients of the same power of ε, through the standard
process of the Hirota bilinear method, we can derive the
N -soliton solutions for Eq. (1), which can be denoted as

u = 2 ρ e− ∫
c(t)dt

{
∂2

∂x2

{
log

[ ∑
μ=0,1

exp

( N∑
j=1

μj ξj

+
N∑

1�j<l

μj μl Aj l

)]}
+ 1

2 ρ

∫
e
∫
c(t)dtf (t)dt + χ

}
, (7)

with

ξj = kj x + ωj (t) + ξ 0
j , (8)

ωj (t) = −k3
j

∫
b(t)dt − kj

×
∫ [

d(t) + 6b(t)

ρ

∫
e
∫
c(t)dtf (t)dt + 12χ b(t)

]
dt,

(9)

eAjl = (kj − kl)2

(kj + kl)2
, (10)

where kj and ξ 0
j (j = 1,2, . . . ,N) are arbitrary real constants,∑

μ=0,1 is a summation over all possible combinations of

μ1 = 0,1, μ2 = 0,1, . . . , μN = 0,1, and
∑N

1�j<l means a
summation over all possible pairs (j,l) chosen from the set
(1,2, . . . ,N), with the condition that 1 � j < l [25].

Next, we will apply the characteristic-line method [22]
to discuss the effects of the coefficients on the solitonic
propagation and interaction, and express the velocity vj of
each solitary wave as

vj = k2
j b(t) + d(t) + 6b(t)

ρ

∫
e
∫

c(t)dtf (t)dt

+ 12χb(t) (j = 1,2, . . . ,N ) , (11)

the sign and absolute value of which control the solitary
moving direction and speed, respectively [23]. As shown in
Figs. 1(a) and 1(b), the initial superposed solitons with the
different velocities are separated over a period of time for
different b(t) and d(t), i.e., the dispersive and dissipative
coefficients affecting the solitonic velocity. As shown in
Fig. 1(c), within the same time, the initial superposed solitons
with different f (t) finally travel different distances along
x direction and rise to different levels, i.e., the external-
force term affecting the solitonic velocity and the position
of background. For the concept of background, the similar
terminology has appeared in Ref. [26].

Effect of the line-damping coefficient is illustrated in
Figs. 2(a) and 2(b). When f (t) = 0, from Fig. 2(a), we can
observe that c(t) has only influence on the solitonic amplitude.
However, when f (t) �= 0, as shown in Fig. 2(b), the solitonic
background and amplitude can be affected obviously by c(t).
Expression (11) can further show that the velocity has also
changed. In conclusion, the effects of the various variable
coefficients have been listed in Table I.

Besides the variable coefficients discussed above, there also
exist two parameters ρ and χ in Expression (7), the effects
of which can be discussed in the similar manner. Relation
(2) indicates that the influence of ρ can be considered as
one part of the nonlinear coefficient. Moreover, as shown
in Ref. [25], there only exist the overtaking solitons for the
constant-coefficient KdV equation,

ut + 6 u ux + uxxx = 0 . (12)
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FIG. 1. Evolution plots of the one-soliton solution given by Expression (7) with parameters ρ = 1, χ = 0, k1 = 1, c(t) = 0, ξ 0
1 = 0,

and (a) d(t) = 0, f (t) = 0, b(t) = τ t , τ = 1,3,5, respectively, t = 0 (superposed line), τ = 1, t = 2 (solid line), τ = 3, t = 2 (dashed line),
τ = 5, t = 2 (bold dashed line); (b) b(t) = 1, f (t) = 0, d(t) = τ t , τ = 1,3,5, respectively, t = 0 (superposed line), τ = 1, t = 2 (solid
line), τ = 3, t = 2 (dashed line), τ = 5, t = 2 (bold dashed line); (c) b(t) = d(t) = 1, f (t) = τ t , τ = 1,2,3, respectively, t = 0 (superposed
line), τ = 1, t = 1 (solid line), τ = 2, t = 1 (dashed line), τ = 3, t = 1 (bold dashed line).
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FIG. 2. Evolution plots of the soliton solution given by Expression (7) with parameters (a) ρ = 1, χ = 0, k1 = 1, ξ 0
1 = 0, b(t) = d(t) = 1,

f (t) = 0, c(t) = τ t , τ = 1,2,3, respectively, t = 0 (superposed line), τ = 1, t = 1 (solid line), τ = 3, t = 1 (dashed line), τ = 5, t = 1 (bold
dashed line); (b) ρ = 1, χ = 0, k1 = 1, ξ 0

1 = 0, b(t) = d(t) = 1, f (t) = 1, c(t) = τ t , τ = 1, t = 0 (left solid line), τ = 2, t = 0 (left dashed
line), τ = 3, t = 0 (left bold dashed line), τ = 1, t = 1 (right solid line), τ = 2, t = 1 (right dashed line), τ = 3, t = 1 (right bold dashed line);
(c) ρ = 1, χ = −0.5, ξ 0

1 = ξ 0
2 = 0, k1 = 2, k2 = 3, b(t) = 1, c(t) = d(t) = f (t) = 0, t = −2 (solid line), t = 0 (dashed line), t = 2 (bold

dashed line).

However, without consideration on the influences of the
variable coefficients, i.e., b(t) = 1 and c(t) = d(t) = f (t) =
0, and for the existence of parameter χ in Expression (7), the
head-on solitons for Eq. (12) could also be derived, which has
been illustrated in Fig. 2(c).

In our opinion, the precise appearance of solitons for Eq. (1)
includes velocity, amplitude, and background. The total height
of solitons can be seen as the superposition of the amplitude
and background, just like the case that one stands on the
floor. In Fig. 3, three types of two-soliton interactions are
illustrated. Figure 3(a) shows that the solitonic characteristic
line, amplitude, and background are all periodic. However, the
forms of background in Figs. 3(b) and 3(c), i.e., the forms
of floor, are taken as 0.1t2e− sin(2t) and shockwave-like shape,
respectively. We can present more solitonic structures with the
different velocity, amplitude, and background, by choosing the
different variable coefficients.

III. ANOTHER KIND OF ANALYTIC SOLUTIONS

Solutions for Eq. (1) can be also assumed to be in the
form [27]

� = σ1 eQx+β(t) + σ2 cos[Px − α(t)] + σ3 e−Qx−β(t) , (13)

where P , Q, σ1, σ2, and σ3 are arbitrary constants, and α(t)
and β(t) are the functions of t . Taking

n(t) = d(t) + 6b(t)

ρ

∫
e
∫
c(t)dtf (t)dt + 12χ b(t) , (14)

substituting Expression (13) into Eq. (4) and collecting the
coefficients of different terms, we can obtain three ordinary
differential equations:

(P 4 − 6P 2Q2 + Q4) b(t) + (−P 2 + Q2) n(t)

+P α′(t) + Qβ ′(t) = 0 , (15)

(−4P 3Q+ 4PQ3) b(t) + 2PQn(t) + P β ′(t) −Q α′(t) = 0,

(16)(−2P 2σ 2
2 + 8Q2σ1σ3

)
n(t) + 8

(
P 4σ 2

2 + 4Q4σ1σ3
)
b(t)

+ 8Qσ1σ3β
′(t) + 2Pσ 2

2 α′(t) = 0 . (17)

Solving Eqs. (15)–(17) gives the solution of Eq. (1):

α(t) =
∫

[−P 3 b(t) + 3P Q2 b(t) + P n(t)]dt, (18)

β(t) =
∫

[−Q3 b(t) + 3P 2 Qb(t) − Qn(t)]dt, (19)

σ2 = 2 i
Q

P

√
σ1σ3. (20)

For such types of solutions, effects of the variable coeffi-
cients can be discussed similarly to those in Sec. II. Moreover,
based on Expressions (18)–(20), we will take different values
of P , Q, σ1, and σ3 to obtain different structures. As shown
in Figs. 4 and 5, three types of structures are illustrated, and
the function � in Expression (13) has the following form,
correspondingly:

� = γ1 cosh[α1x + β1(t)] + γ2 cosh[α2x + β2(t)], (21)

� = γ3 sinh[α3x + β3(t)] + γ4 cos[α4x + β4(t)], (22)

and

� = γ5 cos[α5x + β5(t)] + γ6 sin[α6x + β6(t)], (23)

where αj , βj , and γj (j = 1,2, . . . ,6) can be calculated by
Expressions (18)–(20).

IV. DISCUSSIONS

In this section, we will show the originality of our results
compared with Refs. [18–21,28], and possible applications in
the real world.

TABLE I. Effects of the various variable coefficients.

Dispersive term Line-damping term Dissipative term External-force term

Velocity Velocity, amplitude, background Velocity Velocity, background
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FIG. 3. (Color online) Evolution plots of the two-soliton solution given by Expression (7) with parameters (a) ρ = 1, χ = 1, k1 = 1,
k2 = 1.2, ξ 0

1 = 0, ξ 0
2 = −10, b(t) = sin(4t), c(t) = sin(4t), d(t) = 0, and f (t) = sin(4t); (b) ρ = 1, χ = 0, k1 = 1, k2 = 2, ξ 0

1 = 0, ξ 0
2 = −20,

b(t) = cos(t), c(t) = 2 cos(2t), d(t) = sin(2t), and f (t) = 0.2te− sin(2t); (c) ρ = 1, χ = 0, k1 = 1, k2 = −1.5, ξ 0
1 = 0, ξ 0

2 = 0, b(t) = 1, c(t) = t ,
d(t) = 1, and f (t) = 1.

From the viewpoint of mathematics, the main difficulty
of directly solving Eq. (1) comes from the external-force
term [18–21]. Reference [28] has transformed a forced and
damped KdV equation into its bilinear form under the
logarithmic transformation u = 2 (log�)xx . In our opinion,
under the logarithmic transformation, although there exists the
bilinear “form,” models like Eq. (1) are difficult to be solved
analytically. Actually, Ref. [28] does not solve the bilinear
“form” directly, but gives the Bäcklund transformation and
Lax pair only. To avoid such problem, Refs. [18–20] have
transformed Eq. (1) into its simpler counterparts to investigate
its properties indirectly. Recently, Ref. [21] has solved a special
case of Eq. (1), i.e., Eq. (24), by transforming it into a potential
KdV equation without the external-force term, compared with
which our results are more generalized. Therefore, only under
the transformation with the line-damping and external-force
terms considered, e.g., Transformation (3), Eq. (1) can be
transformed into a directly solvable bilinear form. Moreover,
compared with Refs. [18–21], besides the mathematical
calculation, we have also made a discussion on the features
of the solitonic propagation and collision. Effects of each
coefficient are concluded as: (i) dispersive coefficient b(t)
and dissipative coefficient d(t) affect the solitonic velocity;

(ii) external-force term f (t) affects the solitonic velocity
and background; (iii) line-damping coefficient c(t) affects the
solitonic velocity, background and amplitude.

However, from the viewpoint of physics, Constraint (2)
among the nonlinear, dispersive, and line-damping coeffi-
cients mainly limits the applications of solutions. Constant
coefficients in Eq. (12) satisfy Constraint (2) spontaneously.
Note that the “time”-dependent dissipative coefficient has
no influence on Constraint (2) or Transformation (3), which
indicates that it is easier to be dealt with than other ones.
Constraint (2) is necessary to balance the nonlinearity and
dispersion to generate solitons, and the similar conditions exist
in Refs. [18–20], also for the variable-coefficient modified
KdV equation [29,30] and Kadomtsev-Petviashvili equation
[31,32]. Based on Constraint (2), we will discuss the possible
applications in the following three aspects:

Case A. Models with the variable nonlinear, dispersive,
and line-damping coefficients [8–11] can be solved under
Constraint (2). Realization of Constraint (2) depends on
the geometrical and/or physical balance [8–11]. Thereinto,
Ref. [11] has derived a special case of Eq. (1) from the
nonlinear inviscid barotropic nondivergent vorticity equation
in a β plane by means of the multiscale expansion method in
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FIG. 4. (Color online) Evolution plots of the analytic solution given by Expression (13) with parameters ρ = 1, χ = 0, b(t) = sin(4t),
c(t) = sin(4t), d(t) = 0, f (t) = sin(4t), and (a) P = i, Q = 2, σ1 = 1, and σ3 = 1; (b) P = 1, Q = 2, σ1 = 1, and σ3 = −1; (c) P = 1,
Q = 2i, σ1 = 1, and σ3 = 1.
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FIG. 5. (Color online) Profiles of the waves shown in Fig. 4 at t = 0 (solid line), t = 0.35 (dashed line), t = 0.7 (bold dashed line). (a)
shows the two-soliton structure, while Figs. 5(b) and 5(c) have some singularities.

two different ways, with and without the so-called y-average
trick. That case presents some special forms of all the five
variable coefficients investigated in this paper, and might
generate the similar solitonic structures to those shown in
Secs. II and III. For example, to generate the structure similar to
that presented in Fig. 3(b), we predict that the line damping c(t)
there should be periodic. The external-force term in Fig. 3(b)
is assumed to have a special form. Actually, the form of the
external-force term has no influence on the integrability, but
leads to the form of solitonic background, which means that
any form of the external-force term is allowed. Therefore, with
the parameters in a real system to satisfy Constraint (2), the
structure similar to that presented in Fig. 3(b) might exist.

Case B. Sometimes, Constraint (2) can be satisfied spon-
taneously. For example, if c(t) = 0 and the coefficients of the
nonlinear and dispersive terms are constants, the following
special case of Eq. (1) [3,4,21]:

ut + a u ux + b uxxx + d(t) ux = f (t) , (24)

is completely integrable and can be solved directly without any
extra condition. Equation (24) describes an inviscid fluid in a
prestressed thin walled elastic tube in arterial mechanics [3].
Equation (24) also describes an incompressible inviscid fluid
in an incompressible, isotropic thin elastic tube subjected to a
variable initial stretches both in the axial and radial directions
[4]. In such a case, for Solution (7), the solitonic amplitude
keeps invariable, while the solitonic velocity and background
depend on the forms of d(t) and f (t).

Case C. From the above analysis, we see that the line-
damping coefficient c(t) limits the more applications of
solutions compared with the nonlinear coefficient a(t) and
dispersive coefficient b(t). For expanding the application, we
will also discuss the approximate solutions and consider the
following special case of Eq. (1):

ut + a u ux + b uxxx + cos(ϕ t) u + d(t) ux = f (t) , (25)

where ϕ is a nonzero constant. The coefficients of Eq. (25)
do not satisfy Constraint (2) strictly. But, if ϕ is big

enough, we can find that sin(ϕ t)
ϕ

≈ 0 and e
sin(ϕ t)

ϕ ≈ 1. In such
a case, Constraint (2) can be satisfied approximately and
the similar structure shown in Fig. 2(b) might be observed.
More approximate solutions could be obtained under other
assumptions.

Reference [6] has presented another special case of Eq. (1)
for the propagation of weakly nonlinear waves in the water

of variable depth, with its variable coefficients not satisfying
Constraint (2) in general, as below,

ut + 3

2
ψ3(t) u ux + 1

6ψ(t)
uxxx − 1

2ψ(t)

dψ(t)

dt
u= 0, (26)

where ψ(t) is a quantity connected with the profile at the
bottom of the channel [6]. To satisfy Constraint (2), ψ(t) must
be a constant and Eq. (26) will not be a variable-coefficient
one any more.

V. CONCLUSIONS

As a generalized variable-coefficient model in fluids and
other fields [2–11], Eq. (1) has been investigated with
symbolic computation. Under Constraint (2), Eq. (1) has been
transformed into Bilinear Form (4) directly, based on which
N -soliton Solution (7) has been constructed. In Sec. III, a type
of analytic solution has also been obtained.

Solitonic propagation and interaction for Eq. (1) can
be regarded as the combination of the effects of various
variable coefficients, as shown in Figs. 1–5. Effects of the
dispersive, line-damping, dissipative, and external-force terms
on the solitonic velocity, amplitude and background have been
summarized in Table I. Finally, according to Constraint (2),
the possible applications of our results in the real world have
been discussed.
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