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Magnetic flux conservation in turbulent plasmas at high magnetic Reynolds numbers is argued neither to
hold in the conventional sense nor to be entirely broken, but instead to be valid in a statistical sense associated
to the “spontaneous stochasticity” of Lagrangian particle trajectories. The latter phenomenon is due to the
explosive separation of particles undergoing turbulent Richardson diffusion, which leads to a breakdown of
Laplacian determinism for classical dynamics. Empirical evidence is presented for spontaneous stochasticity,
including numerical results. A Lagrangian path-integral approach is then exploited to establish stochastic flux
freezing for resistive hydromagnetic equations and to argue, based on the properties of Richardson diffusion,
that flux conservation must remain stochastic at infinite magnetic Reynolds number. An important application of
these results is the kinematic, fluctuation dynamo in nonhelical, incompressible turbulence at magnetic Prandtl
number (Prm) equal to unity. Numerical results on the Lagrangian dynamo mechanisms by a stochastic particle
method demonstrate a strong similarity between the Prm = 1 and 0 dynamos. Stochasticity of field-line motion
is an essential ingredient of both. Finally, some consequences for nonlinear magnetohydrodynamic turbulence,
dynamo, and reconnection are briefly considered.
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I. INTRODUCTION

Alfvén, in a seminal paper in 1942, introduced the notion
of flux freezing in magnetohydrodynamic plasmas at infinite
conductivity, noting that “every motion (perpendicular to
the field) of the liquid in relation to the lines of force is
forbidden because it would give infinite eddy currents” [1].
In the years since, the property of flux conservation has
become a powerful tool in the analysis of many near-ideal
plasma phenomena. For example, in his excellent monograph
[2], Kulsrud states that “the most important property of an
ideal plasma is flux freezing,” before proceeding to illustrate
its many applications. Of course, physical plasmas in the
laboratory and in astrophysics are subject to various forms of
nonideality, including Spitzer resistivity, ambipolar diffusion,
etc. The general assumption in the field of plasma physics
is that, as long as such nonideality is sufficiently “small,”
then flux freezing will hold in an approximate sense. For
example, the usual quantitative estimate is well expressed in
this quote from Kulsrud’s monograph (Chap. 13), on magnetic
reconnection: “Flux freezing is a very strong constraint on
the behavior of magnetic fields in astrophysics. As we show
in chapter 3, this implies that lines do not break and their
topology is preserved. The condition for flux freezing can be
formulated as follows: In a time t , a line of force can slip
through the plasma a distance

� =
√

ηct

4π
.

If this distance � is small compared to δ, the scale of interest,
then flux freezing holds to a good degree of approximation.”

We shall argue that these commonplace ideas on flux
freezing are wrong. They contain an implicit assumption
that the plasma fluid remains smooth and laminar for very
small nonideality. The quantitative estimate that field lines slip
through a resistive plasma only a diffusive distance ∝ √

ηt

in time t is incorrect, by many orders of magnitude, in a

turbulent plasma. Since laminar flow at very high kinetic and
magnetic Reynolds is unstable to development of turbulence,
flux conservation in the conventional sense must be the
exception rather than the rule in astrophysical plasmas. Indeed,
we shall show that the standard views on flux freezing must be
incorrect because the very notion of a Lagrangian fluid particle
trajectory breaks down in turbulent flow with a spatially
“rough” velocity field (i.e., with a power-law kinetic energy
spectrum similar to that of Kolmogorov). Recent research
has discovered a phenomenon of “spontaneous stochasticity,”
according to which fluid particle trajectories are intrinsically
random in high-Reynolds-number turbulence [3–8]. This
surprising phenomenon is a long-overlooked consequence of
the fluid-dynamical effect of Richardson two-particle turbulent
dispersion [9]. Because of spontaneous stochasticity, it makes
no sense to assume that a field line follows “the” plasma
fluid element because there are infinitely many distinct fluid
trajectories starting from the same point! But, it is also not
true that flux freezing is completely broken. We shall argue
below that magnetic flux conservation remains valid in the
ideal limit of high Reynolds numbers, but in a stochastic sense
associated with the intrinsic stochasticity of the Lagrangian
particle trajectories.

A correct formulation of flux freezing is fundamental to
understand a number of important astrophysical processes
such as turbulent dynamo and reconnection. In previous
works [10,11], we have shown how stochastic flux freezing is
involved in the small-scale “fluctuation dynamo” for a soluble
model problem: magnetic fields advected by the Kazantsev-
Kraichnan ensemble of velocity fields that are spatially rough
and white noise in time [12–14]. It is worth noting, by the way,
that “spontaneous stochasticity” is a rigorously established
phenomenon for this model [3–8]. It was shown that the
presence of fluctuation dynamo effect at zero magnetic Prandtl
number depends crucially on the degree of angular correlation
between the infinite number of magnetic field vectors that
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are simultaneously advected by turbulence to the same spatial
point [10,11].

Here, we make a similar study for kinematic dynamo
in nonhelical, hydrodynamic turbulence by a Lagrangian
numerical method that employs data from a high-Reynolds-
number turbulent flow archived online [15,16]. We present
results for unit magnetic Prandtl number that demonstrate, and
quantify, the effect of Richardson diffusion and stochastic flux
freezing on the small-scale turbulent dynamo. We find, in fact,
remarkable similarities between the Lagrangian mechanisms
of small-scale dynamo in hydrodynamic turbulence at unit
Prandtl number and in the Kazantsev model at zero Prandtl
number. Previous numerical studies [17,18] have instead
found a close similarity of the unit Prandtl-number fluctuation
dynamo with the solution of the Kazantsev model at infinite
Prandtl number, observing, in particular, the “Kazantsev
spectrum” k3/2 of magnetic energy at high wave numbers.
Our results at much higher Reynolds numbers show that the
inertial-range phenomenon of Richardson diffusion strongly
affects the exponential growth rate of magnetic energy in the
kinematic regime. However, stochastic flux freezing is not a
property of kinematic dynamo only, but will hold also for
fully nonlinear magnetohydrodynamic (MHD) turbulence and
have important implications there for magnetic dynamo and
reconnection.

The detailed contents of this paper are as follows: In Sec. II,
we briefly review the phenomenon of “spontaneous stochas-
ticity,” both its theoretical bases and its present confirmation
from simulations and experiments. We also present numerical
results of our own that support the essential predictions. In
Sec. III, we discuss stochastic flux freezing. We begin with a
demonstration of the stochastic flux-conservation properties of
resistive MHD. We employ Lagrangian path-integral methods
that provide good physical insight. We then discuss the ideal
case, via zero resistivity and other limits. In Sec. IV, we employ
the above results to analyze the turbulent kinematic dynamo.
After discussing the Lagrangian theory of dynamo, we present
our numerical results and their comparison with analytical
results for the Kazantsev model at zero Prandtl number and
with previous numerical studies. In Sec. V, we briefly discuss
some implications and open problems for nonlinear MHD
turbulence. and Sec. VI contains our final discussion. An
appendix sketches the derivation of the path-integral formulas
used in the main text.

II. RICHARDSON DIFFUSION AND SPONTANEOUS
STOCHASTICITY

A. Richardson two-particle dispersion

We briefly review Richardson’s theory [9] of two-particle
or relative turbulent dispersion, emphasizing perspectives of
recent research. The object of Richardson’s study was the
separation �x(t) = x1(t) − x2(t) between a pair of passive
Lagrangian tracer particles in a turbulent flow, such as ash
particles in a volcanic plume. Richardson’s approach was
semiempirical, inferring from data that there is a scale-
dependent diffusivity coefficient

K(�) ∼ K0�
4/3. (1)

Richardson proposed further that the probability density
function of the separation vector � = x1 − x2 would satisfy
a diffusion equation

∂tP (�,t) = ∂

∂�i

(
K(�)

∂P

∂�i

(�,t)

)
. (2)

Finally, Richardson observed that there is an exact similarity
solution of his equation given by a stretched-exponential
probability density function (PDF), the form of which we note
here as

P∗(�,t) = A

(K0t)9/2
exp

(
−9�2/3

4K0t

)
(3)

in the physically relevant case of three space dimensions. All
solutions of (2) approach this self-similar form asymptotically
at long times [19]. Averaging �2 with respect to the self-similar
density (3) yields

〈�2(t)〉 = γ0t
3 (4)

with γ0 = 1144
81 K3

0 . This is the famous Richardson t3 law.
Richardson’s work preceded the Kolmogorov 1941 (K41)

theory of turbulence, but it was shown by Obukhov [20] to
be fully consistent with that theory. This can be seen by a toy
calculation in one space dimension. Assume that �(t) satisfies
the initial-value problem

d

dt
�(t) = δu(�) = 3

2
(g0ε�)1/3, �(0) = �0,

with velocity increment δu(�) scaling as in K41 theory, where
ε is the mean energy dissipation per unit mass. Separation of
variables gives the exact solution

�(t) = [
�

2/3
0 + (g0ε)1/3t

]3/2
. (5)

If one defines a time t0 ≡ �
2/3
0 /(g0ε)1/3, which characterizes

the initial separation, then, for t 	 t0,

�2(t) ∼ g0εt
3. (6)

For sufficiently long times, the particles “forget” their initial
separation and the Richardson law is obtained. The dimen-
sionless parameter g0, which appears in this form of the t3

law, is usually called the Richardson-Obukhov constant. The
physical mechanism of the explosive separation of particles,
even faster than ballistic, is the relative advection of the pairs
by larger, more energetic eddies as their separation distance
increases.

This physics seems relatively simple and benign, but it has
extraordinary consequences. As first pointed out in a seminal
paper of Bernard, Gawȩdzki, and Kupiainen [3], Richardson’s
theory implies a breakdown in the usual notion of Laplacian
determinism for classical dynamics! This may already be seen
in our toy calculation above. If we set �0 = 0, then the solution
(5) becomes the Richardson law �2(t) = g0εt

3 > 0 for all
positive times t. Thus, two particles started at the same point
at time 0 separate to a finite distance at any time t > 0. The
same oddity may be seen in Richardson’s similarity solution
(3), which satisfies (at initial time t = 0)

P∗(�,0) = δ3(�).

056405-2



STOCHASTIC FLUX FREEZING AND MAGNETIC DYNAMO PHYSICAL REVIEW E 83, 056405 (2011)

All particles start with separation �(0) = 0. However, P∗(�,t)
is a smooth density for t > 0, so that �(t) > 0 with probability
one at later times. Richardson’s theory thus implies that two
particles advected by the fluid velocity u(x,t), which start at
the same initial point x0,

d

dt
x(t) = u(x(t),t), x(0) = x0

can follow different trajectories. This seems to violate the
theorem on uniqueness of solutions of initial-value problems
for ordinary differential equations (ODEs). However, such
theorems assume that the advecting velocity u(x,t) is Hölder-
Lipschitz continuous in the space variable x:

|u(x1,t) − u(x2,t)| � C|x1 − x2|h (7)

with exponent h � 1. A turbulent velocity field in a Kol-
mogorov inertial range has instead Hölder exponent h

.= 1/3
and the uniqueness theorem need not apply. Our toy calculation
above is just the standard textbook example for failure of
uniqueness (see Hartman [21], p. 2). In that example, for any
non-negative “waiting time” τ � 0,

�(t) = (g0ε)1/2(t − τ )3/2
+

is a solution of the initial-value problem with �0 = 0. [Here
(x)+ = x for x > 0 and = 0 otherwise.]

The above considerations may seem fairly technical and
mathematical. It has been shown, however, that this breakdown
in uniqueness of trajectories can appear in various physical
limits for turbulent advection. Even more remarkably, the
solutions of the deterministic classical dynamics become
intrinsically stochastic! See the important series of papers
[3–5,7,8] and see [6] for a very clear and concise review of the
subject.

B. High-Reynolds-number limit and spontaneous stochasticity

The easiest way to understand the phenomenon is via the
problem of stochastic particle advection,

d

dt
x̃(t) = uν (̃x(t),t) +

√
2κ η̃(t), x(t0) = x0 (8)

with advecting velocity perturbed by a Gaussian white noise
η̃(t) multiplied by

√
2κ and with velocity assumed spatially

smooth at subviscous length scales � < �ν for a finite viscosity
ν. The transition probability for a single particle in a fixed
(nonrandom) velocity realization uν can be written using a
“sum-over-histories” approach as a path integral [3,22,23]:

Gν,κ
u (xf ,tf |x0,t0) =

∫
x(t0)=x0

Dx δ3[xf − x(tf )]

× exp

(
− 1

4κ

∫ t

t0

dτ |ẋ(τ )−uν(x(τ ),τ )|2
)

.

(9)

Since this formula plays an important role in our analysis, we
provide a self-contained derivation in the Appendix. A physical
motivation to study such random advection is the problem of
the evolution of a passive scalar such as a temperature field

or dye concentration. These fields solve the scalar advection-
diffusion equation

∂tθ + (uν·∇)θ = κ
θ, (10)

with κ the molecular diffusivity. The exact solution of (10) is
given by the Feynman-Kac formula [3,22,23]

θ (x,t) =
∫

d3x0 θ (x0,t0)Gν,κ
u (x0,t0|x,t)

=
∫

a(t)=x
Da θ (a(t0),t0)

× exp

(
− 1

4κ

∫ t

t0

dτ |ȧ(τ ) − uν(a(τ ),τ )|2
)

(11)

for t0 < t. This corresponds to solving backward in time the
stochastic equation

d

dτ
ã(τ ) = uν (̃a(τ ),τ ) +

√
2κ η̃(τ )

from τ = t to τ = t0, with the condition ã(t) = x. The present
value of the scalar field is thus the average, along stochastic
Lagrangian paths, of its earlier values.

It naively appears by an application of the Laplace asymp-
totic method to (9) that the transition probability collapses to
a delta function

Gν,κ
u (xf ,tf |x0,t0) → δ3[xf − x(tf )] (12)

as κ → 0, with x(t) the solution of the ODE ẋ = u(x,t) for
initial condition x(t0) = x0. Only for such time histories is the
action vanishing in the exponent of the path integral. However,
it was shown [3–8] that (12) may not hold if simultaneously
ν → 0 (or the Reynolds number Re = urmsL/ν → ∞) and if
in that limit the velocity field uν → u, for a rough (nonsmooth,
singular) u. In that case, as κ,ν → 0,

Gν,κ
u (xf ,tf |x0,t0) → Gu(xf ,tf |x0,t0) (13)

for a nontrivial probability density Gu. The Lagrangian
trajectories can remain random as κ,ν → 0! This phenomenon
has been called “spontaneous stochasticity” [5] because of the
analogy with spontaneous symmetry breaking in condensed
matter physics and quantum field theory, where, for example,
a ferromagnet may retain a nonvanishing magnetization even in
the limit of vanishing external magnetic field. It is important to
appreciate, however, that “spontaneous stochasticity” is a very
different type of randomness than is usual in turbulence theory,
associated to a random ensemble of velocity fields. Instead,
the randomness in (13) is for a fixed (nonrandom) ensemble
member u. The limiting distribution consists of time histories
that are all solutions of the same deterministic initial-value
problem

ẋ = u(x,t), x(t0) = x0. (14)

As is clear from (9), the limiting probability measure is, in a
certain sense, the uniform or equal-weight distribution over all
such solutions. We note in passing that Kneser’s theorem in the
mathematical theory of ODEs implies that whenever there is
more than one such solution, then there is in fact a continuous
infinity of solutions (see Hartman [21], Sec. II.4).
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The above results have been rigorously established [3–8]
for some model problems of turbulent advection, primarily the
Kraichnan model of advection by a Gaussian random velocity
field with zero mean and covariance〈

uν
i (x,t)uν

j (x′,t ′)
〉 = [

D0δij − Sν
ij (x − x′)

]
δ(t − t ′).

The velocity fields are temporal white noise and spatially
rough for �ν < r < Lu, with a Hölder exponent 0 < h <

1, but smooth for r < �ν. We discuss the model only for
incompressible flow, in which case

Sν
ij (r) =

{
2D1[(1 + h)δij − hr̂i r̂j ]r2h, �ν � r � Lu

2D1�
2h−2
ν [2δij − r̂i r̂j ]r2, r � �ν.

(15)

The velocity realizations uν(x,t) are divergence free and
Hölder continuous with exponent h for ν ≡ D1�

2h
ν → 0. The

kinetic energy spectra are power laws k−n for the “inertial
range” 1/Lu � k � 1/�ν, with n = 1 + 2h and, thus, 1 <

n < 3. The key feature that makes this model analytically
tractable is the Markovian property in time, which leads to the
exact validity of Richardson’s two-particle diffusion equation
in the form

∂tP (r,t) = ∂

∂ri

(
Sν

ij (r)
∂P

∂rj

(r,t)
)

+ 2κ
rP (r,t), (16)

with r = x1 − x2. Note that Richardson’s original equation
is obtained for h = 2/3 rather than the Kolmogorov value
h = 1/3, a peculiarity of the white-noise approximation.
Multiplying (16) by rkr� and integrating over r leads to

d

dt
〈rk(t)r�(t)〉 = 2

〈
Sν

k�(r(t))
〉 + 4κδk�. (17)

An analysis of (16) and (17), for the ensemble of particles that
are all started at the same point (r0 = 0) at t = 0, leads to the
results below. Some of these appear to be new in detail.

For Pr ≡ ν
κ

< 1, the dispersion is that of two independent
Brownian motions in three space dimensions

〈r2(t)〉 ∼ 12κt (18)

for short times t � tκ = �2
κ

κ
with �2

κ = ( κ
D1

)1/h = �2
ν/(Pr)1/h,

but of Richardson type

〈r2(t)〉 ∼ gh(D1t)
1/(1−h) (19)

for longer times tκ � t � tL = L2(1−h)/D1, with gh a con-
stant independent of κ. For Pr > 1, the behavior is a bit
more complex. The result (18) still holds at very short times
t � tν ≡ �2

ν/ν, but, at large Prandtl numbers, there is an
intermediate range of exponential growth

〈r2(t)〉 ∝ κtνe
2λν t (20)

for tν � t � ln(Pr)tν . Here, λν = 10t−1
ν is the generalized

Lyapunov exponent (of second order) for the smooth advecting
velocity field [24]. The dispersion at longer times again follows
the Richardson law (19). In either case, the Richardson law is
valid once 〈r2(t)〉 � max{�2

κ ,�
2
ν} and thus holds for arbitrarily

small times t > 0 in the limit as ν,κ → 0.

A nonvanishing dispersion implies that the Lagrangian
trajectories must stay random in the limit. Although the
diffusion equation (16) has been averaged over velocity
realizations u, it must be the case that Pu(r,t |0,0) �= δ3(r) for

t > 0 and for a set of u with nonzero probability, or otherwise
the average over u would also be a delta function. The
physical mechanism of spontaneous stochasticity is clearly the
“forgetting” of the length scales �κ,�ν by Richardson diffusion
for sufficiently long times t 	 tκ ,tν, with those times also
vanishing in the limit ν,κ → 0. In the case of incompressible
flow, the limiting distribution is completely independent of
how the limit is taken. We note in passing that this is not
true, in general, for compressible flows and that the possibility
for Lagrangian particles to stick, as well as to stochastically
split, allows there to be different limits, depending upon the
Prandtl number Pr in the limit as ν,κ → 0 [4,8]. However, for
incompressible flow, the limiting distribution is very universal
and robust.

The same limit is obtained for incompressible flow even
with κ = 0 or Pr = ∞ if the randomness is introduced through
the initial conditions rather than stochastic noise. Consider
the solution of the initial-value problem for the Kraichnan
ensemble of velocities

d

dt
x̃(t) = uν (̃x(t),t), x̃(0) = x0 + ερ̃,

where ρ̃ is a zero-mean, unit-variance random vector with
probability density Q(ρ). One may interpret ε as the size of
error in measuring the initial position of the particle. This
corresponds to solving the Richardson diffusion equation (16)
with κ = 0 and initial condition P ε(r,0) = ε−3(Q ∗ Q)(r/ε)
so that P ε(r,0) → δ3(r) as ε → 0. However, if the limits are
taken ν → 0 first and ε → 0 subsequently, then the solution of
the Richardson equation does not degenerate to a delta function
for t > 0. This may be seen by solving for the dispersion from
Eq. (17) with κ = 0 and 〈r2(0)〉 = 2ε2. When ε < �ν ,

〈r2(t)〉 ∼ 2ε2e2λν t (21)

for times t � tν ln(�ν/ε), but, for longer times, follows the
Richardson law (19). When �ν < ε instead, then the short-time
behavior is diffusive:

〈r2(t)〉 ∼ 2ε2 + (const.)D1ε
2ht (22)

for times t � ε2(1−h)

D1
. Dispersion for such a “random cloud”

of initial positions was first considered by Batchelor [25,26],
who obtained instead ballistic growth ∝ t2 for hydrodynamic
turbulence. The diffusive result above is an artifact of the
white-in-time velocity. At times t 	 ε2(1−h)

D1
, the Richardson

law (19) holds. As in the previous cases, the Richardson law
holds for any time t > 0 if ν,ε → 0 with ε vanishing slower
than �νe

−O(D1/�
2(1−h)
ν ).

As this last discussion should make clear, the phenomenon
of “spontaneous stochasticity” is not especially connected
with the random perturbation of the motion equations in (8).
Instead, it is the advection of the particle by a rough velocity
field and the “forgetting” of the initial separations that makes
the Lagrangian particle motions intrinsically stochastic. Spon-
taneous stochasticity should not be confused with “chaos,”
as that term is used in dynamical systems theory [5,6]. For
chaotic dynamical systems with a smooth velocity field, one
sees only exponential growth of deviations as in Eq. (21).
Because this result is proportional to ε2, the initial separation
is never “forgotten” and, for all times, 〈r2(t)〉 → 0 as ε → 0.

For chaotic dynamics, any imprecision in the initial data is
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exponentially magnified, leading to loss of predictability at
long enough times. Spontaneous stochasticity corresponds
instead to λν = +∞. The solution is unpredictable for all
future times, even with infinitely precise knowledge of the
initial conditions. Furthermore, there is nothing special about
the initial time and the solution is nonunique (stochastic) at
every point of the Lagrangian path.

C. Experimental and numerical results

Our quantitative discussion above has been based upon the
original Richardson theory and, in particular, his diffusion
equation (16). This equation is exact for the Kraichnan
white-in-time velocity ensemble, but is only an approximation
for hydrodynamic turbulence, where several of its quantitative
predictions are known to be incorrect. We have already
mentioned the diffusive short-time growth in dispersion for a
particle cloud [Eq. (22)], which is ballistic for fluid turbulence.
(Note that the ballistic regime is correctly predicted by
Richardson’s diffusion equation for a suitably time-dependent
eddy-diffusion tensor [26,27].) The diffusion equation (16)
holds in the Kraichnan model also for backward-in-time dis-
persion. However, actual dispersion rates are different forward
and backward in time because of the negative skewness of
turbulent velocity increments [27,28]. There is presently no
quantitative theory of turbulent dispersion that successfully
accounts for all aspects of the phenomenon. It is necessary
to stress that the prediction of “spontaneous stochasticity”
has more general grounds in the mathematical theory of
ODEs and is not dependent upon the diffusion approximation
(16). Nevertheless, in the absence of any fully successful,
quantitative theory, it is important to develop understanding
from numerical simulations and laboratory experiments. We
here briefly review the empirical studies of turbulent dispersion
and the status of Richardson’s theory. In particular, we present
some numerical results of our own on stochastic particle
advection according to Eq. (8) for a turbulent velocity field.

We confine our discussion to just some of the latest
studies by experiments [29–32] and simulations [33–35] at
the highest Reynolds numbers. Athough the t3 law (4) and the
stretched-exponential PDF (3) are probably the most famous
predictions of Richardson’s theory, even more important for
our discussion is the “forgetting” of initial separations. If
r0 is the initial-particle separation distance and ε is energy
dissipation per mass, then, for times much greater than t0 ≡
(r2

0 /ε)1/3, both 〈r2(t)〉 and P (r,t) should become independent
of r0. As we have seen, this is the crucial physical mechanism
underlying spontaneous stochasticity. In general, it has proved
rather difficult to observe in a completely consistent and
convincing way all of these predictions of Richardson’s theory.

Experiments of Ott and Mann at maximum Taylor-scale
Reynolds number ReT = 107 observed both a t3 law and the
Richardson PDF, but varied r0 only by a factor of 1.5 around
the value r0 = 10�ν [for �ν = (ν3/ε)1/4 the Kolmogorov
dissipation length]. Thus, they provide no information on
collapse independent of r0. A series of experiments by
Bodenschatz and collaborators [30–32] at substantially higher
Reynolds numbers up to ReT = 815 fail to see a t3 law and
instead produce results consistent with Batchelor’s ballistic t2

range. However, their smallest achievable value of the initial

time t/tν

r
2
(t

)
2 ν

(a)

P r = 1
12t
1.35t3
P r = 0.1
120t

time t/tν

r
2
(t

)
2 ν

(b)

P r = 1
12t
0.64t3
P r = 0.1
120t

FIG. 1. (Color) Mean dispersion of particle pairs: (a) backward
dispersion, (b) forward dispersion. The backward-in-time results are
plotted against t ′ = tf − t and all quantities are nondimensionalized
with viscous units (see text). The Pr = 1 results are plotted with solid
lines, Pr = 0.1 results with dashed lines. We color code the lines
with blue for raw data (including error bars), green for short-time
molecular diffusion, and red for long-time Richardson diffusion.

separation was only about r0 = 30�ν, so that it is arguable that
they need longer times and still higher Reynolds numbers. At
their smallest value of r0, they did observe Richardson’s PDF
(3) and, for r0 = 20–150�ν , they see results roughly consistent
with Richardson’s predictions for the quantity 〈r2/3(t)〉 − r

2/3
0

and also some tendency to collapse independent of r0 (see Xu
et al. [32], Fig. 1).

Numerical simulations of Ishihara and Kaneda [33] at
ReT = 283 showed an inertial-range t3 law for r0 in a range
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between 5–45�ν, but no tendency whatsoever for collapse at
long times independent of r0. However, Biferale et al. [34], in a
simulation at nearly identical ReT = 284 and with r0 in a range
of 1.2–19.6�ν , see exactly the opposite: only a slight indication
of a t3 law for their smallest separation but a strong tendency
to collapse at long times. They also observe Richardson’s
PDF (3) for r0 = 1.2�ν. More recently, Sawford et al. [35]
have performed simulations with maximum ReT = 650. They
find the best evidence yet of Richardson’s predictions for the
dispersion (see their Fig. 4), with a reasonable t3 range for
r0 = 4�ν. Other values of r0 in the range of 0.25–256�ν do not
give a convincing t3 law, but do verify a tendency for collapse
at long times.

In view of the incomplete verification of Richardson’s pre-
dictions, we have undertaken our own numerical investigation.
Unlike previous works, however, which have nearly all studied
deterministic fluid particles with variable initial separations
r0, we have instead studied the problem of stochastic particle
advection according to Eq. (8). The velocity field is obtained
from a 10243 pseudospectral numerical simulation of forced,
statistically stationary turbulence at ReT = 433. The flow data
are available online (at http://turbulence.pha.jhu.edu) and fully
documented there and in papers [15,16]. The entire flow history
for about one large-eddy turnover time Lu/u

′ is archived at
a time resolution suitable for particle-tracking experiments,
with spatial and temporal interpolation implemented within
the database. This is very convenient for our purposes since
it permits us to study particle dispersion backward in time as
well as forward. As we have discussed above, it is backward
dispersion that is most relevant for turbulent mixing.

We have studied two values of the Prandtl number Pr =
ν/κ = 1 and 0.1. We solved (8) using the simplest Euler-
Maruyama scheme and also, for convergence analysis, an
explicit, 1.5th-order strong scheme (Kloeden and Platen [36],
Sec. 11.2). We took time discretization dt = 10−3, which
guaranteed that particles moved a fraction of �ν under both
turbulent advection and Brownian diffusion at each time step.
The velocity field between stored data points was interpolated
by sixth-order Lagrange polynomials in space and piecewise-
cubic Hermite polynomials in time. The results were verified
to be converged in dt both by comparison with the higher-order
method and with the Euler scheme at a halved step size. We
evolved N = 1024 independent particle realizations starting
at the same initial location, giving 523 776 particle pairs, over
the whole time range of the database. For forward tracking,
we started particles at t0 = 0 and, for backward tracking, at
tf = 2.048 (the final time in the database). We then averaged
all results over S = 512 initial locations xs , s = 1,2, . . . ,S

obtained by choosing eight independent, uniformly distributed
points from each of 43 = 64 subcubes of the whole flow
domain.

Our results for particle dispersion are given in Fig. 1. We
present there a log-log plot of 〈r2(t)〉 (normalized by �2

ν) versus
time t (normalized by tν = �2

ν/ν). For backward dispersion,
we take t → t ′ = tf − t to facilitate comparison with the
forward-in-time results. We include error bars to show our
estimate of the statistical errors. Since the number of pairs of
particles being used for each xs is quite large, the dominant
error in calculating 〈r2(t)〉 arises from the average over the
S space points. By the central limit theorem, the error is

approximated by

δ〈r2(t)〉 �
√

Var {〈r2(t)〉}
S

(23)

with the spatial variance

Var {〈r2(t)〉} .= 1

S − 1

S∑
s=1

∣∣〈r2(t)〉xs
− 〈r2(t)〉∣∣2

, (24)

where 〈r2(t)〉xs
is the dispersion for the initial-particle position

xs . The relative error estimated from (23) is for all times less
than 8%. The maximum relative error occurs around t = 5 for
the forward case and t = 10 for the backward case. For larger
times, the errors are in the range 3%–5% for the forward case
and 4%–5% for the backward case. The error bars are quite
small in the log-log plot and allow clear identification of the
scaling regimes.

In the viscous units that we employ, the early-time diffusive
separation (18) becomes 〈r2(t)〉 ∼ 12t/Pr. This regime is
clearly seen for both backward and forward cases and for both
Pr = 1 and 0.1. Furthermore, for the unit Prandtl number cases,
we see a convincing transition to a t3 law for t � 1. This occurs
slightly earlier for backward dispersion than for forward. Also,
we find that the asymptotic Richardson-Obukhov constant is
greater for backward dispersion than for forward, in agreement
with earlier results [28]. An average of the local constants
g(t) ≡ d〈r2(t)〉/d(t3) in the t3 scaling range gives values of
g0 = 1.35 for backward dispersion and g0 = 0.64 for forward
dispersion. The latter agrees perfectly with a recent theoretical
prediction [37], and both are generally consistent with previous
values [35]. Pure cube scaling laws with these coefficients
are plotted in Fig. 1 for comparison with the numerically
obtained mean dispersions. The agreement is obviously quite
good at long times, especially for the backward case. Even
more importantly, the Pr = 0.1 dispersions show a very clear
trend to approach the same cubic laws at sufficiently large
times t 	 tκ = (κ3/ε)1/4 or, in viscous units, t 	 (Pr)−3/4.

Our Fig. 1 thus provides strong evidence of the “forgetting” of
the molecular diffusion time scale tκ by turbulent Richardson
diffusion at long times, which is the essential ingredient of
spontaneous stochasticity.

To be completely conclusive, we would need to see collapse
of the dispersion curves for different Pr in a range where both
show t3 scaling. We see no clear Richardson t3 for the Pr = 0.1
cases in the time ranges plotted. We can not continue the time
integration further for two reasons. First, the velocity field
from the turbulence archive contains no data for longer times.
Second, the rms dispersion distance L(t) =

√
〈r2(t)〉 at the

final time has reached a value L(tf )
.= 1, just slightly smaller

than the velocity integral length scale Lu = 1.376 for the flow.
(This is expected, since tf is about one large-eddy turnover
time.) To integrate further to see a conclusive collapse, we
would need a numerical simulation at higher Reynolds num-
bers and integrated to longer times. However, our confirmation
of Richardson diffusion at ReT = 433 using stochastic La-
grangian trajectories is comparable to, or even better than, the
results of Sawford et al. [35] at ReT = 650 using deterministic
Lagrangian trajectories (see Fig. 4 in that paper). There are two
plausible arguments why this should be so. In the first place,
using stochastic trajectories, all the particles start at the same
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point. At the time t ≈ tν when 〈r2(t) ≈ �2
ν (for Pr = 1), the

particles are not randomly placed in the flow, but have already
been experiencing relative advection by different-sized eddies
at the onset of the inertial range. Thus, they begin to experience
Richardson diffusion at that time. However, by using the usual
technique of seeding the flow with particles at initial separa-
tions r0

.= �ν, one would still need to wait some additional time
for the initial configuration to be “forgotten.” A second reason
is that backward dispersion is faster than forward dispersion,
so that the range of t3 scaling occurs even earlier in that case.
The technique of stochastic Lagrangian trajectories appears to
be promising in the numerical study of Richardson diffusion.

In order to make a completely convincing case that we
are observing Richardson diffusion, we have also numerically
calculated the PDF P (r,t) of the particle separations. Our re-
sults for Pr = 1 are presented in Fig. 2, with the normalization∫ ∞

0 dr r2P (r,t) = 1. As has been previously observed [29,34],
Richardson’s analytical formula (3) for the long-time PDF of
separation distances implies that all the PDFs at different times
will collapse when scaled with L(t) =

√
〈r2(t)〉. In fact, Eq. (3)

is equivalent to

L3(t)P (r,t) = exp

[
− α

(
r

L(t)

)2/3

+ β

]
with numerical values

α = (1287/8)1/3 .= 5.4387

and

β = ln

(
3

35
(143)3/2

√
2

π

)
.= 4.7617.

Thus, Richardson’s theory makes a parameter-free prediction
that a log-linear plot of L3(t)P (r,t) versus [r/L(t)]2/3 should
give a straight line with slope −α and y intercept β. In Fig. 2,
therefore, we have plotted our PDFs in this way, at three times
t = 22.37, 33.57, 44.79, all lying in the range of t3 scaling. We
have also plotted the straight line predicted by Richardson’s
theory. We see that the PDFs scaled in this way collapse very
nicely. Furthermore, except for some deviation at small r in
the backward dispersion case, they very closely agree with the
predictions of Richardson’s theory.

III. STOCHASTIC FLUX FREEZING

The standard views on flux freezing in high-conductivity
plasmas are inconsistent with the phenomenon of spontaneous
stochasticity. It is nearly ubiquitously argued that flux freezing
should hold better as magnetic diffusivity λ → 0. However,
high magnetic Reynolds numbers are usually associated also
with high kinetic Reynolds numbers. If kinematic viscosity
ν → 0 simultaneously with the resistivity, and if the plasma
becomes turbulent, then Lagrangian trajectories will no longer
be unique. Which fluid trajectory shall a magnetic field line
follow if there are infinitely many such trajectories? This is the
paradox of flux freezing.

As we shall argue below, a form of flux freezing does
survive at small resistivities and viscosities, but in a stochastic
sense. Before we make this argument, however, we shall

(r/L (t))2/3

ln
(L

3
(t

)P
(r
,
t)

)

(a)
t = 22.37
t = 33.57
t = 44.79
Richardson

(r/L (t))2/3

ln
(L

3
(t

)P
(r
,
t)

)

(b)
t = 22.37
t = 33.57
t = 44.79
Richardson

FIG. 2. (Color) Probability densities of pair-separation distances:
(a) backward dispersion, (b) forward dispersion. The quantities at
different times are normalized by L(t) =

√
〈r2(t)〉 as shown. We

plot densities for three different times in the t3 scaling range, with
blue for t = 22.37, green for t = 33.57, and red for t = 44.79. In the
backward case, these times correspond to t ′ = tf − t. The solid black
line gives Richardson’s analytical prediction for the density (see text).

first discuss the related subject of flux-freezing properties of
resistive hydromagnetics.

A. Resistive hydromagnetics

In this section, we discuss magnetic fields that satisfy the
resistive induction equation

∂tB = ∇ × (u × B − λ∇ × B), (25)
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with λ = ηc/4π the magnetic diffusivity. It is important to
stress that our analysis here applies to a very general velocity
field u. It may be incompressible or compressible. It may be
externally prescribed or it may satisfy a dynamical equation
that contains B itself. For example, u may be the plasma veloc-
ity that obeys the standard magnetohydrodynamic momentum
equation or it may be taken to be ue = u − c

4πen
∇ × B, the

electron fluid velocity in Hall magnetohydrodynamics [38].
Our only assumption in this section shall be that u is a smooth
vector field.

A priori, there is no obvious way to describe magnetic-line
motion for nonideal plasmas. One approach that has been
widely employed in discussions of magnetic reconnection [39]
(or Kuslrud [2], Sec. 3.4) is to introduce a “slip velocity”
�u = B × (λ∇ × B)/B2. In that case, one may attempt to
introduce an “effective velocity” u∗ = u + �u of the field
lines. Unfortunately, this approach is not generally successful
because (�u) × B = −λ∇ × B if and only if B · E = 0 (or
B · J = 0 for Ohmic nonideality). As has been emphasized
[40–42], no effective velocity approach is satisfactory for
discussions of three-dimensional magnetic reconnection. In
fact, those authors show that, even if the nonideality is spatially
localized, there generally exists no smooth velocity field
u∗ whatsoever such that ∂tB = ∇ × (u∗ × B) for a nonideal
plasma.

For magnetic fields that obey (25), however, there is a
natural and consistent way to describe line motion as a
process of stochastic advection. Such approaches have already
been employed for some time in discussion of kinematic
magnetic dynamos, at least for incompressible velocity fields
[43,44]. Recently, we gave a rigorous proof of stochastic flux-
conservation properties for nonlinear hydromagnetic models
using mathematical methods of stochastic analysis [45]. We
present here a more physical demonstration of these results
using path-integral methods, which also extend their validity
to compressible fluid models.

To begin, we note that the induction equation (25) may be
rewritten as

∂tB + (u·∇)B = (B·∇)u − B(∇·u) + λ
B. (26)

In this form, it is the same as the scalar advection equation
(10), except for the additional two terms on the right-hand
side. The path-integral formula (11) for the scalar solution
may thus be easily adapted to this situation. The solution of
(26) with initial condition B(t0) = B0 is given by the “sum-
over-histories” formula

B(x,t) =
∫

a(t)=x
Da B0[a(t0)]·J (a,t)

× exp

(
− 1

4λ

∫ t

t0

dτ |ȧ(τ ) − uν(a(τ ),τ )|2
)

, (27)

where J (a,τ ) is a 3 × 3 matrix and B is interpreted as a
three-dimensional row vector. Then, J satisfies the following
ODE along the trajectory a(τ ):

d

dτ
J (a,τ ) = J (a,τ )∇xu(a(τ ),τ )

−J (a,τ )(∇x·u)(a(τ ),τ ), (28)

with initial condition J (a,t0) = I. It is easy to check by taking
the time derivative of (27) and by using (28) that the induction
equation (26) is satisfied. Just as for the scalar problem, the
condition a(t) = x on the path-integral trajectories implies that
they correspond to solutions of the stochastic equation

d

dτ
ã(τ ) = u(̃a,τ ) +

√
2λ η̃(τ ), ã(t) = x (29)

integrated backward in time from τ = t to τ = t0.

However, the stochastic equation (29) may also be inte-
grated forward in time from τ = t0 to τ = t . In that case, the
same ensemble of trajectories may be obtained by considering
only those particles with initial locations carefully selected to
arrive at x at time t for a given realization of the white noise
η̃(t). With a slight change of notation, we may characterize
this ensemble of time histories as those x̃(τ ) that solve{

d
dτ

x̃(a,τ ) = u(̃x(a,τ ),τ ) + √
2λ η̃(τ ),τ > t0

x̃(a,t0) = a,
(30)

such that the inverse map ã(x,τ ) to x̃(a,τ ) specifies the
starting point by a = ã(x,t). Notice that (30) is a stochastic
generalization of the usual equation for a Lagrangian flow
map x̃(a,t) of a particle with initial “label” a and that ã(x,τ ) is
the “back-to-labels” map. It is easy to show, furthermore, by
applying ∇a to (30), that

J̃ (a,t) ≡ 1

det [∇a x̃(a,t)]
∇a x̃(a,t) (31)

solves Eq. (28) with initial condition J̃ (a,t0) = I. It is,
therefore, possible to reexpress the path-integral formula (27)
as

B(x,t) = 1

det [∇a x̃(a,t)]
B0(a)·∇a x̃(a,t)|̃a(x,t) . (32)

The overbar represents the average over realizations of the
random white-noise process η̃(t) in (30).

We call the above result the stochastic Lundquist formula
since it is the stochastic generalization of the standard
Lundquist formula [46] (or Kulsrud [2], Sec. 4.8). It may be
cast into a more familiar form by noting that the determinant
that appears there can be interpreted as the ratio of initial and
final mass densities [47]

det [∇a x̃(a,t)] = ρ0(a)

ρ̃ (̃x(a,t),t)
.

It follows that the vector field B̃/ρ̃ is stochastically “frozen in”
and advected along stochastic Lagrangian trajectories, where B̃
is defined to be the quantity under the overbar in (32). Notice,
therefore, that the average in (32) is not over the frozen-in
field B̃/ρ̃, but rather over the magnetic field B̃ itself. This is
necessary in order to reproduce the Laplacian term in (26),
which has the form λ
B and not λ
(B/ρ).

The use of the stochastic Lundquist formula is illustrated
in Fig. 3. The aim is to calculate the magnetic field B at
space-time point (x,t). The first step is to generate an ensemble
of stochastic Lagrangian trajectories solving (29) backward
in time from x at time t to random locations ã(t0) at the
initial time t0. The path-integral formula (27) sums over
all such random time histories. We show in Fig. 3 (top)
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start

transport

average

FIG. 3. (Color) Illustration of the stochastic Lundquist formula.
Three stochastic Lagrangian trajectories running backward in time
from a common point are shown in red, green, and blue. Starting
field vectors, represented by correspondingly colored arrows, are
transported along the trajectories, stretched, and rotated to the
common final point. These are then averaged to give the resultant
magnetic field at that point, indicated by the black arrow.

three stochastic trajectories generated numerically from the
turbulence database together with the starting magnetic field
vectors B0, indicated by arrows at the starting locations ã(t0).
The next step is to transport each of the field vectors in
the usual “frozen-in” fashion along the stochastic Lagrangian
trajectories to the final space-time point (x,t). The result is an
ensemble of field vectors B̃ at that point, stretched and rotated
by the flow. These are illustrated in Fig. 3 (middle) by the
collection of three arrows at (x,t), obtained by transporting
the three initial vectors. In the usual deterministic Lundquist
formula, there would be just one trajectory and one vector B̃
at the final point, which would give the desired magnetic field.
Now, however, as the final step, one must average over the
ensemble of random vectors B̃ in order to obtain the resultant
magnetic field B(x,t). This is illustrated by the black arrow
in Fig. 3 (bottom). In contrast to the previous transport step,
which preserved line topology (in each individual realization),
the final averaging step resistively “glues” the transported lines
together and changes the magnetic field-line topology.

There is an elegant reformulation of the stochastic
Lundquist formula that must be mentioned here, both because
of its conceptual simplicity and also because of its potentially
greater generality (see next section). Consider any smooth,
oriented surface S at final time t. Then, the formula (32)
may integrated in x over the surface S, with respect to
the vector area element dA(x) = dx × dx, and the ensemble
average and surface integration interchanged on the right-hand
side. Because the expression under the overbar is the one
that appears in the usual Lundquist formula, the standard

FIG. 4. (Color) Illustration of the stochastic Alfvén theorem.
Shown are three members (red, green, and blue) of the infinite
ensemble of loops obtained by stochastic advection of a loop C

(black) at time t backward in time to t0. The average of the magnetic
flux through the ensemble of loops is equal to the magnetic flux
through C.

multivariable calculus manipulations convert this into a surface
integral over ã(S,t), with the surface S randomly advected
backward in time to the initial time t0. As before, ã(·,t) =
x̃−1(·,t) is the “back-to-label map” for the stochastic forward
flow. The result is the following stochastic Alfvén theorem:∫

S

B(x,t)·dA(x) =
∫

ã(S,t)
B0(a)·dA(a), t > t0. (33)

This result generalizes a previous theorem [45] to compressible
plasmas. Equation (33) expresses the conservation of magnetic
flux on average, as illustrated in Fig. 4. An initial loop C,

boundary of the surface S, is shown there in black. This is
stochastically advected backward in time to give an infinite
ensemble of loops at the initial time t0. These are represented
by the three colored loops. The ensemble average of the
magnetic flux through the collection of loops at the initial
time t0 is equal to the magnetic flux through the loop C at the
final time t.

The stochastic Alfvén theorem is an example of what
is called a “martingale property” in probability theory. The
magnetic flux through each advected loop at the earlier time
t0 is unequal to the magnetic flux through C at time t.

Nevertheless, the mean flux remains the same. Note that this
result implies an irreversibility or an “arrow of time” since
it only holds for backward stochastic advection of loops.
Backward-in-time is the causal direction, since the magnetic
flux at the present must be obtained as an average of past values
and not of future values. If we assumed a “forward martingale”
property, then we would obtain instead the magnetic induction
equation (26) with a negative resistivity term −λ
B. Note,
in fact, that the stochastic Alfvén theorem (backward in time)
is mathematically equivalent to the usual resistive induction
equation (25) or (26) [45].

B. High-Reynolds-number limit

We now consider the limit of large kinematic and magnetic
Reynolds numbers. For simplicity, we shall assume that Prm =
ν/λ remains fixed as ν,λ → 0.

Consider the Feynman-Kac formula (27). By a naive
application of the Laplace method, one would assume that
the path integral collapses to a single deterministic trajectory
as λ → 0, with rms fluctuations of order (λt)1/2 for small
but nonzero λ. This is precisely the heuristic estimate of
line slippage made by Kulsrud [2], which was quoted in the
Introduction. This estimate is rigorously correct if the velocity
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and magnetic fields are assumed to remain smooth in the
limit ν,λ → 0. Thus, the heuristic estimate is correct if the
plasma flow remains laminar, but this will be the exception
rather than the rule at high Reynolds numbers. In a turbulent
flow, the behavior will be quite different. As we can see from
our Fig. 1 for incompressible hydrodynamic turbulence, the
heuristic estimate is only valid for very short times smaller than
the resistive time tλ = (λ3/ε)1/4. At longer times, the rms slip
distance of the field lines instead follows the Richardson law
∼ (εt3)1/2, independent of ν and λ. The quantitative behavior
will be different in plasmas with strong magnetic fields due to
the effects of the Lorentz force, as discussed more in Sec. V.
However, the qualitative behavior must be the same whenever
the advecting velocity is turbulent and spatially rough.

The Feynman-Kac formula (27) is not very well suited
to analyzing the limit of high Reynolds numbers, however,
because the velocity gradients that appear in the definition of
the matrix J diverge in that limit. Likewise, the gradients
of the Lagrangian flow map that appear in the definition
(31) of J̃ are expected to diverge. The integrated form
of flux conservation, the stochastic Alfvén theorem (33), is
more likely to remain meaningful in the limit of infinite
Reynolds number. The backward-advected loops ãλ(C,t) at
finite values of λ,ν are expected to approach well-defined
curves ã(C,t) as λ → 0, which, however, are not rectifiable
but fractal [48,49]. To make mathematical sense of magnetic
flux through such fractal loops, we may introduce the vector
potential A0 = (curl)−1B0 and rewrite the flux through surface
ã(S,t) as a line integral around its perimeter ã(C,t). We may
then further transform, by change of variables to a line integral
around the original loop C, as∮

ã(C,t)
A0(a)·da =

∮
C

A0[̃a(x,t)]·dã(x,t).

The integral on the right may be interpreted as a generalized
Stieltjes integral, which is well defined as long as the map
ã(x,t) is suitably Hölder continuous [50].

It may seem from our arguments to this point that the
validity at very high Reynolds numbers of the stochastic flux-
freezing result (33) is dependent upon the particular stochastic
representation of resistive effects employed in Eqs. (30) and
(32). However, the same “martingale property” can be obtained
in the limit ν,λ → 0 by a different argument that employs only
the standard Lagrangian flow [51]. We define the deterministic
flow, as usual, by{

d
dτ

xν(a,τ ) = uν(xν(a,τ ),τ ),τ > t0

xν(a,t0) = a,
(34)

where the superscript ν is a reminder that the dynamical
equation for the advecting velocity field contains a certain
viscosity ν = (Pr)λ. Correspondingly, one defines the inverse
map aν(·,t) = (xν)−1(·,t). Stochasticity can be introduced by
assuming small random perturbations of the loop, taking
C → C + ε C̃, where C̃ is a random loop from a well-behaved
ensemble [52]. Thus, ε can be regarded as the spatial resolution
in determining the precise form of the loop C. We may then
argue that, at least for incompressible flow, the ensemble
of loops ãλ(C,t) obtained from stochastic advection in the
limit λ → 0 coincides with the ensemble of loops obtained

from deterministic advection aν(C + ε C̃,t) taking the limits
first ν,λ → 0 and then ε → 0. As discussed in the previous
section, this is rigorously known to be true for point particles
advected by velocities selected from the Kraichnan white-in-
time ensemble [7]. The physical mechanism is just turbulent
Richardson diffusion. We therefore conjecture that the same
result holds for loops. If this is so, then the double limit

lim
ε→0

lim
ν,λ→0

∮
aν (C+ε C̃,t)

A0(a)·da

gives precisely the same ensemble of fluxes with the same
distribution as in the previous approach. In that case, (33)
must again hold in the limit, or, more precisely,∮

C

A(x,t)·dx = lim
ε→0

lim
ν,λ→0

∮
aν (C+ε C̃,t)

A0(a)·da, (35)

where A = limν,λ→0 Aλ and the overbar now indicates the
average over the ensemble of loop perturbations C̃. This is a
nontrivial result because, for an individual loop C,

d

dt

∮
xν (C,t)

Aλ(x,t)·dx = −λ

∮
xν (C,t)

(∇ × Bλ)(x,t)·dx.

Since ∇ × Bλ diverges in the limit ν,λ → 0, there is no reason
to expect that the right-hand size vanishes in that limit. This is
the standard argument as to how flux freezing can be violated
in thin current sheets. It stands to reason that magnetic flux
through an individual Lagrangian loop will fluctuate in time
and not be conserved. Nevertheless, our arguments lead us to
conclude that flux freezing in turbulent flow is still preserved
in the mean sense (35) at infinite Reynolds number.

A scalar resistivity of the form in (25) or (26), in fact, plays
no essential role in our arguments. Any microscopic plasma
mechanism of “line slippage” will be accelerated by turbulent
advection as soon as the lines have separated by a distance
of order �ν, the viscous length. More realistic mechanisms of
line slippage, such as anisotropic resistivity in the Braginski
equations [53] (also Kulsrud [2], Chap. 8) or the Hall effect
often invoked in theories of fast reconnection [54], may all
serve the same role. After a very short time, the microscopic
plasma mechanism of line slippage, whatever it may be, will
be “forgotten” and replaced by turbulent Richardson diffusion.

IV. TURBULENT MAGNETIC DYNAMO

The stochasticity of flux freezing plays an essential role
in the operation of the turbulent magnetic dynamo. We have
already made a detailed analysis of this in the Kazantsev-
Kraichnan model of fluctuation kinematic dynamo for a
nonhelical, incompressible velocity field, with Rm = ∞ and
Prm = 0 [10,11]. Here, we present a more general study.
We first discuss how our path-integral approach relates to
the standard Lagrangian formulations of magnetic dynamo
[43,44,55–59] in a framework that encompasses helical and/or
compressible flows and turbulent velocity fields with realistic
time correlations. We focus on the kinematic dynamo here,
but much of our discussion carries over also to the nonlinear
dynamo (which is considered more specifically in Sec. V).
We then present numerical results for a particular case, the
kinematic fluctuation dynamo in a nonhelical, incompressible
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turbulent velocity field for Prm = 1, using the same hydro-
dynamic turbulence database that was employed in our study
of Richardson diffusion (Sec. II C). We compare our results
with earlier numerical studies [17,18,60,61] at lower Reynolds
number and also with our previous analytical results in the
Kazantsev-Kraichnan model at Prm = 0 [11]. As we shall see,
spontaneous stochasticity and Richardson diffusion play a very
similar role in the fluctuation dynamo for both Prm = 0 and 1.

A. Lagrangian description of dynamo

The Feynman-Kac formula (27) for the magnetic field may
be rewritten as

Bi(x,t) =
∫

d3a Bk
0 (a)F̂ i

k (a,t0|x,t ; u) (36)

with the definition

F̂ i
k (a,t0|x,t ; u) =

∫
α(t)=x

Dα δ3[α(t0) − a]J i
k (α,t)

× exp

(
− 1

4λ

∫ t

t0

dτ |α̇(τ )−uν(α(τ ),τ )|2
)

.

(37)

This latter quantity is a generalization to a compressible flow
of the (Eulerian) magnetic Green’s function considered by
Lerche [62] and Kraichnan [56], expressed as a Lagrangian
path integral. It completely encodes all the effects of the
advecting flow.

A description of the mean-field dynamo is obtained if one
averages over the ensemble of velocity fields and the random
initial conditions of the magnetic field. Assuming that these
are statistically independent (which requires that the effects of
the Lorenz force be negligible),

〈Bi(x,t)〉 =
∫

d3a
〈
Bk

0 (a)
〉
F i

k (a,t0|x,t) (38)

with F i
k (a,t0|x,t) ≡ 〈F̂ i

k (a,t0|x,t)〉 the mean magnetic Green’s
function. The same result holds without the kinematic assump-
tion if the initial magnetic field is nonrandom and the mean
Green’s function is defined by a conditional average for fixed
B0 [59]. Of course, in that case, the mean Green’s function
becomes dependent upon the magnetic field. The mean Green’s
function involves Taylor one-particle diffusion, or absolute
diffusion with respect to a starting point x at time t, with the
stochastic fluid particle moving backward to time t0. In the
case of homogeneous velocity statistics,

F i
k (ρ; t0,t) ≡ F i

k (ρ,t0|0,t)

becomes a function of the single variable ρ = a − x. The
large-ρ behavior of the mean magnetic Green’s function
is well known if the velocity statistics are also isotropic
(but reflection nonsymmetric), in which case the usual α

and β effects of mean-field electrodynamics determine the
large-distance decay [see Kraichnan [56], Eq. (3.17)]. In
particular, the mean Green’s function is non-negligible only
for ρ = O((β|t − t0|)1/2) with β the eddy diffusivity of the
mean magnetic field. If the magnetic field statistics are also
homogeneous, then the mean field 〈B(x,t)〉 = 〈B0〉 becomes

time independent (no mean-field dynamo), in which case (38)
yields the sum rule∫

d3ρ F i
k (ρ; t0,t) = δi

k. (39)

The exact Lagrangian formulas for the mean-field elec-
trodynamics coefficients α,β, etc., which were derived by
Moffatt [55] and Kraichnan [56,57] at infinite conductivity,
hold also for positive resistivity within the present stochastic
framework [43,44,59]. These formulas involve the stochastic
displacement field ξ̃ (x,t) = x − ã(x,t) of one-particle turbu-
lent diffusion [63].

As a side remark, we note that the results on the
mean Green’s function in homogeneous, isotropic turbulence,
which we reviewed above, may have limited relevance to
the description of astrophysical dynamos and laboratory
dynamo experiments. The separation of scales required for
the applicability of mean-field electrodynamics often does not
occur in practice and large-scale magnetic fields might not
be understood without reference to object-specific features,
global flow geometry, and boundary conditions. In fact, as
a general rule, mean-field dynamo effect requires not just
turbulent diffusion of field lines, but also a globally organized
motion of magnetic fields. To show this, we present an
argument based on Faraday’s law for the mean field

∂t 〈B〉 + ∇·� = 0,

rewritten as a local conservation law for the magnetic field
vector. Here,

�ij = 〈uiBj − ujBi〉 + λ

(
∂〈Bi〉
∂xj

− ∂〈Bj 〉
∂xi

)
represents the spatial flux of the j th component of mean
magnetic field in the ith coordinate direction. The space
average of 〈B(x,t)〉 over a volume V can only change in
time by a transport of magnetic field lines through its surface
∂V . Furthermore, a simple calculation with Ampere’s law
〈J〉 = 1

4π
∇ × 〈B〉 gives

d

dt

∫
1

8π
|〈B(x,t)〉|2 d3x =

∫
1

2
εijk〈J i〉�jk d3x,

where the integral is over all of space. We see that energy
in the mean field 〈B〉 grows when the transport of magnetic
flux across the closed lines of mean electric current reinforces
the Amperian fields induced by those currents (using the right-
hand rule). We thus see that mean-field dynamo action requires
coherent motion of magnetic field lines, coordinated over large
spatial scales. Note that very similar ideas are widely used in
condensed matter physics to explain, for example, the decay
of magnetic flux through a superconducting ring by “phase
slippage” of quantized field lines [64].

Returning to the discussion of small-scale turbulence, we
note that a formula for the magnetic correlation function
analogous to (38) for the mean field can be derived, under
precisely the same assumptions:

〈Bi(x,t)Bj (x′,t)〉 =
∫

d3a

∫
d3a′ 〈Bk

0 (a)B�
0(a′)

〉
×F

ij

k�(a,a′,t0|x,x′,t) (40)
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with [65]

F
ij

k�(a,a′,t0|x,x′,t) = 〈
F̂ i

k (a,t0|x,t)F̂ j

� (a′,t0|x,t)
〉
. (41)

The behavior of this “two-body” Green’s function is deter-
mined by the properties of turbulent two-particle (Richardson)
diffusion effects. For example, setting x = x′ in the above
formula leads to an expression for mean magnetic energy
density 〈B2(x,t)〉, which is related to pairs of stochastic
Lagrangian trajectories (with independent Brownian motions)
that start at points a and a′ at time t0 and both end at x at
time t.

Combining (38) and (40) gives a formula for the correlation
of the magnetic fluctuations:

〈Bi(x,t)Bj (x′,t)〉 − 〈Bi(x,t)〉〈Bj (x′,t)〉
=

∫
d3a

∫
d3a′ [〈Bk

0 (a)B�
0(a′)

〉 − 〈
Bk

0 (a)
〉〈
B�

0(a′)
〉]

×F
ij

k�(a,a′,t0|x,x′,t) +
∫

d3a

∫
d3a′〈Bk

0 (a)
〉〈
B�

0(a′)
〉

× [
F

ij

k�(a,a′,t0|x,x′,t) − F i
k (a,t0|x,t)F j

� (a′,t0|x,t)
]
.

(42)

The first term on the right-hand side represents fluctuation
dynamo due to growth of magnetic fluctuations, whereas the
second term represents magnetic induction, or the generation
of magnetic fluctuations from the mean field by random ad-
vection. Note that, for |x − x′| 	 Lu, the integral correlation
length of the velocity field

F
ij

k�(a,a′,t0|x,x′,t) � F i
k (a,t0|x,t)F j

� (a′,t0|x,t)

because the two stochastic particle trajectories become statis-
tically independent. As a consequence, the second magnetic
induction term in (42) always goes to zero for |x − x′| → ∞.

The first term will also vanish in that limit if 〈Bk
0 (a)B�

0(a′)〉 −
〈Bk

0 (a)〉〈B�
0(a′)〉 → 0 for |a − a′| → ∞ (statistical “cluster-

ing” of initial data).
The above formulas simplify in the special case of spatially

homogeneous statistics for both the velocity and magnetic
fields. In particular, (40) becomes

〈Bi(r,t)Bj (0,t)〉 =
∫

d3ρ
〈
Bk

0 (ρ)B�
0(0)

〉
F

ij

k�(ρ,t0|r,t), (43)

with the homogeneous two-body mean Green’s function

F
ij

k�(ρ,t0|r,t) ≡
∫

d3a F
ij

k�(a,a + ρ,t0|x,x + r,t). (44)

For |r| 	 Lu,

F
ij

k�(ρ,t0|r,t) �
∫

d3a F i
k (a + ρ; t0,t)F

j

� (a + r; t0,t),

and the two-body Green’s function is non-negligible only for
|ρ − r| = O((β|t − t0|)1/2). Then, (39) implies that

lim
|r|→∞

∫
d3ρ F

ij

k�(ρ,t0|r,t) = δi
kδ

j

� . (45)

These properties will be used in our discussion of the numerical
results below.

B. Numerical study of kinematic dynamo

We now present a numerical study of small-scale turbulent
kinematic dynamo at Prm = 1. We employ the same database
of nonhelical, incompressible fluid turbulence that was used
in our investigation of Richardson diffusion in Sec. II C. This
might appear to be a poor choice at first sight, since the conven-
tional view [17,18] is that the kinematic fluctuation dynamo
at Prm = 1 is a phenomenon of subviscous scales. For this
reason, the previous numerical studies have taken special pains
to resolve well the viscous range, at a sacrifice of Reynolds
number. For example, the highest resolution 10243 simulation
of Haugen et al. [17] had a Taylor-scale Reynolds number
ReT = 230, which is nearly half that of the database that we
employ, for which ReT = 433 [15,16]. The previous numerical
results seemed to verify the idea that viscous scales played the
dominant role; for example, the magnetic energy spectrum in
the kinematic regime was found to be peaked at wave numbers
a little higher than the viscous Kolmogorov wave number kν.

See Haugen et al. [17] (Fig. 4) and Schekochihin et al. [18]
[Fig. 22(a)]. The viscous range is not so well resolved in
the database that we employ, with the grid spacing �x of
the simulation being slightly greater than 2�ν. Nevertheless,
our study was designed to show the critical role of inertial-
range advection to the small-scale turbulent dynamo at high
Reynolds numbers and, thus, was forced to sacrifice resolution
of the viscous range. Our results will show that both ranges play
a critical role at Prm = 1 and, we will argue, even for Prm much
larger.

1. Methods

Our Lagrangian numerical approach is based upon the
results in Sec. III A. We construct an ensemble of stochastic
particles that solve Eq. (29) backward in time from common
starting point x. The Feynman-Kac formula (27) then yields

B2(x,tf )

= Bi
0[̃a(t0)]Bj

0 [̃a′(t0)](J (̃a,tf ,t0)J � (̃a′,tf ,t0))ij
′
,

where the double overbar indicates an average over two en-
sembles of trajectories ã(t), ã′(t) with independent realizations
of the Brownian noise. The J matrix satisfies Eq. (28) for
∇x·u = 0 :{

d
dtf

J (̃a,tf ,t0) = J (̃a,tf ,t0)∇xu(̃a(tf ),tf ),

J (̃a,t0,t0) = I.

The exact solution of this equation is an anti-time-ordered
exponential of the velocity gradient from t0 to tf and we have
here indicated explicitly the dependence of J upon both times.
As a matter of fact, it is numerically easier to use the ODE in
the initial time t0,{

d
dτ

J (̃a,tf ,τ ) = −∇xu(̃a(τ ),τ )J (̃a,tf ,τ ),

J (̃a,tf ,tf ) = I,
(46)

which may be solved backward in time from τ = tf to τ = t0
along with the stochastic equations (29). We then average over
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an ensemble of initial conditions B0 (the same for each τ ) to
obtain the mean magnetic energy

〈B2(x,tf )〉τ
= 〈

Bi
0[̃a(τ )]Bj

0 [̃a′(τ )]
〉
(J (̃a,tf ,τ )J � (̃a′,tf ,τ ))ij

′
.

In effect, we are solving for the growth of magnetic field by
moving the time τ of the initial conditions backward rather than
advancing tf forward. Thus, our results below shall be plotted
with respect to the difference variable t = tf − τ . Assuming
ergodicity, an average over space

〈B2(t)〉 ≡ 1

V

∫
d3x 〈B2(x,tf )〉τ

is equivalent to an average over an ensemble of velocities. In a
statistical steady state, this average should indeed be a function
only of the difference variable t = tf − τ.

To further simplify matters, we take as our initial seed
field for the dynamo a spatially uniform magnetic field B0,
which is still random, however, and statistically isotropic. The
covariance choice 〈Bi

0B
j

0 〉 = 1
3δij implies a magnetic energy

initially equal to one. This is not very small, but there is no
requirement of small field strength in our kinematic problem.
The formula for the mean magnetic energy then factorizes as

〈B2(x,tf )〉τ = 1
3 Tr (J (̃a,tf ,τ )J � (̃a′,tf ,τ ))

′

= 1
3 Tr (J̄ (tf ,τ )J̄ �(tf ,τ )), (47)

where J̄ (tf ,τ ) ≡ J (̃a,tf ,τ ) . Note that F = J̄ J̄ � is a
positive-definite, symmetric matrix, which formally reduces in
the limit of vanishing noise to the usual (left) Cauchy-Green
or Finger deformation tensor of continuum mechanics. The
initially uniform magnetic field does not stay uniform, but
develops small-scale fluctuations by an induction effect. There
is, in fact, no very precise distinction between “magnetic
induction” and “fluctuation dynamo,” as we have discussed
elsewhere [11], and weak uniform seed fields have been
used in many previous studies of turbulent magnetic dynamo
[60,61,66]. Thus, at fixed r, the magnetic correlation function
with this initial seed field is dominated at long times t by the
leading dynamo eigenmode E ,

〈Bi(r,t)Bj (0,t)〉 ∼ (const.)eγ tE ij (r), t → ∞
with γ the dynamo growth rate. In the opposite limit of large
distances for fixed t , it follows from (43) and (45) that

〈Bi(r,t)Bj (0,t)〉 ∼ 1
3δij , |r| → ∞

for our choice of initial seed field.
We implemented this scheme numerically by solving the

SDE (29) backward in time for N = 1024 samples ãn(τ ), n =
1,2, . . . ,N, all started from point x at time tf with independent
realizations of the noise. We took tf = 1.5 and t0 = 0.5
because the spatially averaged energy dissipation ε(τ ) is very
constant for the interval of time t0 < τ < tf in the database,
varying by < 1% from its space-time mean value ε̄ = 0.0919
over that interval. As in our study of Richardson diffusion, we
solved (29) using the Euler-Maruyama scheme with dt = 10−3

and solved Eq. (46) for J with the Euler method. Velocity
gradients are calculated by a fourth-order finite-difference

scheme with fourth-order Lagrange interpolation in space. We
checked convergence in dt for several x values both by taking
smaller dt and by comparison with the 1.5th-order method of
Platen for (29) and a consistent scheme for the matrix J . We
then approximated

〈B2(x,tf )〉τ
.= 2

N (N − 1)

∑
1�n<m�N

1

3
Tr (J (̃an,tf ,τ )J �(̃am,tf ,τ ))

(48)

by a sum over the N (N − 1)/2 = 523 776 number of pairs of
samples. Note that Hoeffding’s law of large numbers for U

statistics [67,68] implies that this pair average converges for
N → ∞ to the double average in (47) over two independent
realizations of the white noise. We then furthermore averaged
in space over S = 1600 points xs , s = 1,2, . . . ,S, with 25
points chosen randomly from each of 64 = 43 subcubes of the
whole domain. We obtain

〈B2(t)〉 .= 1

S

S∑
s=1

〈B2(xs ,tf )〉τ (49)

as our final approximation to the magnetic energy. More space
averaging was required for the kinematic dynamo than for
Richardson diffusion because of intermittency of the velocity
gradients involved in line stretching [69].

2. Results

We now present our results for Prm = 1. We first demon-
strate convergence of our algorithm in S and N. There
are several ways to estimate the errors associated with the
averaging over space and random samples. One approach is
to consider the approximation to the Cauchy-Green matrix F
obtained by omitting the 1

3 factor and the trace in Eq. (48).
As we have discussed above, the exact Cauchy-Green matrix
should be a positive-definite, symmetric matrix. Thus, if we
form the symmetric and antisymmetric parts

FS = 1
2 (F + F�), FA = 1

2 (F − F�),

one measure of the relative error in our calculation is the ratio
of matrix norms

ρ(t) = ‖〈FA(tf ,τ )〉‖
‖〈FS(tf ,τ )〉‖ .

Furthermore, if the small-scale turbulence is statistically
isotropic (as is known for the database employed), then the
space-average Cauchy-Green matrix should satisfy

〈Fij 〉 = 1
3 Tr (〈F〉)δij .

In particular, each of the three eigenvalues φi(t), i = 1,2,3, of
〈F(tf ,τ )〉 should be equal to 〈B2(t)〉.

In Figs. 5(a) and 5(b), we plot our results for ρ(t) and
φi(t), i = 1,2,3, respectively. Note that time t in these plots
and in all those following has been nondimensionalized by the
resistive time tη = √

λ/ε̄ = 4.49 × 10−2 (which is also the
viscous time since Prm = 1). The results for ρ(t) show that
the relative error in our calculation is less than a few percent
up until about 15 resistive times. This is confirmed by the plot
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FIG. 5. (Color) Error estimation. (a) The ratio ρ(t) of the norms
of the antisymmetric and symmetric parts of the approximate Cauchy-
Green tensor. (b) The eigenvalues φi(t), i = 1,2,3, of the approximate
Cauchy-Green tensor, with red for largest, green for middle, and blue
for smallest.

of the three eigenvalues φi(t), i = 1,2,3, in panel 5(b), which
are in quite close agreement until that time. The eigenvalues
also remain all positive until after 18 resistive times, consistent
with positivity of 〈B2(t)〉. These results show, incidentally,
that there was no need for us to take the initial magnetic
field B0 to be random and statistically isotropic. The same
dynamo growth is observed for any deterministic uniform
field pointing in any direction.

The error in our approximation for 〈B2(t)〉 can also be
estimated in the same way as was the error for the Richardson
two-particle dispersion in Sec. II C. Since the number of
pairs in (48) is quite large, one can guess that the dominant
error arises from the average over S space points in (49).
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/
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approx.
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FIG. 6. (Color) Mean magnetic energy. Plotted in blue is the mean
magnetic energy (solid line) calculated from Eqs. (48) and (49), along
with plus and minus the error (dotted line) estimated from Eqs. (50)
and (51). The straight line in red shows the least-squares linear fit
over the time interval t = 6 to 16.

A central limit theorem argument then suggests that the error
is approximated by

δ〈B2(t)〉 �
√

Var {〈B2(tf )〉τ }
S

(50)

with the spatial variance

Var {〈B2(tf )〉τ } .= 1

S − 1

S∑
s=1

|〈B2(xs ,tf )〉τ−〈B2(t)〉|2. (51)

This latter quantity has some independent physical interest
because it quantifies the spatial intermittency of the dynamo
effect. In Fig. 6, we plot our approximation (49) for 〈B2(t)〉
along with plus-or-minus the error estimate δ〈B2(t)〉 above.
These are consistent with the estimates in the previous Fig. 5.

The plot of magnetic energy from kinematic dynamo
effect in Fig. 6 is our central result in this section. The
expected exponential growth ∼eγ t of magnetic energy is
clearly observed after about 6 resistive times. A linear fit
over the range of times 6 to 16 is also plotted in Fig. 6,
yielding an estimated growth rate of γ tη

.= 0.158. At earlier
times, the growth rate is significantly larger. For example,
a linear fit over the range of 1 to 4 resistive times yields
an estimate γ tη

.= 0.344. This is closer to the magnitude of
the typical viscous strain rate eigenvalue

√
〈S2〉/3, which,

in units of the viscous and resistive rate
√

ε̄/ν, is equal to
1/

√
6

.= 0.408. The physical interpretation of these results
is clear. According to the stochastic Lundquist formula (32),
field lines that are carried into a point x along individual
Lagrangian trajectories are stretched at the viscous strain rate.
However, the resistive average over the ensemble of stochastic
trajectories leads to cancellation and suppression of the growth
rate. As time advances, the spatial region sampled by the
wandering trajectories increases in size and the suppression
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FIG. 7. (Color) Local slope of backward dispersion. Plotted in
blue is the local slope of the backward dispersion 〈r2(t)〉, as defined
in (52). Plotted in red is the horizontal line segment from t = 6 to 25
for the Richardson value σ = 3.

effect increases. Indeed, the asymptotic exponential growth
range begins precisely at the onset of turbulent Richardson
diffusion of the trajectories. To demonstrate this, we consider
the (backward) dispersion 〈r2(t)〉 of the stochastic Lagrangian
trajectories that determines the typical linear dimension L(t) =√

〈r2(t)〉 of the region from which field lines arrive. The
local-in-time scaling exponent

σ (t) ≡ d log(〈r2(t)〉)
d log(t)

. (52)

will equal 1 at early times and transition to 3 when Richardson
diffusion sets in. The numerical results for this quantity are
plotted in Fig. 7, along with a horizontal line (red) at level σ =
3 beginning at t = 6. It is clear that the asymptotic exponential
growth range of magnetic energy and the Richardson diffusion
of trajectories start at the same time. The inertial-range
properties of turbulent two-particle diffusion are thus critical in
determining the ultimate growth rate of the Prm = 1 turbulent
kinematic dynamo.

Although initial field lines arrive to a point at time t from a
large region of size L(t), not all of these field lines contribute
equally to the growth of magnetic energy. To quantify the
contribution of line vectors at initial separation r, we use
the line-vector correlation function, which was proposed as
a “dynamo order parameter” [10]:

Rk�(r,t) = F ii
k�(r,t0|0,t),

where F is the homogeneous two-particle Green’s function
from (44) [70]. Rk�(r,t) represents the scalar correlation at
time t between material line vectors �(t), �′(t) which started
as unit vectors êk,ê� at positions displaced by r at the initial
time 0 and which arrive at the same final point. Setting r = 0
in Eq. (43) gives, in general,

〈B2(t)〉 =
∫

d3r
〈
Bk

0 (ρ)B�
0(0)

〉
Rk�(ρ,t).

This formula separates the effect of the initial correlations of
the magnetic field and the effect of the turbulent advection and
stretching. For the case of isotropic and nonhelical velocity
statistics, we may decompose the tensor R into contributions
from line vectors initially longitudinal and transverse to the
separation vector r :

Rk�(r,t) = RL(r,t)r̂k r̂� + RN (r,t)(δk� − r̂k r̂�),

where r̂ is the unit vector in the direction of r. For our particular
choice of uniform initial magnetic field,

〈B2(t)〉 = 1

3

∫ ∞

0
4πr2dr [RL(r,t) + 2RN (r,t)]. (53)

This line correlation can be calculated numerically by the
same procedure that we have used to obtain the magnetic en-
ergy itself in Eqs. (48) and (49). For example, the longitudinal
line correlation can be approximated by

RL(r,t)
.= 1

S

S∑
s=1

2

N (N−1)

∑
n<m

r̂J
(̃
an

s ,tf ,τ
)
J �(̃

am
s ,tf ,τ

)
r̂�

×δ
[∣∣̃an

s (τ ) − ãm
s (τ )

∣∣ − r
]

4πr2
,

(54)

taking r̂ as a row vector. The corresponding transverse
correlation RN (r,t) is obtained by replacing r̂ in (54) with
two orthogonal unit vectors êi , i = 1,2, which span the
subspace orthogonal to r̂ and by then summing over these
two contributions. In practice, these continuous distributions
must be sampled in discrete bins. We took 200 bins of
size �r = �η/2, or one-half of the resistive length scale. To
capture the contributions from r > 100�η but to avoid large
fluctuations in the results, we added three extra large bins of
size 100,200, and 400 �η, centered at 150, 300, and 600 �η,

thus covering the whole range of r in the database.
We present in Fig. 8 our numerical results for RL(r,t) and

RN (r,t) at a time t = 11.12 in resistive time units. As should
be clear from Figs. 6 and 7, this time lies well within the
range both of exponential growth of energy and of Richardson
diffusion of particle pairs. The most interesting feature of
these correlations is their considerable diffuseness in r. This is
shown even more clearly in Fig. 9, which plots the integrands
4πr2RL(r,t) and 4πr2RN (r,t) in Eq. (53) for 〈B2(t)〉. In order
to get 50% of the magnetic energy, one must integrate in
that formula out to r = 15.71�η. Likewise, to get 75% of
the energy, one must integrate out to r = 39.15�η and to
get 90%, one must integrate all the way out to r = 66.59�η.

Thus, line vectors separated initially by many resistive lengths
are brought together by turbulent advection to produce the
dynamo growth. Another very interesting feature is the large
negative contribution of the initially longitudinal line vectors,
seen in Fig. 8(a) and even more clearly in Fig. 9. A very
similar negative contribution was found [11] for the Kazantsev-
Kraichnan dynamo model at Prm = 0 and Rm = ∞. It was
suggested there that negative values of RL(r,t) for sufficiently
large r are due to an effect of bending and looping of field
lines.

It is interesting to make a more detailed comparison of
our numerical results for hydrodynamic turbulence at Prm = 1
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FIG. 8. (Color) Line-vector correlations: (a) longitudinal,
(b) transverse. The line-vector correlations RL(r,t) and RN (r,t),
respectively, as calculated numerically from formula (54) at time
t = 11.12, are plotted in blue with solid lines and the correlations
plus and minus their estimated errors with dotted lines. Also plotted
with red lines are analytical results [11] for these correlations in the
Kazantsev-Kraichnan model at Prm = 0, normalized as described in
the text.

and of the analytical results in the Kazantsev-Kraichnan (KK)
dynamo model for Prm = 0. The comparison is not completely
straightforward, so a few words of explanation are required.
We consider the KK model with spatial Hölder exponent
h = 2/3 in the velocity correlation (15). With this choice of
h, Richardson’s t3 law holds for particle dispersion and it is
generally the appropriate choice for comparisons with physical
fluid turbulence. In this case, the coefficient D1 in (15) has the
same dimensions as ε1/3, with ε the mean energy dissipation
per unit mass. Our previous results for the KK model [10,11]
were obtained with lengths nondimensionalized by (λ/D1)3/4
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FIG. 9. (Color) Contributions to magnetic energy. Plotted in blue
is the function 4πr2RL(r,t) and in cyan the function 4πr2RN (r,t),
both at time t = 11.12. These represent the contributions to magnetic
energy in (53) from pairs of line vectors at initial separations r and
initially parallel and perpendicular, respectively, to the separation
vector r.

and times by (λ/D3
1)1/2. However, D1 is not numerically equal

to ε1/3, but only dimensionally the same. In order to relate them
quantitatively, we note that the KK particle diffusion equation
(16) reduces in the isotropic sector to Richardson’s original
equation (2) with coefficient of eddy diffusivity K0 = 2D1.

In that case, one recovers the t3 law (6) with a Richardson-
Obukhov constant g0 if one makes the definition for the KK
model

ε ≡ 143
64

81g0
D3

1 . (55)

We, thus, obtain �η ≡ (λ3/ε)1/4 = β(λ/D1)3/4 with β =
3

2
√

2
( g0

143 )1/4. For the backward two-particle diffusion in our

kinematic dynamo study, we have found that g0
.= 1.57

(somewhat larger than the value 1.35 reported in Sec. II C
for an independent experiment over a different time range)
and, thus, β

.= 0.343. For comparison with the present results,
therefore, the results of Eyink [11], Fig. 10 must have the x axis
scaled by 1/β and the y axis scaled by β3. Furthermore, the
quantities G̃L(r),G̃N (r) previously calculated [11] are dynamo
growth eigenmodes, which dominate the behavior of RL(r,t),
RN (r,t) at long times. Since there is an arbitrariness in the
normalization of the eigenmodes, we have additional freedom
in the vertical scale. This is fixed by imposing on the KK
eigenmodes the normalization condition (53) at t = 11.12
resistive time units.

We have plotted the results for the line correlations from
the KK model in Fig. 8 (red lines), together with our numerical
results for hydrodynamic turbulence (blue lines). Clearly,
the two sets of results are qualitatively very similar. In
both cases, the transverse correlation RN (r,t) is everywhere
positive, sharply peaked at small r, but with a slow decay
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FIG. 10. (Color) Line correlations for large separations:
(a) longitudinal, (b) transverse. Plotted in blue are the numerical
results from (54) at time t = 11.12 and in red the analytical results
[11] from the Kazantsev-Kraichnan model at Prm = 0. Straight lines
in the log-linear plot versus r1/3 correspond to the large-r asymptotics
(56). Shown in green is the prediction of that formula with the growth
rate γ = 0.158 determined in Fig. 6.

at large r. The longitudinal correlations RL(r,t) of the two
sets share all these same features except for their sign, with
both exhibiting a long negative tail at large r . The major
difference between the results for hydrodynamic turbulence
at Prm = 1 and the KK model at Prm = 0 is the distinctly
slower rate of decay of correlations at large r for the
latter.

The precise decay rate at large r is known for the line
correlations in the KK model. It was shown [11] that, up

to power-law prefactors, these exhibit a very slow stretched-
exponential decay

G̃L(r), G̃N (r) ∼ exp

(
−3

√
2γ

2D1
r1/3

)
, r 	 �η (56)

where γ is the dynamo growth rate. A remarkable feature of
this asymptotic formula is that it depends upon resistivity η (or
magnetic diffusivity λ = ηc/4π ) only through the growth rate
γ. To check for a similar decay in hydrodynamic turbulence,
we present in Figs. 10(a) and 10(b) a log-linear plot of
the line correlations |RL(r,t)|, RN (r,t) versus r1/3, both for
our numerical calculation with the hydroturbulence database
(blue) and for the KK model (red). The straight lines in these
plots verify the stretched exponential decay with power r1/3.
In fact, the decay law (56), which was derived in the KK model
for Prm = 0, holds very well in hydrodynamic turbulence at
Prm = 1, including the coefficient in the stretched exponential.
If we use the relation (55) to replace D1 with ε and then
substitute the dynamo growth rate γ tη

.= 0.158, we predict
from (56) a line in a log-linear plot with slope −3.507 (in
resistive units). A line with this slope is plotted (in green) in
Figs. 10(a) and 10(b) and can be seen to match our numerical
results quite well. The reason for the slower decay of the
stretched exponential in the KK model at Prm = 0 is thus
entirely attributable to a smaller dynamo growth rate than what
we find in hydroturbulence for Prm = 1. In particular, using
the result [11,71] that γ (λ/D3

1)1/2 .= 0.193 for KK at Prm = 0
and using again the relation (55), we get that γ tη

.= 0.0217.

This is almost an order of magnitude smaller than the result
γ tη

.= 0.158 that we found for hydroturbulence at Prm = 1 and
motivates some further discussion below.

3. Discussion

Let us make a quantitative comparison of our growth
rate with those found in other studies [17,18,60,61,71] of
small-scale dynamo in incompressible, nonhelical turbulence
at Prm = 1. We present both the Reynolds numbers and
the dynamo growth rates found in these studies. We give
the “box-size” Reynolds number Re = u′/νk0, where u′ =
urms/

√
3 is the rms value of a single velocity component and

k0 is the smallest wave number in the simulation study. This
is not as dynamically significant a Reynolds number as is
Ref = urms/νkf , based on the forcing wave number kf , but it
is the easiest to calculate from the published data. We give the
growth rate in the dimensionless form γ tν where, as above,
tν = (ν/ε)1/2 is the viscous time (and also the resistive time
for Prm = 1). The data from the paper of Schekochihin et al.
(2004) [18] is taken from their Table 2 (where 1/tν = √

15�rms

there). The data of Haugen et al. (2004) [17] is taken from their
Fig. 3, which plots their results for α ≡ (γ /2)/(urmskf ) versus
Ref . Note, however, that

γ tν = 2α

√
3

5

ReT

Ref

,

where ReT = u′�T /ν is the Taylor-scale Reynolds number
defined there [17], with �T = √

5urms/ωrms. We can also infer
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TABLE I. Reynolds numbers and dynamo growth rates from
several numerical studies with Prm = 1. Shown are the box-size
Reynolds number Re = u′/νk0, where k0 is the minimum wave
number, and the growth rate γ nondimensionalized by the viscous
time tν = (ν/ε)1/2.

Reference Re γ tν

[18] 110 0.0138
210 0.0265
450 0.0329

[17] 131 0.0338
260 0.0379
606 0.0385

[71] (KK model) ∞ 0.0383
[60] 294 0.550
This paper 6380 0.158

from their Table II [17] that ReT = √
60Ref so that, putting

all these relations together,

γ tν = 12α√
Ref

.

Finally, Re =
√

3
2 Ref since their forcing wave number [17]

is kf = 1.5 and u′ = urms/
√

3. The paper of Vincenzi [71]
presents a numerical study of the KK model. Figure 6 in that
work plots the results for γ (λ/D3

1)1/2 at Re = ∞ and a broad
range of Prandtl numbers. Note that the “viscosity” for the
KK model is defined [71] by ν∗ = D1�

4/3
ν , where �ν is the

short-distance cutoff length of the inertial scaling range and the
corresponding “Prandtl number” is defined by Prm ∗ = ν∗/λ.

It is not obvious how to best compare this “Prandtl number”
with that for viscous hydrodynamic turbulence. In any case,
the result for Prm ∗ = 1 is γ (λ/D3

1)1/2 .= 0.350, which we
transform to γ tν

.= 0.0383 as described earlier. Finally, the
papers of Cho et al. [60,61] present results for a large number
of runs with both normal and hyperviscosity. The authors
have kindly provided data from their highest Reynolds-number
normal-viscosity simulation, denoted RUN 512P − B010−3

(for 5123 resolution with physical viscosity and initial uniform
seed field of strength 10−3). These data are reported below [72].
In one important respect, this simulation is quite distinct
from the others reported here because the initial velocity
field is not a fully developed turbulent field but is instead
supported in the very low-wave-number interval 2 � k � 4.

Turbulence quickly develops with the volume-averaged kinetic
energy dissipation ε(t) increasing by a factor of 42 over their
time interval of kinematic dynamo. Although this dynamo
simulation is not in a statistically steady turbulent regime, it
does give some useful perspective and we thus include it here.
All of these data are gathered into Table I.

It is widely expected that γ tν approaches a universal value
as Re → ∞, but the data presented seem not to confirm this.
The study of Haugen et al. [17] indeed reported seeing such a
limiting behavior, as can be observed from their data in Table I.
Their results for the growth rate are also consistent with those
of Schekochihin et al. [18] and remarkably close to those of
Vincenzi [71] for the KK model at Re = ∞. The latter must be

regarded as a coincidence, however, due to the ambiguity in the
definition of the Prandtl number for that model. For example,
a better definition might be Prm ≡ ε1/3�

4/3
ν /λ, which, using

(55), gives Prm
.= 4.16Prm ∗. Thus, Prm = 1 corresponds to

Prm ∗
.= 0.24. Whatever the “best” definition of the Prandtl

number for the KK model might be, the value of γ tν for
Prm = 1 will be somewhat smaller than that reported above
for Prm ∗ = 1, because the latter is near the maximum of
γ (λ/D3

1)1/2 (Vincenzi [71], Fig. 6). Our own result for γ tν
is about four times larger than the value of Haugen et al. for
their highest Reynolds number simulation. The dimensionless
growth rate increases with Re and our Reynolds number is
about six times larger than theirs, so this might account for
some of the discrepancy. On the other hand, our resolution of
the viscous range is also relatively poor and this may degrade
the numerical accuracy of our result for the growth rate. To
further complicate the picture, the value of γ tν found by Cho
et al. is about 3.5 times larger than ours. Note that the result
reported in Table I for Cho’s data used the value ε̄ from a
time average of ε(t) over the kinematic interval of exponential
growth in order to define tν . If we instead used the value ε(t∗)
at the end of the kinematic interval to define tν , then we would
obtain a somewhat smaller value γ tν

.= 0.312 for Cho et al.,
but still twice ours.

The results in Table I appear contradictory on the face of it,
but we believe that there is a simple resolution. The key is the
time range over which the exponential growth is observed. Our
growth rate was calculated for the time interval 6–16tν , with
the latter time only about 1/3 Tu, where Tu = Lu/u

′ is the
large-scale eddy-turnover time. Haugen et al. do not publish
growth curves in their paper, but Schekochihin et al. present
in their Fig. 21 [18] a log-linear plot of the magnetic energy
for their kinematic runs, with fitting ranges for exponential
growth indicated. The cited growth rate for their 450 Reynolds-
number simulation (Run A) was obtained over a time interval
of 66.6–505.9tν . This corresponds in their simulation to about
5.86–44.5Tu. [Here we have used the well-known result that
Tu

.= 0.4(u′)2/ε and the data in their Table I [18] to estimate
Tu

.= 0.267 for Run A.] At earlier times in their simulation,
the growth of magnetic energy is much faster. For example, if
we use the data in their Fig. 21 for times <5.86Tu to estimate
the growth rate, we obtain a value γ tν = 0.0691, about half of
ours.

We therefore conjecture that there are two distinct kinematic
regimes with exponential growth of magnetic energy at
different rates, one for times t � Tu and another for times
t 	 Tu. This makes perfect sense from the Lagrangian point of
view developed in this paper. For times t � Tu, the (backward)
particle dispersion 〈r2(t)〉 is growing as ∼ εt3 (see Fig. 7).
This means that the magnetic field strengths are obtained
by averaging initial field vectors arriving from inertial-range
separations growing as a power law. However, for times
t 	 Tu, the mean-square separation 〈r2(t)〉 saturates to a value
of order ∼ L2

B, where LB is the size of the periodic box.
In this time regime, therefore, magnetic field strengths are
obtained by averaging seed field vectors arriving to each point
from the entire flow domain. Furthermore, each initial line
vector that arrives to a point will have moved a distance of
order urmst 	 LB and has, thus, generally crossed the entire
periodic domain a large number of times. It stands to reason
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that the growth rate would be reduced in this strongly mixed
regime. Which of the two kinematic regimes is most relevant
in practice depends upon the strength of the seed magnetic
field B0. It is observed [17,18,60] that the kinematic interval
of exponential growth ends once the magnetic field energy
〈B2(t)〉 grows to equipartition with the viscous-range kinetic
energy u2

ν = (εν)1/2. If ln(uν/B0) � γ Tu = O((Re)1/2), then
this occurs at times much less than Tu, the regime that
we have studied. This will be the typical situation at high
Reynolds numbers. On the other hand, if the seed field is
exponentially small for large Re (i.e., B0 < uνe

−O(Re1/2)) or if
the Reynolds number is not so large, then viscous equipartition
will only occur for times 	 Tu. This is the regime studied by
Shekochihin et al. [18] and Haugen et al. [17]. In support of
this conclusion, we note that the RUN 512P − B010−3 of Cho
et al., with a not too small seed field, reached saturation with
viscous kinetic energy at a time around 12tν or 1.2Tu. The
growth rate cited in Table I was obtained from a fit over the
range 1.72–11.7tν or 0.173–1.18Tu, comparable to the time
range that we study, and with a similarly large growth rate.

Clearly, more study of this matter would be desirable.
Unfortunately, the turbulence database that we employ only
stores the velocity field for about one Tu, or 44.8tν, so we
can not study times 	 Tu. We do believe, however, that our
results have attained the asymptotic regime tν � t � Tu. In
support of this claim, we note that we are observing already
at time 11.12tν the expected inertial-range behaviors, such as
Richardson diffusion and the stretched-exponential correlation
decay in Eq. (56) (which was derived in the KK model for
Lu = ∞).

The most important general conclusion from our results
presented above is that the inertial-range phenomenon of
Richardson diffusion plays a critical role in the small-scale
fluctuation dynamo of hydrodynamic turbulence at Prm = 1.

Because field lines are only “frozen in” stochastically, an
infinite number of lines enter each point from a very large
region of size L(t) ∼ (εt3)1/2 at time t. This mixing of field
lines from far away opposes the growth by stretching of the
individual lines and suppresses the dynamo growth rate. Be-
cause of nearly complete cancellation, the lines arriving from
separations of order ∼ L(t) contribute a vanishingly small
amount to the magnetic energy. Nevertheless, the asymptotic
formula (56) shows that field lines separated at inertial-range
distances r 	 �η give a non-negligible contribution. That
formula implies also, very remarkably, that the dynamo growth
rate can be inferred directly from the stretched-exponential
decay of the magnetic line-vector correlations in the inertial
range.

A second important conclusion is that there are very
fundamental similarities between the mechanisms of the
small-scale fluctuation dynamo for Prandtl numbers Prm = 1
and 0 in high-Reynolds-number turbulence. The physics that
we have discussed above for hydrodynamic turbulence at
Prm = 1 and large Rm agrees very closely with what was
established [10,11] for the Kazantsev-Kraichnan model at
Prm = 0 and Rm = ∞. Richardson diffusion and stochasticity
of flux freezing play a critical role in both. This contradicts
a view that inertial-range time scales are too long to affect
the operation of the dynamo, which proceeds at a faster
viscous rate [18]. Because the exponential dynamo growth is

a long-time phenomenon, there is sufficient time for advection
by inertial-range eddies to affect and modify its rate. Indeed,
we have seen in this paper at Prm = 1 that the inertial-range
phenomenon of Richardson diffusion starts at times t � 6tν
and not at times orders of magnitude greater than the viscous
time.

In our view, the Prm = 1 small-scale dynamo, and more
generally, the finite Prm dynamo, is a transitional case that
shares some of the attributes of both of the extreme limits
Prm = 0 and ∞. A corollary of this view is that there
should be an important influence of the inertial range even
for small-scale dynamos with Prm 	 1, if also Re 	 1.

This is the situation for many low-density, high-temperature
astrophysical plasmas with large magnetic Prandtl numbers
but with, also, a substantial inertial range. As we have
discussed in Sec. II B, the exponential separation of particles
typical of the large-Prm “Batchelor regime” is an intermediate
asymptotics for a range of times tν � t � ln(Prm)tν in high
Reynolds-number turbulence. After a time t � tν ln(Prm),
magnetic line elements in such a turbulent flow will begin to
experience Richardson diffusion and a concomitant decrease
of the dynamo growth rate. Because the dependence upon Prm
is logarithmic, the time to enter this inertial-range influenced
regime is only a relatively small multiple of tν even at very large
Prm. [For example, with a value Prm = 1014 typical of the warm
interstellar medium, ln(Prm)

.= 32.] If the initial magnetic seed
field is weak enough, then its backreaction on the turbulence
up to that time may be neglected and the turbulent kinematic
dynamo process essentially as we have discussed in this section
of our paper will proceed, even at very large Prandtl numbers.

V. NONLINEAR MHD TURBULENCE, DYNAMO,
AND RECONNECTION

Although we have focused in our discussion of dynamo
effect on the kinematic stage, almost all of the results of
this paper extend, with appropriate modifications, to fully
nonlinear MHD turbulence with backreaction on the flow
from the Lorentz force. A full treatment is not possible here,
but we shall try to stress what is general in our previous
presentation, sketch any necessary modifications, discuss
relevant references, and point out some important directions
for further work.

The phenomenon of two-particle Richardson diffusion and
“spontaneous stochasticity” will doubtless exist in MHD
turbulence. Their cause is the roughness of the advecting
velocity field and all theories, simulations, and observations
of MHD turbulence (whatever their other differences) agree
that both the velocity and magnetic fields are indeed rough in
the inertial range of such flows. The quantitative growth law of
particle dispersion will depend upon the precise characteristics
of MHD turbulence, such as the spectral slopes, degree of
anisotropy, etc. These depend upon the ultimate theory of
MHD turbulence, which is an open problem. We base our
discussion below on the Goldreich-Sridhar (GS) theory of
strong MHD turbulence [73,74], but alternative theories would
lead to similar results.

For simplicity, we assume incompressible and sub- or trans-
Alfvénic MHD turbulence, with rms velocity fluctuations
u′ � vA, where vA = B0/

√
4πρ is the Alfvén velocity based
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on the external magnetic field strength B0. We also assume
that large-scale anisotropy is such that “critical balance” holds
throughout the inertial range and the turbulence is strong.
Finally, we assume that mean cross helicity is zero and there
is an equal flux of upward and downward propagating Alfvén
waves. Under these conditions, the GS theory predicts that
velocity increments for separations � scale as

δu(�) ∼ (ε�⊥)1/3 ∼ (ε�‖/vA)1/2,

where ε is energy dissipation per mass and �⊥,�‖ are the
separations perpendicular and parallel to the magnetic field,
respectively. We shall also assume that perpendicular (shear-
Alfvén) and parallel (pseudo-Alfvén) components of the
velocity increments scale in the same way, or δu⊥(�) ∼ δu‖(�).
In that case, we can give a simple theory of particle-pair dis-
persion like that presented for hydroturbulence in Sec. II A. If
we let r⊥(t) and r‖(t) be the particle separations perpendicular
and parallel to the field, respectively, then

d

dt
r⊥ ∼ δu⊥(r) ∼ (εr⊥)1/3

(assuming that r‖ ≡ 0) implies that

r2
⊥(t) ∼ εt3, (57)

and in the same manner
d

dt
r‖ ∼ δu‖(r) ∼ (εr‖/vA)1/2

(assuming that r⊥ ≡ 0) implies that

r2
‖ (t) ∼ (ε/vA)2t4. (58)

The above scaling laws will hold for intermediate times
where t 	 (r2

⊥(0)/ε)1/3, (vAr‖(0)/ε)1/2 but t � Tu = Lu/u
′,

the large-eddy turnover time. The most important feature
observed in both cases is that initial separations are “forgot-
ten,” the physical basis of the phenomenon of spontaneous
stochasticity. A full theory of two-particle dispersion in
MHD turbulence will obviously be quite intricate and will
depend upon the regime of turbulence considered and the
phenomenological assumptions employed. Within theories of
weak MHD turbulence [75], it should be possible to give
an analytical treatment using well-established methods [76].
However, whatever final form the theory of MHD turbulence
may take, spontaneous stochasticity seems to be a likely
consequence.

There have been a few numerical studies of two-particle
dispersion in MHD turbulence, both with [77] and without
[78,79] external magnetic field. In the presence of an external
magnetic field, Busse and Müller find that r⊥(t) grows faster
than r‖(t) (see their Fig. 4 [77]), in qualitative agreement
with our formulas (57) and (58) [80]. The situation is not
entirely clear, however. Following Cho and Vishniac [66], it is
generally believed that similar alignments and anisotropies
will hold at small scales in MHD turbulence without an
external magnetic field, just as for the external field case,
if the alignments are taken with respect to a local magnetic
field. Paradoxically, however, Busse et al. find in MHD
turbulence without external field that r⊥(t) � r‖(t) when these
quantities are defined with respect to the local field. The total
displacement vector r(t) thus becomes preferentially aligned

with the local magnetic field. It is not obvious how to explain
this observation, but it possibly has something to do with the
dynamical alignment of velocity and magnetic field increments
at small scales [81,82]. Clearly, more study of these issues is
required.

Our results in Sec. III A on stochastic flux freezing
in resistive magnetohydrodynamics were derived in a fully
nonlinear setting. No kinematic assumption was made there. It
has elsewhere been shown [45] that all effects of the Lorentz
force on fluid motion are described by a second stochastic
conservation law, which generalizes the Kelvin circulation
theorem, at least for incompressible fluids with Prm = 1.

This result extends to resistive MHD the “generalized Kelvin
theorem” derived for ideal MHD [83,84]. As we shall show
in a future paper, this additional stochastic Kelvin theorem
also holds in compressible plasma fluids with Prm = 1 if
they are barotropic (pressure depending only on density
and not on temperature) and in nonisothermal fluids if the
thermal Prandtl number is also unity. The existence of two
stochastically “frozen-in” fields provides strong constraints,
which deserve to be further explored. We remark finally,
and most importantly, that our discussion in Sec. III B
on the high Reynolds limit of plasma turbulence made no
kinematic assumption. The prediction that stochastic flux
conservation holds in that limit depends only upon the phe-
nomenon of spontaneous stochasticity, which we have argued
should inevitably occur in high-Reynolds-number plasma
turbulence.

Perhaps the most important implications of this paper
are for the problem of turbulent magnetic reconnection. Our
results and arguments show compellingly, we believe, that the
constraint of flux freezing in a turbulent plasma at high con-
ductivity must be quite different than is generally understood.
The naive estimate of flux-line slippage due to resistivity,
〈r2(t)〉 ∼ λt, is incorrect, by many orders of magnitude. The
correct estimate will depend upon the ultimate theory of MHD
turbulence, but it must have the general form of (57) and (58)

above. The quantity
√

〈r2
⊥(t)〉 can be interpreted as the lateral

distance that magnetic field lines diffuse through a turbulent
plasma in time t, and (57) should be particularly useful in
estimating reconnection rates for astrophysical phenomena.
Note that both (57) and (58) are completely independent of the
resistivity (and of any other microscopic plasma mechanism of
line slippage). These results give support, therefore, to all the-
ories and observations of fast magnetic reconnection in MHD
turbulence. In fact, our results show that fast reconnection
is necessary for (implied by) all standard theories of MHD
turbulence.

There are particularly close connections with the Lazarian-
Vishniac theory [85] based on stochastic wandering of field
lines. We have stressed that Lagrangian particle trajectories
become intrinsically stochastic in a rough velocity field, due to
the phenomenon of Richardson two-particle dispersion. The
“stochastic wandering” invoked by Lazarian-Vishniac is an
analog of Richardson diffusion for the field lines themselves
in a rough magnetic field. Because of this effect, there is
not just one field line passing through each point in the
limit of zero resistivity, but instead an infinite ensemble
of random field lines. The connection between our ideas
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and those of Lazarian-Vishniac [85] deserve to be further
examined.

VI. FINAL DISCUSSION

Two ideas are commonplace in the literature on plasma
magnetohydrodynamics. One is that flux freezing must hold
approximately for Rm 	 1, an assumption widely employed
in treatments of magnetic dynamo effect. Another idea
frequently advanced in discussion of magnetic reconnection
is that the flux-freezing constraint is broken by rapid diffusion
of field lines across thin current sheets. There has long been
a tension between these two ideas, never fully reconciled.
Both ideas are sometimes invoked in the same setting. For
example, it is recognized that, while stretching of “nearly”
frozen-in lines drives magnetic dynamo action, nevertheless,
fast magnetic reconnection is necessary to relieve tangled
field-line structure [85–87]. We have argued that both ideas
are correct, if suitably understood. Magnetic flux through
individual material loops, advected by the plasma in the
usual sense, will not be conserved for Rm → ∞ because
of the development of singular current sheets and vortex
sheets. However, magnetic flux in high-Reynolds-number
MHD turbulence will nevertheless be conserved on average
for a random ensemble of loops, in a statistical sense
associated to the spontaneous stochasticity of Lagrangian
flows.

Spontaneous stochasticity is a fluid-dynamical phe-
nomenon due to the explosive separation of particles produced
by turbulent Richardson diffusion. Because of this effect, fluid
particles that start infinitesimally close together will separate to
a finite distance in a fixed amount of time, independent of the
Reynolds number. In the limit Re → ∞, there is an infinite
ensemble of Lagrangian trajectories for each initial particle
position. There is already good evidence for this effect from
turbulence simulations and laboratory experiments, much of
which is reviewed in Sec. II C together with the new simulation
results of this work. We expect confirmation from future stud-
ies at higher Reynolds numbers. The Göttingen Turbulence
Tunnel now in operation should reach Taylor-scale Reynolds
numbers ReT ∼ 104 and turbulent Richardson diffusion shall
be one of the main subjects of investigation [88]. Richardson
diffusion and spontaneous stochasticity should also occur in
high-Reynolds-number MHD turbulence and can be studied
by both simulation and experiment. Recent laboratory studies
of magnetic dynamo and turbulent induction with low-Prandtl-
number liquid metals have Reynolds numbers high enough and
inertial ranges sufficiently extensive to support the phenomena.
Although extremely challenging, it would be quite informative
to develop particle-tracking techniques for such flows that
could investigate Lagrangian mechanisms.

In an earlier work [89], we have considered Alfvén’s
theorem for turbulent plasma flows from a complementary
perspective. The approach used there was a spatial coarse
graining of the MHD equations over a continuous range of
scales �, similar in spirit to a renormalization group analysis.
The effective induction equation at length scale � contains a
“turbulent electromotive force (EMF)” ε� induced by subscale
plasma motions. As long as energy remains finite for high
kinetic and magnetic Reynolds numbers, the turbulent EMF

can be shown to be much larger at inertial-range length scales
� than viscous and resistive terms, or than other possible
microscopic dissipation terms. In that case, the effective
flux-conservation equation at inertial-range length scales �

takes the form
d

dt

∮
x�(C,t)

A�(x,t)·dx =
∮

x�(C,t)
ε�(x,t)·dx, (59)

where A� is the coarse-grained magnetic vector potential
and x�(a,t) is the Lagrangian flow map generated by the
coarse-grained velocity field u�. For a smooth, laminar solution
of the ideal MHD equations, ε� → 0 everywhere in space
as � → 0 and flux conservation in the standard sense is
recovered. However, it was shown [89] that the right-hand
side of (59) need not vanish for singular velocity and magnetic
fields, for example, those with coincident “current sheets” and
“vortex sheets” (more precisely, tangential discontinuities)
or those for which advected loops become fractal. In such
cases, Alfvén’s theorem in its conventional sense can break
down at infinite magnetic Reynolds number and magnetic flux
��(C,t) = ∮

x�(C,t) A�(x,t)·dx need no longer be conserved for
individual loops C as � → 0. Here, we extend that conclusion
by arguing that flux conservation will hold on average for a
suitable random ensemble of loops. Similarly as in Sec. III B,
we may consider the set of loops a�(C + εC̃,t) at time t0
obtained by adding random perturbations of size ε to C and
then advecting backward in time with a�(·,t) = x−1

� (·,t). We
expect that this ensemble of loops in the limits first of vanishing
magnetic diffusivity and viscosity λ,ν → 0, then � → 0 and
finally ε → 0 will exactly coincide (at least for incompressible
flow) with the ensemble ãλ(C,t) for λ,ν → 0 considered in
Sec. III A. If so, then flux conservation will hold in an average
sense similar to (35). The advantage of the present argument
is that it makes no explicit reference to Spitzer resistivity
or to any other microscopic plasma mechanism. Stochastic
flux freezing is fundamentally a phenomenon of the nonlinear
MHD dynamics.

Stochastic flux conservation is expected to be a property of
singular solutions of the ideal MHD equations that describe
turbulent plasmas asymptotically at high kinetic and magnetic
Reynolds numbers. The existence of such singular solutions
is an old conjecture of Onsager [90,91]. Such solutions
must be quite different from smooth laminar solutions of the
ideal MHD equations that are familiar from current analysis,
however, and must possess many “strange” properties. We
are still learning how to deal with such solutions. We have
recently shown how to derive the stochastic Kelvin theorem for
the incompressible Navier-Stokes equation using a stochastic
least-action principle [92]. It is expected that there will
be a similar stochastic least-action principle for Onsager’s
singular Euler and ideal MHD solutions. This is a fundamental
motivation to expect stochastic flux conservation at infinite
Reynolds numbers.

There must be many important applications of stochastic
flux freezing in plasma physics, astrophysics, and geodynamo
studies. We have here presented one concrete application to
the finite-Prm, kinematic, fluctuation dynamo in nonhelical,
incompressible fluid turbulence. Stochastic flux freezing is
critically important to the mechanism of small-scale turbulent
dynamo because distinct field lines that are initially separated
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by inertial-range distances arrive to the same point and resis-
tively merge to produce the net magnetic field [see Eq. (56)].
Our results and analyses point to essential similarities between
the finite-Prm and Prm = 0 dynamo in their Lagrangian mech-
anisms. Understanding the saturation effect of the Lorentz
force from a Lagrangian perspective is an obvious next step.
In addition, there will be interesting applications of stochastic
flux freezing to many other problems, e.g., to the theory of
fast turbulent reconnection. This will be the subject of future
work.
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APPENDIX: PATH-INTEGRAL FORMULAS

We here sketch the derivation of the path-integral formulas
(9) and (11) in the text. There are discussions already available
in the literature [22,23], but we stress here some connections
not found in those works, with rigorous stochastic analysis, on
the one hand, and with Feynman path-integral methods, on the
other.

Our starting point is the SDE (8), which we discretize using
the Euler-Maruyama scheme:

Xn = Xn−1 + u(Xn−1,tn−1)δt +
√

2κ(Wn − Wn−1). (A1)

Note that the Brownian-motion variables at the discrete set of
times have the Gaussian density (with W0 ≡ 0)

P(W1, . . . ,WN )

= (const.) exp

(
− 1

2δt

N∑
n=1

|Wn − Wn−1|2
)

(A2)

with respect to DW = ∏
n dWn. We can obtain the den-

sity P(X) from the change of variables formula P(X) =
P(W)/|det ( ∂X

∂W )|. It is easy to see from (A1) that the (3N ) ×
(3N ) Jacobian matrix ∂X

∂W is block lower triangular, with

diagonal blocks ∂Xn

∂Wn
= √

2κI, for the 3 × 3 identity matrix I.

Thus, det ( ∂X
∂W ) =const. and

P(X1, . . . ,XN )

∝ exp

(
− 1

4κ

N∑
n=1

δt

∣∣∣∣Xn − Xn−1

δt
− u(Xn−1,tn−1)

∣∣∣∣2
)

.

(A3)

By integrating this density with respect to DX = ∏
n dXn

and taking the continuous-time limit δt → 0,N → ∞, one
formally obtains formulas such as (9) and (11).

The mathematically rigorous versions of these path-integral
formulas is the classical Girsanov transformation [93], or see
Chung and Williams [94] for a modern proof. We shall just
remind the reader of this result, in its simplest terms. Suppose
that Wκ is a Wiener measure over a rescaled Brownian motion√

2κW(t) and W1/2 = W is the standard Wiener measure.
Suppose that u(x,t) is any smooth vector field and W(t) is
defined in terms of X(t) by integrating (8):

W(t) = 1√
2κ

[
X(t) − x0 −

∫ t

0
ds u(X(s),s)

]
.

Then Girsanov’s theorem states that

DWκ (X) exp

[
1

2κ

(∫ T

0
u(X,t)·dX−1

2

∫ T

0
u2(X,t) dt

)]
= DW(W), (A4)

where∫ T

0
u(X,t)·dX = lim

N→∞

N∑
n=1

u(Xn−1,tn−1)·(Xn − Xn−1)

is the usual Ito stochastic integral [93,94]. This is easily seen
to be equivalent to (A3) by expanding the square in the expo-
nent of the latter and noting that DX exp(− 1

4κδt

∑N
n=1 |Xn −

Xn−1|2) converges to the Wiener measure DWκ (X) in the
continuum limit.

Although the Euler-Maruyama scheme provides the sim-
plest derivation of such path-integral formulas, other dis-
cretizations are possible and yield the same results. For
example, suppose that the trapezoidal rule is employed:

Xn = Xn−1 + u(Xn,tn) + u(Xn−1,tn−1)

2
δt

+
√

2κ(Wn − Wn−1). (A5)

The sum in the exponent of (A3) is replaced by

N∑
n=1

δt

∣∣∣∣Xn − Xn−1

δt
− u(Xn,tn) + u(Xn−1,tn−1)

2

∣∣∣∣2

.

By expanding and taking the continuum limit, this converges
formally to∫ T

0
|Ẋ|2 dt − 2

∫ T

0
u(X,t)◦ dX +

∫ T

0
u2(X,t) dt,

where∫ T

0
u(X,t)◦ dX

= lim
N→∞

N∑
n=1

u(Xn,tn) + u(Xn−1,tn−1)

2
·(Xn − Xn−1) (A6)

is the Stratonovich stochastic integral. Since formally
DQκ (X) = DX exp(− 1

4κ

∫ T

0 |Ẋ|2 dt), it appears that we re-
cover the same result as before but with the Stratonovich
integral substituted for the Ito integral in Eq. (A4). However,
we have not yet computed the contribution of the Jacobian
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determinant to the change of variables. With the discretization
(A5), the Jacobian matrix ∂X

∂W is block lower triangular, with
diagonal blocks

∂Xn

∂Wn

=
√

2κ

(
I − 1

2
δt

∂u
∂x

(Xn,tn)

)−1

=
√

2κ exp

(
1

2
δt

∂u
∂x

(Xn,tn) + O(δt2)

)
.

Thus, using det (exp A) = exp(Tr A),

det

(
∂X
∂W

)
∝ exp

(
1

2

N∑
n=1

δt (∇·u)(Xn,tn) + O(δt)

)

−→ exp

(
1

2

∫ T

0
(∇·u)(X,t) dt

)
in the continuum limit N → ∞. The integral in the latter
exponent can be expressed in terms of the quadratic variation
process [94]

〈X,Y 〉T = lim
N→∞

N∑
n=1

(Xn − Xn−1)(Yn − Yn−1).

By using d〈Xi,Xj 〉t = 2κδij dt, one obtains

1

2

∫ T

0
(∇·u)(X,t) dt = 1

4κ

∫ T

0
d〈u(X,t); X〉.

But, the standard relation between Ito and Stratonovich
integrals,∫ T

0
u(X,t)◦ dX − 1

2

∫ T

0
d〈u(X,t); X〉 =

∫ T

0
u(X,t)· dX,

then recovers (A4) exactly as before.
For physicists, an illuminating derivation of the path-

integral formulas can be based on Feynman’s famous formula
for the transition amplitude of a quantum, nonrelativistic,
charged particle moving in a scalar potential V and in a
magnetic field with vector potential A. Feynman’s result was

〈x,t |x0,0〉 =
∫ x(t)=x

x(0)=x0

Dx exp

(
i

h̄

∫ t

0
ds L(s)

)
,

where L(t) is the classical Lagrangian

L(t) = 1

2
m|ẋ|2 + e

c
A(x,t)·ẋ − V (x,t)

and the amplitude satisfies the Schrödinger equation

ih̄∂t� = 1

2m

(
−ih̄∇ − e

c
A(x,t)

)2
� + V (x,t)�.

(see Feynman [95] or later treatments [96]). By taking

imaginary time T = it, u = i eA
mc

, κ = h̄
2m

, and

V = − e2

2mc2
A2 − i

h̄e

2mc
∇·A

yields the path-integral formula (9) and converts the
Schrödinger equation into the diffusion equation ∂T � =
κ
� − (u·∇)�. This is very straightforward to check in the
Coulomb gauge ∇·A = 0. For a general choice of gauge, note
that the vector-potential term in the classical action L(s) yields
a term in the exponent of Feynman’s path-integral formula,
which must be interpreted as a Stratonovich integral:∫ t

0
A(x,s)·ẋ(s) ds ≡

∫ t

0
A(x,s)◦ dx(s).

This is implicit in Feynman’s original derivation, who used
the midpoint discretization to define the above integral [95].
This point has been carefully discussed elsewhere [96]. If this
Stratonovich integral is combined with the ∇·A term from the
potential, one gets a net contribution to the action proportional
to∫ T

0
u(X,t)◦ dX + 1

2

∫ T

0
d〈u(X,t); X〉 =

∫ T

0
u(X,t)· d̂X,

where now t = is and∫ T

0
u(X,t)· d̂X = lim

N→∞

N∑
n=1

u(Xn,tn)·(Xn − Xn−1)

is the backward Ito integral. One obtains a result just like
the Girsanov formula (A4), but with the usual (forward) Ito
integral replaced by a backward Ito integral.

Feynman’s result is correct. As we stressed in the text, our
path-integral formulas (9) and (11) correspond to solving the
SDE (8) backward in time, e.g., with the backward Euler-
Maruyama scheme

Xn−1 = Xn − u(Xn,tn)δt +
√

2κ(Wn−1 − Wn) (A7)

for tn−1 = tn − δt. If we repeat the steps that led us to (A3),
we now obtain

P(X1, . . . ,XN ) ∝
exp

(
− 1

4κ

N∑
n=1

δt

∣∣∣∣Xn − Xn−1

δt
− u(Xn,tn)

∣∣∣∣2
)

. (A8)

By integrating this density with respect to DX = ∏
n dXn

and taking the continuous-time limit δt → 0,N → ∞,

one formally obtains a Girsanov-type formula with the
forward Ito integral replaced by a backward Ito inte-
gral. This is the rigorous version of our formulas (9)
and (11), which correspond exactly to Feynmans old
result.
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