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Classical relativistic model for spin dependence in a magnetized electron gas
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The response of a cold electron gas is generalized to include the spin of the electron described by the
relativistically correct quasiclassical Bargmann-Michel-Telegdi (BMT) equation. The magnetization of the
electron gas is assumed to be along the background magnetic field B and the spin-dependent contribution
to the response tensor is proportional to the magnitude of the magnetization. The dispersion equation is shown to
be quadratic in the refractive index squared, and dispersion curves for the two wave modes are plotted for cases
where the magnetic field associated with magnetization is comparable with B. Two intrinsically spin-dependent
wave modes are identified: one bounded by two resonances and the other by two cutoffs. The counterpart of the
z mode can escape without encountering a resonance or a cutoff.
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I. INTRODUCTION

There is extensive recent literature on spin dependence
in plasmas, motivated partly by application to neutrino
emission from the interiors of dense stars [1–6], partly by
potential applications of nonlinear waves in quantum plasmas
[7–9], and partly by more speculative suggested applications
[10–14]. Spin dependence in a plasma introduces a new
source of dispersion that is intrinsically quantum mechanical.
Generally, inclusion of any additional source of dispersion in
a medium leads to modification of the wave properties and
may lead to some intrinsically new modes. Our purpose in
this paper is to discuss how the properties of waves in a cold
electron gas (the “magnetoionic” modes) are modified by the
inclusion of spin dependence.

Several different quasiclassical models have been used to
calculate the spin-dependent contribution to wave dispersion.
In a quasiclassical treatment the spin, denoted by vector s,
is treated as an intrinsic angular momentum associated with
an electron. An equation of motion for s is introduced,
the magnetic moment of the electron is related to s by
the Bohr magneton, and the current density induced by an
electromagnetic perturbation on s is included in calculating
the response of the plasma, described by the dielectric tensor
for example. In a nonrelativistic treatment, a perturbation in the
magnetic field leads to a perturbation in the magnetization M
(where M is the magnetic moment per unit volume) and
the current density is identified as curl M. After Fourier
transforming (introducing the frequency ω and wave vector k
corresponding to the 4 vector kμ = [ω,k]), this leads to a
spin-dependent contribution ∝ |k|2 to the dielectric tensor.
Some details are given in the Appendix. A relativistic treatment
introduces additional terms ∝ (ω/c)2, and these terms need to
be included (even in a cold plasma) to treat the wave dispersion
correctly, where c is the speed of light.

In this paper we describe the spin of the electrons using
the relativistically correct Bargmann-Michel-Telegdi (BMT)
equation [15]. The use of the BMT equation potentially
resolves a difficulty in the comparison with a fully relativistic
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quantum treatment: the proper choice of spin operator. Unlike
the Schrödinger-Pauli theory, where the spin is independent
of the dynamics, in Dirac’s theory the spin operator needs to
be identified. Sokolov and Ternov [16,17] showed that there
is only one choice of spin operator whose eigenvalues do
not precess in a magnetic field (when radiative corrections
are included), and this is the component of the magnetic
moment operator along the magnetic field. We show that the
BMT equation (with the radiative corrections included through
g − 2 �= 0) satisfies this requirement. This adds plausibility to
the interpretation of the spin vector in the BMT equation as a
classical counterpart of the spin operator identified by Sokolov
and Ternov.

In the absence of spin (and of collisions), the magnetoionic
plasma (a cold electron gas) is characterized by the electron
density ne and magnetic field B. These are incorporated into
two frequencies, the plasma frequency ωp ∝ n

1/2
e and the

electron cyclotron frequency �e = eB/me, where e is the
fundamental charge and me is the rest mass of the electron.
Magnetization of the plasma introduces a contribution μ0M to
the magnetic field, where μ0 is the permeability of free space.
This introduces an additional frequency �m = eμ0M/me into
the theory. We are interested in strongly magnetized plasmas
ωp � �e, and find that the inclusion of the spin leads to
interesting new effects when �m/�e is of order unity or
greater. We note that this requires extreme conditions, due
to the maximum value of �m, when all the spins are aligned,
being of order h̄ω2

p/mec
2.

In Sec. II we write down the BMT equation and discuss
its relevance in the present context. In Sec. III we derive
the covariant form for the response tensor for cold electrons
described by the BMT equation, and use it to write down
the spin-dependent contribution to the dielectric tensor. In
Sec. IV we extend the magnetoionic theory to include �m �= 0.
Examples of dispersion curves are plotted and discussed in
Sec. V. Although there are only two wave modes at any
frequency, as in the magnetoionic theory, two new branches
of the wave modes appear, one limited at both low and high
frequencies by resonances and the other limited at at both low
and high frequencies by cutoffs.

The 4-tensor notation used here has greek indices with
values μ = 0, 1, 2, 3, the metric tensor is diagonal with
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components 1, − 1, − 1, − 1, and the inner product of two
4 vectors aμ = [a0,a], bμ = [b0,b] written ab = a0b0 − a · b.
An electron is described by its 4 velocity uμ = [γ,γ v] in units
with c = 1. The background magnetic field is described by the
Maxwell tensor Fμν = Bf μν , where B is the magnetic field
in the rest frame of the plasma.

II. QUASICLASSICAL MODEL FOR SPIN: BMT
EQUATION

In the simplest approach the magnetic moment of the
electron is identified as m = gμBs, with

μB = eh̄

2me

= 9.274 × 10−24 J T−1, g = 2.00 232, (1)

where μB is the Bohr magneton and the gyromagnetic ratio g

differs from 2 due to radiative corrections in quantum
electrodynamics (QED). For an electron at rest, a classical
form for the equation of motion of the spin is

ds
dt

= ge

2me

s × B. (2)

A covariant generalization of the equation of motion (2)
for the spin leads to the Bargmann-Michel-Telegdi (BMT)
equation [15]. The spin vector s is interpreted as the space
components of a 4 vector in the frame in which the electron is
at rest. Writing sμ = [s0,s] in an arbitrary frame, one assumes
s0 = 0 in the rest frame, and then su = 0 in the rest frame
implies γ (s0 − s · v) = 0, and hence s0 = s · v in an arbitrary
frame. For an accelerated particle, in its instantaneous rest
frame, one has ds0/dt = s · dv/dt , and together with (2), this
determines dsμ/dt in the instantaneous rest frame. This results
in the BMT equation

dsμ

dτ
= − e

me

[
1
2gFμνsν + (

1
2g − 1

)
sαF αβuβuμ

]
,

duμ

dτ
= − e

me

Fμνuν , (3)

with dτ = dt/γ , where τ is the proper time. In this model the
spin does not affect the dynamics, in the sense that there is no
term corresponding to the force associated with the gradient
of the magnetic energy − 1

2gμBs · B.
A covariant form of the magnetic moment is in terms of the

second rank 4 tensor

mμν = − 1
2gμBεμναβsαuβ , (4)

where εμναβ is the completely antisymmetric pseudotensor
with ε0123 = 1. We choose the 3 axis along B. The rest
frame corresponds to uβ = [1,0], and with the spin along
the direction of B, the only nonzero components of mμν

in this frame are m12 = −m21 = 1
2gμBs. Equations (3) and

(4) imply dmμν/dτ = 0. This conservation law also applies
when the radiative correction g − 2 �= 0 is included. This
suggests that mμν may be interpreted as a classical counterpart
of the magnetic moment operator introduced by Sokolov and
Ternov [16,17].

The 4 magnetization of the electron gas is Mμν = nem
μν .

The assumption that the electron gas is magnetized implies

that there is a nonzero mean spin, denoted s̄μ. Let the average
magnetization be Mμν = nem̄

μν , with m̄μν = gμBεμναβ s̄αūβ ,
where an overbar denotes an average value. In the rest frame of
the cold electron gas one has ūμ = [1,0], s̄μ = [0,s], implying
a 3 magnetization M = gμBne s̄ and zero polarization P which
is the induced electric dipole moment per unit volume. A
notable feature of our treatment based on the BMT equation is
that there is a perturbation in P in the BMT treatment, implying
that the medium is magnetoelectric, whereas there is no such
effect in a nonrelativistic treatment.

III. LINEAR RESPONSE 4 TENSOR

In this section we use a covariant formalism to derive the
response tensor for a cold distribution of electrons that obey
the BMT equation. The linear response tensor in the absence
of spin may be found by linearizing and Fourier transforming
the second of Eqs. (3) to find the perturbation u(1)

μ (k) in the
4 velocity and applying the same procedure to the continuity
equation to find the perturbation in the number density n(1)

e (k)
with the 4 current given by J (1)

μ (k) = −e[neu
(1)
μ + n(1)

e (k)ūμ].
We do not write down the resulting covariant form for the cold
plasma response tensor, but we do include its contribution
in deriving the dispersion relations in the next section. Here
we apply the same procedure to the first of Eqs. (3) to find
the perturbation s(1)

μ (k) in the spin. In the model used here,
the spin does not affect the dynamics, and hence there is no
spin-related perturbation in the electron number density ne.

The perturbations in the spin and 4 velocity lead to a
perturbation

M (1)μν(k) = −μBneε
μναβ

[
s(1)
α (k)ūβ + s̄αu

(1)
β (k)

]
(5)

in the magnetization. The associated 4 current is J (1)μ(k) =
ikνM

(1)μν(k), and writing this in the form

ikρM
(1)μρ(k) = �μν

m (k)Aν(k) (6)

defines the spin-dependent contribution �
μν
m (k) to the response

tensor.
The conventional cold-plasma response can be derived in

covariant form using fluid theory. The perturbation in the
electron 4 velocity follows from the equation of motion and is

u(1)μ(k) = e

mekū
[kū τμν(kū) − kρτ

μρ(kū)ūν]Aν(k), (7)

where the fluctuating electromagnetic field is described by its
4 potential Aμ(k), and with

τμν(ω) = g
μν

‖ + ω

ω2 − �2
e

(ωg
μν

⊥ − i�ef
μν), (8)

with g
μν

‖ and g
μν

⊥ diagonal with components 1,0,0,-1 and 0,
-1,-1,0 respectively. The analogous perturbation in the spin 4
vector follows from (3). For simplicity we neglect the term due
to the radiative correction, which involves setting g − 2 → 0.
To be consistent the frequency of precession of the spin is
then not distinguished from the cyclotron frequency �e. The
perturbation in the spin becomes

s(1)μ(k) = e

mekū
[ks̄ τμν(kū) − kρτ

μρ(kū)s̄ν]Aν(k). (9)
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Explicit evaluation of the contribution to the response tensor
gives

�μν
m (k) = − iene

me kū
kρε

μρ
αβ{[ks̄ τ αν(kū) − kτ τ

ατ (kū)s̄ν]ūβ

+ [kū τ βν(kū) − kτ τ
βτ (kū)ūν]s̄α}, (10)

with τμν given by (8).
The covariant form (10) applies to a collection of electrons

at rest in the frame moving with 4 velocity ūμ. One can
reinterpret (10) in a way that allows one to include an arbitrary
distribution of particles in parallel velocity vz. One replaces ū

by u, with uμ = γ [1,0,0,vz], γ = 1/(1 − v2
z )1/2, and replaces

ne by the differential proper number density dvz g(vz)/γ ,
where g(vz) is the distribution function. After integrating over
vz, this generalization of (10) gives the magnetic moment

contribution to the response tensor for the distribution of
electrons. This model does not include the spiraling motion of
the electrons, and the resulting response tensor applies in the
small-gyroradius limit. We do not discuss this generalization
further in the present paper.

A. Spin-dependent response in the rest frame

The spin-dependent contribution (10) to the response tensor
simplifies considerably in the rest frame of the (cold) electron
gas, when one has ūμ = [1,0], s̄μ = [0,s̄b], where b = (0,0,1)
is a unit vector along the magnetic field. One then has
kū = ω, ks̄ = −kzs̄, and the spin-dependent contribution to
the response tensor is proportional to the magnetization M =
μBnes̄.

In the rest frame (10) reduces to

�μν
m (k) = − eM

me

(
ω2 − �2

e

)

⎛
⎜⎜⎝

k2
⊥�e ωk⊥�e iω2k⊥ 0

ωk⊥�e (ω2 − k2
z )�e i(ω2 − k2

z )ω k⊥kz�e

−iω2k⊥ −i(ω2 − k2
z )ω (ω2 − k2

z )�e −iωk⊥kz

0 k⊥kz�e iωk⊥kz −k2
⊥�e

⎞
⎟⎟⎠ . (11)

The spin-dependent contribution to the dielectric tensor is
identified by noting that the dielectric tensor is the sum
of the unit 3 tensor and the susceptibility 3 tensor. In
translating between the 4-tensor components and the 3-tensor
components, we note that the contravariant component �

ij
m is

equal to −1/ω2ε0 times the ij component of the susceptibility

3 tensor. Thus the additional contribution to the ij component
of the dielectric tensor due to the spin dependence follows from
(11) by deleting the leading row and column and multiplying
by −1/ω2ε0 = −μ0c

2/ω2 . Reverting to ordinary units, this
gives

[Km]i j (k) = �mc2

ω2
(
ω2 − �2

e

)
⎛
⎝

(ω2/c2 − k2
z )�e i(ω2/c2 − k2

z )ω k⊥kz�e

−i(ω2/c2 − k2
z )ω (ω2/c2 − k2

z )�e −ik⊥kzω

k⊥kz�e ik⊥kzω −k2
⊥�e

⎞
⎠ , (12)

where the frequency associated with the magnetization is

�m = μ0M

B
�e = h̄s̄ω2

p

mec2
. (13)

The ratio �m/ωp is small except in dense, strongly magnetized
plasmas, where the plasmon energy h̄ωp is of order the rest
energy mec

2, and s̄ is of order unity.
A strictly nonrelativistic version of relation (12) is given

in the Appendix. It corresponds to replacing ω2/c2 − k2
z with

−k2
z in (12). This implies that the terms ω2/c2 are intrinsically

relativistic.

IV. SPIN-DEPENDENT WAVE MODES

The addition of the spin-dependent contribution to the
dielectric tensor (12) leads to a generalization of the magne-
toionic modes. For arbitrary values of the ratios of ωp, �e, �m

we find that the dispersion equation is a quadratic equation for
the square of the refractive index n2, which is unexpected due
to the components of the response tensor all depending on k.

This allows one to solve for the dispersion relations and to
identify the cutoffs and resonances for arbitrary angles of
propagation without making simplifying assumptions such as
parallel [18] or perpendicular [19] propagation.

A. Dispersion equation

The dispersion equation, in the general case of oblique
propagation for arbitrary values of ωp, �e, �m, can written in
a form similar to that used by Stix [20] for a cold plasma:

A′n4 − B ′n2 + C ′ = 0, (14)

with the coefficients given by

A′ = (P cos2 θ + S ′ sin2 θ )
[
1 − A1(1 + cos2 θ )

+ (
A2

1 − A2
2

)
cos2 θ

]
,

B ′ = PS ′(1 + cos2 θ ) + (S ′2 − D′2)(1 − A1) sin2 θ

− 2P cos2 θ (S ′A1 − D′A2),

C ′ = P (S ′2 − D′2). (15)
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The cold-plasma quantities S, D, P defined by Stix [20] are
replaced by

S ′ = 1 − ω2
p + �m�e

ω2 − �2
e

,

D′ = −ω2
p�e + �mω2

ω
(
ω2 − �2

e

) ,

P = 1 − ω2
p

ω2
, (16)

with the spin-dependent terms appearing through �m in (16)
and in

A1 = �m�e

ω2 − �2
e

, A2 = �mω

ω2 − �2
e

. (17)

The solutions of the quadratic equation (14) give two
modes,

n2 = n2
±, n2

± = B ′ ± F ′

2A′ , F ′2 = B ′2 − 4A′C ′. (18)

These modes reduce to the magnetoionic modes for �m → 0.

B. Cutoffs and resonances

Cutoffs (n2 = 0) and resonances (n2 → ∞) occur at
C ′/A′ = 0 and A′/C ′ = 0, respectively. For �m → 0 there
is one cutoff in the ordinary mode, at ω = ωp, and two cutoffs
in the extraordinary mode, at ω = ± 1

2�e + 1
2 (4ω2

p + �2
e)1/2.

There are resonances at ω2 = 1
2 (ω2

p + �2
e) ± 1

2 [(ω2
p + �2

e)2 −
4ω2

p�2
e cos2 θ ]1/2. These separate the magnetoionic modes into

four branches, two for each of the ordinary and extraordinary
modes, with stop bands (with n2 < 0) between the resonance
in the lower branch and the cutoff for the upper branch.

The cutoffs at C ′ = 0 correspond to P = 0 or S ′2 − D′2 =
0. The cutoff at P = 0 is that in the ordinary mode at ω = ωp,
and is unaffected by �m �= 0. The solutions of S ′2 − D′2 = 0
are either S ′ = ±D′, and these give

(ω ∓ �e)
[
ω2 ± ω(�e + �m) − ω2

p

] = 0, (19)

respectively. Although there is a solution at ω = �e, the
coefficients in (14) all diverge at ω = �e, and the behavior of
the dispersion curves near ω = �e needs further consideration.
The other two cutoffs, at

ω = 1
2

[
(�e + �m)2 + 4ω2

p

]1/2 ± 1
2 (�e + �m), (20)

reduce to the cutoffs in the extraordinary mode for �m → 0.
The resonances at A′ = 0 satisfy

(P cos2 θ + S ′ sin2 θ )[1 − A1(1 + cos2 θ )

+ (
A2

1 − A2
2

)
cos2 θ ] = 0. (21)

The first factor in (21) implies resonances at

ω2 = 1
2

(
�2

e + ω2
p + �e�m sin2 θ

) ± 1
2

[(
�2

e + ω2
p

+�e�m sin2 θ
)2 − 4�2

e�
2
m cos2 θ

]1/2
, (22)

which reproduce the magnetoionic resonances for �m = 0.
The second factor in (21) reduces to
(
ω2 − �2

e

)[
ω2 − �2

e − �e�m(1 + cos2 θ ) − �2
m cos2 θ

] = 0.

(23)

As already mentioned, the behavior near ω = �e needs to be
treated separately, and the first factor in (23) is ignored for the
present. The other solution of (23),

ω2 = �2
e + �e�m(1 + cos2 θ ) + �2

m cos2 θ, (24)

is an intrinsically new resonance associated with �m �= 0.

C. Dispersion near the cyclotron resonance

The refractive indices at the cyclotron frequency may be
found by retaining only the terms ∝ 1/(ω2 − �2

e)2 in (14)
with (15). The dispersion equation reduces to

n2
(
n2 − n2

0

)
sin2 θ = 0,

(25)

n2
0 = �m�e − ω2

p

�e[�e(1 + cos2 θ ) + �m cos2 θ ]
.

It follows that, except for sin2 θ = 0, there is a cutoff at
ω = �e in one mode, with the other mode satisfying n2 = n2

0,
with n2

0 < 0 for �m�e < ω2
p and n2

0 > 0 for �m�e > ω2
p. The

result (25) has no obvious counterpart for �m = 0.

V. DISPERSION CURVES

Dispersion in a cold electron gas is traditionally represented
by plots of the refractive indices for the two magnetoionic
modes as a function of frequency at fixed angle θ or as
a function of angle for fixed frequency (CMA diagram).
The inclusion of spin dependence introduces an additional
frequency, denoted as �m here, and two parameters need to be
specified to define the cold electron gas. We assume a strong
magnetic field ωp/�e = 0.2 and plot dispersion curves for
�m/�e = 1.5 for a range of angles θ . At low frequencies
ω < ωp the magnetoionic modes corresponds to the whistler
branch and the z-mode branch, and their properties are not
changed substantially by inclusion of spin dependence. We
concentrate here on the properties of the modes for ω > ωp.

Dispersion curves for parallel propagation are plotted in
Fig. 1. The mode corresponding to the solid curve has a cutoff,
corresponding to the + sign in (20), and a resonance, given
by (24), with a small stop band between them. The other
mode has no cutoff or resonance for ω > ωp. The case of
parallel propagation is special and how the mode structure
changes for a small but nonzero angle is illustrated in Fig. 2.
The notable change is the addition of a resonance and cutoff,
separated by a stop band, in the mode corresponding to
the solid curve. The curves for θ = π/4 are plotted in Fig. 3.
The mode described by the solid curve has three branches. The
low-frequency branch, at ω < ωp, corresponds to the whistler
mode. A second branch in bounded at both low and high
frequencies by cutoffs, and a third branch in bounded at both
low and high frequencies by resonances. The highest frequency
branch extends from a cutoff to an asymptotic value n2 → 1 at
ω → ∞. The other mode, described by the dashed curve, has
a cutoff at ω < ωp and asymptotes more rapidly to n2 → 1 at
ω → ∞ without encountering any resonance. The special case
of perpendicular propagation is illustrated in Fig. 4. Dispersion
curves for two additional angles are plotted in Fig. 5 to show
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FIG. 1. (Color online) Dispersion curves are plotted for parallel
propagation θ = 0 for ωp/�e = 0.2 and �m/�e = 1.5. The two
solutions of the dispersion equation are shown as the solid and dashed
curves.

how the oblique case approaches the perpendicular case: the
mode bounded by two resonances gets squeezed as the two
resonances approach each other, and the curve disappears off
the top of the diagram. In addition, the mode that experiences
no resonances for oblique propagation develops a peak, which
becomes resonant-like for θ → π/2.

We identify three intrinsically new features compared with
the magnetoionic theory. Two of these are intrinsically new
branches in the mode that corresponds to the whistler mode
at low frequencies: a branch bounded by cutoffs at both low
and high frequencies, and a branch bounded by resonances at
both low and high frequencies. The third new feature is that
the mode that corresponds to the z mode at low frequencies
extends to high frequencies without encountering a cutoff or
a resonance. (For �m = 0, the z mode encounters a resonance
and a stop band before continuing to higher frequencies as the
x mode.)

Care is required in labeling these modes. In the magne-
toionic theory the whistler mode and z mode correspond to
the low-frequency branches of the ordinary and extraordinary
magnetoionic modes, respectively, and the high-frequency
branches, labeled the o mode and x mode say, have n2

o > n2
x .

0.0 0.5 1.0 1.5 2.0 2.5 3.0
4

2

0

2

4

6

ω

n2

FIG. 2. (Color online) Same as Fig. 1 but for θ = π/6.
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FIG. 3. (Color online) Same as Fig. 1 but for θ = π/4.

The inclusion of �m affects this labeling. The high-frequency
branch that joins on continuously to the z mode for ωp < �e <

�m has the larger refractive index, and so would correspond
to the o mode by analogy with the conventional labeling of
the magnetoionic modes. The labeling of the ± solutions of
a quadratic equation is changed by inclusion of an additional
zero of the discriminant, and here this leads to the impossibility
of making the labeling as “ordinary” and “extraordinary”
consistent with magnetoionic theory at both high and low
frequencies.

A. Comparison with existing results

The properties of waves in a spin-dependent plasma were
discussed for the case of parallel propagation in Ref. [18].
Comparison with the results derived here is complicated by
the neglect of relativistic effects in Ref. [18]. The nonrela-
tivistic theory, as outlined in the Appendix, differs from the
relativistically correct theory in that the factors ω2/c2 − k2

z

in the 11, 12, 21, and 22 components of the response tensor
(12) being replaced by −k2

z . Thus, the nonrelativistic theory
is valid for parallel propagation only for n2 � 1. Thus the
nonrelativistic theory treats the resonances correctly, and the
discussion in [18,21] of absorption at the cyclotron resonance

0.0 0.5 1.0 1.5 2.0 2.5 3.0
4

2

0

2

4

6

ω

n2

FIG. 4. (Color online) Same as Fig. 1 but for perpendicular
propagation, i.e., θ = π/2.
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FIG. 5. (Color online) Same as Fig. 1 but for two angles ap-
proaching perpendicular propagation: upper θ = π/2 − π/6, lower
θ = π/2 − π/20.

needs no change in the relativistic case. The nonrelativistic
treatment is incorrect near cutoffs, and the cutoff frequencies
(20) are different from those derived in Ref. [18].

The case of perpendicular propagation was discussed in
Ref. [22], where use of a kinetic theory allowed the effect of
nonzero gyroradii to be taken into account. An approximate
dispersion relation was derived in the limit of zero gyroradii
{Eq. (16) of [22]}, and this can be compared with the result
derived here. For perpendicular propagation, the two solutions
(18) reduce to n2 = P/(1 − A1),(S ′2 − D′2)/S ′. The former
of these reproduces the result derived in [22] to lowest order in
an expansion in (ω − �e)/�e. Our results show that the mode
structure for perpendicular propagation is special, and does
not reflect the three new features discussed above for oblique
propagation.

VI. DISCUSSION AND CONCLUSIONS

Our main objective in this paper is to generalize the
theory of wave dispersion in a cold electron gas (the mag-
netoionic theory) to include spin dependence. The spin is
treated quasiclassically using the (relativistically correct) BMT
equation. The spin-dependent part of the dielectric tensor is
proportional to the magnetization M of the electron gas, and
this is incorporated into a natural frequency �m = eμ0M/me.
The only difference between the results derived for a cold

plasma using the BMT equation, compared with a strictly
nonrelativistic treatment, is that the perpendicular components
of the response tensor are proportional to ω2/c2 − k2

z , rather
than −k2

z in the strictly nonrelativistic limit.
Inclusion of the spin-dependent contribution to the dielec-

tric tensor modifies the dispersion equation for magnetoionic-
like waves, but the dispersion equation remains a quadratic
equation for n2. We concentrate on the case ωp � �e ≈ �m.
Intrinsically new features of the dispersion curves are: one
mode, which has a low-frequency branch that is the whistler
mode, has two intermediate frequency branches, one bounded
by two cutoffs and the other by two resonances, and it becomes
the branch with the lower refractive index at high frequency;
the other mode, which corresponds to the z mode at low
frequency joins on continuously (no cutoffs or resonances) to
the branch with the higher refractive index at high frequency.
These properties apply for arbitrary angles of propagation,
and generalize some known results for parallel [18] and
perpendicular [22] propagation.

Spin is an intrinsically quantum effect, and a rigorous
treatment of the effects of spin requires use of relativistic
quantum mechanics. Although a completely general result for
the response tensor of a magnetized quantum electron gas
has long been available [23,24], it has only recently been
reduced to a more convenient (but still cumbersome) form for
a spin-independent electron gas [25]. It is desirable to repeat
this calculation for a spin-dependent occupation number, and
explore how the general result reduces to the quasiclassical
counterpart derived in the present paper. Comparison of
the results will then determine the limits of validity of
quasiclassical model.

Finally, we remark that the name “spin waves” has been
used by some authors to denote the spin-dependent wave
modes whose properties are discussed here. We avoid this
name because it is used widely to refer to waves, sometimes
called Bloch spin waves, that are associated with the spin-spin
interaction, that is central to understanding of ferromagnetism.
The spin waves of interest in the present paper are due to long-
range order, in the ferromagnetic context, and the spin-spin
interaction between nearest neighbors is not included.
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APPENDIX: NONRELATIVISTIC DERIVATION OF
RESPONSE TENSOR

The solutions of (2) of a mean spin and associated
mean magnetization, 3 magnetization M = gμBne s̄, along the
directions of the background magnetic field can be written in
the matrix form

⎛
⎝

δsx

δsy

δsz

⎞
⎠ = i

2μBs̄

h̄
(
ω2 − �2

e

)
⎛
⎝

ω i�e 0
−i�e ω 0

0 0 0

⎞
⎠

⎛
⎝

−δBy

δBx

0

⎞
⎠ . (A1)
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The perturbation in the magnetization δM = gneμBδs leads
to a magnetization current JM = ik × δM. On writing
JMi = σijEj and noting that the dielectric tensor is re-
lated to the conductivity tensor by Kij = δij + iσij /ε0ω,
one finds that the spin contribution to the dielectric

tensor is

Km = �mc2

ω2
(
ω2 − �2

e

)
⎛
⎝

−k2
z�e −ik2

zω k⊥kz�e

ik2
zω −k2

z�e −ik⊥kzω

k⊥kz�e ik⊥kzω −k2
⊥�e

⎞
⎠ .

(A2)
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