
PHYSICAL REVIEW E 83, 056403 (2011)

Simulation of terahertz generation in corrugated plasma waveguides
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We simulate the response of a corrugated plasma channel to an ultrashort laser pulse in two dimensions with the
goal of demonstrating the production of terahertz frequency electromagnetic modes. Corrugated channels support
electromagnetic modes that have a Floquet-type dispersion relation and thus consist of a sum of spatial harmonics
with subluminal phase velocities. This allows the possibility of phase matching between the ponderomotive
potential associated with the laser pulse and the electromagnetic modes of the channel. Since the bandwidth of
an ultrashort pulse includes terahertz frequencies, significant excitation of terahertz radiation is possible. Here
we consider realistic density profiles to obtain predictions of the terahertz power output and mode structure for a
channel with periodic boundary conditions. We then estimate pulse depletion effects from our simulation results.
The fraction of laser energy converted to terahertz is independent of laser pulse energy in the linear regime, and
we find it to be around 1% . Extrapolating to a pulse energy of 0.5 J gives a terahertz power output of 6 mJ with
a pulse depletion length of less than 20 cm.
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I. INTRODUCTION

Terahertz radiation lies between microwaves and infrared
in the frequency spectrum. The wide variety of possible ap-
plications utilizing terahertz radiation, from spectroscopy and
biological imaging to national security, medicine, and industry,
make the development of small-scale terahertz devices critical.
Today there exists a variety of terahertz sources, many of
which are available commercially. Small-scale sources include
far-infrared [1] and quantum cascade lasers [2], laser-driven
terahertz antennae [3,4] and crystals [5], and backward wave
oscillators [6]. In general, bright terahertz sources are based
on free-electron devices, for example, gyrotrons [7] and
free-electron lasers [8–10]. These can be large and relatively
expensive to operate, and research into new terahertz sources
continues [11].

Terahertz radiation generation by laser pulses in plasmas
was first demonstrated by Hamster et al. [12]. The source of
this radiation is the current driven by the ponderomotive force
of a laser pulse or electron beam. In order for this current to
couple to one or more electromagnetic modes of the plasma,
the plasma density must be inhomogeneous, or there must be a
strong background magnetic field [13]. The transfer of energy
from a driver to terahertz radiation is limited by the fact that
electromagnetic modes in a uniform plasma have superluminal
phase velocities and so will quickly fall out of phase with the
generated current, which travels with the driver at its group
velocity.

Antonsen et al. [14] have suggested recently that a laser
pulse passing through a plasma channel with an axially
periodic density may generate terahertz radiation. As well
as being inhomogeneous, these corrugated channels support
electromagnetic modes that have a Floquet-type dispersion
relation. This means that a mode in this channel consists of a
sum of spatial harmonics, and many of these harmonics have
subluminal phase velocities, thus allowing phase matching to
occur between the driver and a mode.

In this paper we report the results of simulations of
the generation of terahertz radiation in a corrugated plasma
channel with realistic density profiles. These channels may

be produced reliably in the laboratory [15] by line-focusing
a laser pulse onto a cluster jet, as shown in Fig. 1(a). The
periodic density structure is produced by spatial modulation
of either the cluster density or the laser intensity. A second laser
pulse (or possibly an electron beam) that follows the channel
formation pulse serves as the driver for terahertz radiation.

This paper is organized as follows: In Sec. II we discuss
the excitation and structure of electromagnetic modes in a
corrugated channel. In Sec. III we give details of the code used
to simulate the plasma response of the channel and present test
results that verify the correct operation of the code. In Sec. IV
we present and discuss results obtained for realistic system
parameters. In Sec. V we present our conclusions.

II. EXCITATION OF MODES IN A CORRUGATED
CHANNEL

A. Requirements for excitation

Our goal is to generate terahertz radiation by passing a laser
pulse through a corrugated plasma channel. Since the central
frequency of the pump pulse will be significantly larger than
the terahertz frequencies, we can consider the cycle-averaged
current generated by the ponderomotive force of the pulse as
the source of the terahertz. Because of the periodicity of the
channel, a component of this current will be associated with
one or more electromagnetic modes. The frequency of these
modes will be determined by the plasma frequency and other
channel parameters.

There are two requirements that must be met in order to
successfully generate electromagnetic radiation in a plasma
using a laser pulse. Foremost is the requirement that energy
must be transferred from the laser pulse to the plasma. The
work done by the ponderomotive force on a current is

P = 1

e

∫
d3x∇Vp · J = −

∫
d3xVp

∂n

∂t
, (1)

where Vp is the ponderomotive potential, J is the current, e

is the charge on an electron, and n is the number density of
electrons. For power to be transferred from the laser pulse to a
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FIG. 1. (a) Diagram of experimental setup for producing a corrugated plasma channel [14,15]. As an alternative to a spatially modulated
formation pulse, a modulated cluster density may be used in conjunction with a uniform formation pulse. (b) Dispersion plot of EM modes
in the δ-function corrugated channel (considered by Antonsen et al. [14]), which consists of a channel with a density profile that has a train
of δ functions, thus creating a period system while allowing the use of analytic results from the axially uniform case. Here, d is the distance
between consecutive δ functions, while ω and kc are the frequency and wavenumber, respectively.

mode of the plasma, this mode must have a density perturbation
associated with it, i.e., the mode must have nonzero electric
field divergence. For electromagnetic modes in a cold, linear
fluid plasma, the divergence is of order

∇ · E ∼ O

(
ω2

p

ω2 − ω2
p

|E|
L

)
, (2)

where ω is the mode frequency, ωp is the plasma frequency,
and L is the characteristic scale length of the nonuniformity
of the plasma. For L → ∞, the plasma becomes uniform and
we recover the familiar result, ∇ · E = 0.

The second requirement is that the group velocity of the
laser pulse is phase matched with the phase velocity of the
excited modes. This is required for significant excitation
to occur and is achieved in a corrugated channel because
the electromagnetic modes of the channel are Floquet-type
modes. Each mode of the channel consists of a sum over
spatial harmonics, with the wavenumber of each harmonic
separated by the wavenumber associated with the density
modulations. Thus a plot of the dispersion relation [see
Fig. 1(b)] demonstrates the periodicity in k space characteristic
of waves in periodic systems and the presence of frequency
band gaps in which no mode may propagate. The laser pulse,
represented in the figure by a light line, is phase matched to
the mode at several different frequencies. Maximal excitation
occurs at these frequencies.

B. Parabolic plasma channels

In this paper we consider cylindrically symmetric corru-
gated waveguides with densities of the form

n(r,z)

n0
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 + δ sin (kmz) + 1

2

r2

r2
ch

r � rc

n(rc,z)

n0

r0 − r

r0 − rc

rc < r < r0

0 r � r0

(3)

Here, n0 is the on-axis average density, δ is the density
modulation amplitude, km is the wavenumber of the density
modulations, rch the channel “width” that characterizes the
density increase with radius, rc the radius at which the linear
“cutoff function” in the second line begins, and r0 is the radius
at which the density is zero.

In Sec. III we present numerical solutions to Maxwell’s
equations and the linear fluid equations for TM modes in
plasma channels of this form. Before doing so, we use a
number of approximations to explore this system analytically.
In a cold, nonrelativistic and linearly responding plasma, an
electromagnetic mode with small but nonzero electric field
divergence and field components (Er,Bθ ,Ez) satisfies the
approximate wave equation(

− 1

c2

∂2

∂t2
+ ∂2

∂z2
+ 1

r

∂

∂r
r

∂

∂r
− 1

r2

)
Er = ω2

p0

c2

n(r,z)

n0
Er,

(4)

where ωp0 is the plasma frequency evaluated for the density
n0.

In the case rc → ∞, only the first part of Eq. (3) is relevant
and we have a so-called parabolic plasma channel, albeit with
axial density modulations. The r and z dependence in this
density profile are separable, allowing an analytic solution.
In axially uniform channels (δ = 0), we recover the wave
equation for modes in a regular parabolic plasma channel.
The solution is harmonic in z and consists of a linear com-
bination of radial eigenmodes, of which there are an infinite
number. The solution to Eq. (4) for the fundamental radial
eigenmode is

Er (r,z,t) = E0e
i(kzz−ωt) r

wch
e−r2/w2

ch . (5)

Here, wch is the mode width given by 8/w4
ch = (ω2

p0/r2
chc

2).
The dispersion relation is

ω2 = ω2
p0 + k2

z c
2 + 8c2

w2
ch

. (6)
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When we include axial modulations (δ �= 0), applying
separation of variables to Eq. (4) yields the same ordinary
differential equation (ODE) in r as for the axially uniform
case, and so the ansatz for Er becomes

Er (r,z,t) = E0e
−iωtf (z)

r

wch
e−r2/w2

ch . (7)

The dispersion relation is now

ω2 = ω2
p0 + k2

0c
2 + 8c2

w2
ch

, (8)

where k0 is the separation-of-variables parameter. This features
in the ODE for f (z)

d2f

dz2
+ k2

0f = ω2
p0

c2
δ sin (kmz)f. (9)

This is the Mathieu equation, and as such cannot be solved
analytically. We know from Floquet’s theorem, however, that
the solution must be of the form

f (z) = eikzz

∞∑
α=−∞

Aαe−iαkmz. (10)

This solution implies a relation kz = kz(k0), and by inversion
ω = ω(kz). In general, all coefficients Aα are nonzero and
cannot be found except by infinite recursion.

By substituting Eq. (10) into Eq. (9), we recover

[
k2

0 − (kz − αkm)2
]
Aα = ω2

p0

c2

δ

2i
[Aα−1 − Aα+1]. (11)

In the limit δ → 0, we have k0 = kz − αkm for the harmonic
with Fourier coefficient Aα . This is reconciled with the axially
uniform solution k0 = kz by noting that in this case, Aα = 0
for all α �= 0. We construct an approximate dispersion relation
for small δ by using the δ → 0 solution and superimposing on
an ω-kz plot an infinite set of functions of the form

ω =
√

ω2
c + (kz − αkm)2c2 α ∈ Z, (12)

where ω2
c = ω2

p0 + 8c2γ /w2
ch (γ is the radial eigenmode

number). This set of curves deviates from the true dispersion
relation near the intersections. At these points, the true disper-
sion relation will exhibit band gaps in which no propagating
wave solution exists. Away from these points, and depending
on system parameters, Eq. (12) will be a good approximation
to the true dispersion relation. A discussion of this, including
more accurate calculations of the dispersion relation, is found
in the Appendix.

An excited mode in this channel consists of a sum of
spatial harmonics, each harmonic corresponding to a different
value of α. The laser pulse traveling at group velocity vg � c

phase matches one of these harmonics, which results in the
excitation of a mode. As seen in Fig. 1(b), this excitation occurs
at frequencies given by the intersection points between the

lightline of the laser pulse and the dispersion curves. Replacing
kz with ω/c in Eq. (12) gives us the following estimate for the
frequencies of the excited modes:

ω = 1

2αkmc

(
ω2

c + α2k2
mc2

)
α = 1,2, . . . . (13)

We refer to modes excited in this way as Floquet modes. Thus
for each radial eigenmode there is a spectrum of Floquet modes
generated with frequencies given by Eq. (13). We reinforce
here that Eq. (13) is only strictly valid in the small-δ limit
and the calculated frequencies are only accurate away from
the intersections, which indicate the positions of band gaps in
the exact dispersion relation. We note that depending on the
choice of modulation period, α = 1 does not necessarily label
the lowest excited frequency; this is just a peculiarity of the
notation.

C. Finite radius plasma channels

In this work we do not consider true parabolic plasma
channels (i.e., with n → ∞ as r → ∞) beyond the discussion
in this section, because the corrugated plasma channels
produced in the laboratory have a density maximum at a finite
radius followed by a decrease to zero density [as described
by Eq. (3)]. We conclude this section with a brief discussion
of two relevant differences between finite-radius channels and
parabolic plasma channels.

The first difference is the fact that finite radius channels
support a finite number of modes, unlike parabolic plasma
channels which support a denumerably infinite number of
radial eigenmodes. To estimate the number of modes a channel
will support, we consider the local dispersion relation for an
axially smooth parabolic channel:

ω2 = ω2
p0

(
1 + r2

2r2
ch

)
+ k2

z c
2 + k2

⊥c2. (14)

If the finite channel supports � modes, then we assume that
the dispersion relation for these modes is similar to that for the
first � modes of the parabolic channel, i.e.,

ω2 = ω2
p0 + k2

z c
2 + 8γ c2

w2
ch

γ = 1 . . . �. (15)

By combining these two equations and using the relationship
between rch and wch described in this section, we obtain a
simple expression for the perpendicular wavenumber:

k2
⊥ = 4

w2
ch

(
2γ − r2

w2
ch

)
. (16)

A mode is bound if the perpendicular wavenumber passes
through zero at some radius, and so if the density maximum in
the channel exists at radius rc, modes for which

√
2γ < rc/wch

will be bound. Alternatively, the number of bound modes is

� = int
(
r2
c /2w2

ch) (17)

The second difference is that the energy in an EM mode
may leak through the channel wall and couple to vacuum
electromagnetic modes. Thus an excitation propagating down
the channel will deplete in a finite distance. Of course, this
is true for both a laser pulse propagating down a channel
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(and thus losing energy that may otherwise be converted to
terahertz) and terahertz modes excited by the pulse. A WKB
treatment of this effect for a smooth channel may be found
in [16]. The rate at which depletion occurs is governed by
the transmission coefficient, which in general depends on
the height and thickness of the wall of the channel. In the
next section this effect is considered numerically for channels
described by Eq. (3).

III. CODE DETAILS AND VERIFICATION

A. Model and assumptions

The main purpose of this paper is to describe a series of
simulations carried out to determine the characteristics of the
terahertz radiation emission from a corrugated plasma channel.
The terahertz radiation is the result of currents generated by
the ponderomotive force of the laser pulse. For both linearly
and radially polarized pulses, the ponderomotive force is
cylindrically symmetric, which we expect the terahertz modes
to be TM modes consisting of components Er , Bθ , and Ez,
which satisfy Maxwell’s equations:

1

c

∂Er

∂t
= −4πJr

c
− ∂Bθ

∂z

1

c

∂Ez

∂t
= −4πJz

c
+ 1

r

∂

∂r
(rBθ )

(18)
1

c

∂Bθ

∂t
= ∂Ez

∂r
− ∂Er

∂z
.

The current components Jr and Jz must be calculated by
determining the plasma response to the the ponderomotive
force of the laser pulse and the field components determined
by the above equations. We do so by modeling the plasma as
a linear, nonrelativistic, cold electron fluid with a fixed ion
background. The evolution of the current J = −en0(r,z)v,
where the density n0(r,z) is given by Eq. (3), is determined by
solving the momentum equation

me

∂v

∂t
� −eE − ∇Vp − νmev, (19)

where ν is a collisional damping factor and Vp is the
ponderomotive potential of the laser pulse. This is typically
written as

Vp(r,z,t) = mec
2

2
|a(r,z,t)|2, (20)

where a(r,z,t) is the normalized vector potential of the
laser pulse. In this work we consider the laser pulse to
be propagating but nonevolving, and so the ponderomotive
potential is simply a known function of r and z − vgt that is
substituted into Eq. (19). We use a potential of the form

Vp(r,z − ct) = Vp0e
−2r2/w2

ch cos4

(
π

z − ct

cτ

)

−cτ

2
� z − ct � cτ

2
, (21)

where τ is the laser pulse duration.
There are conditions that must be satisfied if the system

is to be modeled accurately in the manner described above.
To begin, the ponderomotive potential must be sufficiently
small that both the quiver velocity of the electrons and their

cycle averaged motion is nonrelativistic. While we do not
simulate behavior on the optical time scale, the size of the
ponderomotive potential is related to the laser frequency and
electric field amplitude, hence the relevance of this condition.
The inequality that must hold for both of these conditions to
be satisfied is

Vp0

mec2
= 1

2
|a0|2 
 1, (22)

where a subscript zero indicates a peak value.
Next, we consider the cold fluid limit. For the plasma to be

considered cold, there must be insufficient time for the fluid to
thermalize on the time scale of the electron oscillations. This
is expressed simply through the inequality

kvth 
 ω, (23)

where vth ∼ √
kBT /me is the thermal electron velocity and

ω and k are a typical frequency and wavenumber of terahertz
radiation. Since the terahertz is generated by a pulse moving at
vg � c we expect ω/k ∼ vg , and Eq. (23) should be satisfied.

To determine whether we may treat the ions as a fixed,
neutralizing background, we must compare the time scale of
the laser pulse to the inverse of the ion plasma frequency.
Since we are interested in generating radiation in the terahertz
regime, our laser pulse must be short enough that the
bandwidth of its envelope encompasses the desired terahertz
frequencies. Moreover, the amplitude of the pulse shape in
frequency space must be large at the desired frequencies. In
order to generate radiation in the range 1–10 THz, our laser
bandwidth must be of the order of hundreds of terahertz, which
means we must consider pulse durations of less than 100 fs.
By comparison, the inverse ion plasma frequency is 750 fs at
n0 ∼ 1 × 1018 cm−3 and 7.5 ps at n0 ∼ 1 × 1016 cm−3. Since
the inverse ion plasma frequency represents the shortest time
scale of ion motion, we conclude that if we restrict ourselves
to sufficiently short pulses and sufficiently low densities, we
may consider the ions as being stationary.

Finally we consider the validity of the assumption that
the laser pulse is nonevolving. This is potentially a stringent
approximation, and importantly, we must consider two regimes
of validity in dealing with the simulation results. In the
first regime the approximation is valid if the pulse does not
change shape or amplitude significantly over the length of
the simulation window, which will be on the order of tens
of density modulations, or a few millimeters. In this case,
quantities measured over this distance for a nonevolving laser
pulse will match those that would be measured for an evolving
laser pulse. We may then estimate the pulse depletion length by
writing down the following energy-conservation expression:

1

U 2
L

dUL

dt
= P

U 2
L

� 〈PT 〉
U 2

0

. (24)

Here, UL(t) is the energy in an evolving pulse, P (t) is the
power transferred to plasma currents by an evolving pulse,
U0 = UL(0) is both the initial energy of an evolving pulse and
the energy of a nonevolving pulse in our simulation, and 〈PT 〉
is the average power transferred to the plasma by a nonevolving
pulse of energy U0.

In the linear regime the pulse energy UL(t) scales as Vp, and
power P (t) lost from the pulse scales as V 2

p . If we assume that
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the pulse shape does not change significantly over the depletion
length, then the middle part of Eq. (24) is approximately
constant. If we are within the first regime of validity, we may
estimate the value of this constant using the right-hand side.
Then the solution to Eq. (24) is

UL(t)

U0
=

(
1 + 〈PT 〉t

U0

)−1

. (25)

Here we identify the depletion length of the pulse LD =
cU0/〈PT 〉.

The second regime of validity concerns whether or not the
above depletion estimate is accurate. The concern is due to
pulse evolution effects that occur on scale lengths longer than
the simulation length but shorter than the estimated depletion
length. These can be both linear shape evolution effects, such
as group velocity dispersion, and nonlinear evolution effects,
such as pulse compression due to density-perturbation-induced
group velocity variation, and redshifting due to phase velocity
variation [17]. We note that within our model, LD scales
inversely with pulse energy, and results for different pulse
energies can be found by rescaling the result of a single run
with a reference pulse energy. Therefore we must consider
the validity of the approximation for both the depletion length
obtained from our simulation results and for depletion lengths
obtained through rescaling our results. Conflicts in this area
are discussed when we present rescaled depletion estimates in
Sec. IV.

Returning to the first regime of validity, there are several
pulse evolution effects to consider. First we consider pulse
depletion due to plasma wake excitation. In an axially uniform
plasma, this is maximized when the pulse length matches the
wavelength of the plasma oscillations. For plasma densities
of 5 × 1017 to 2.5 × 1018 cm−3, this occurs for pulse lengths
of 160–70 fs, respectively. The depletion length for a pulse
initially at linear resonance in the weakly relativistic regime
(a2

0 
 1) is given by [17,18]

kpLdp � 17.4

a2
0

(
k0

kp

)2

, (26)

where k0 is the central wavenumber of the laser pulse and kp =
ωp0/c. For a laser energy of 0.01 J, wavelength of 800 nm, and
pulse width of 15 μm (a0 � 0.1), the depletion lengths for the
given density range go from about 3300 to 300 cm. For a laser
energy of 0.5 J (a0 � 0.8), which is the energy to which we
intend to rescale our results, the depletion lengths range from
around 70 to 6 cm. We note that this is the depletion length for
a pulse with initial length equal to the plasma wavelength. Our
pulse is somewhat shorter than the ambient plasma wavelength,
and since the plasma wavelength in our simulation changes
because of the density modulations, the pulse spends some
time even further away from resonance. Hence we expect the
pulse depletion length in a modulated channel to be larger than
that predicted by Eq. (26).

Another effect to consider is group velocity dispersion
(GVD). This effect may be estimated by considering the range
of group velocities in a pulse of length cτ in configuration
space and its corresponding length in Fourier space [19]. The

1.75 4.25

ω
c km

0.1

0.5
c km

FIG. 2. (Color online) Plot of normalized band-gap size as a
function of normalized central band-gap frequency, obtained from
the numerical calculation of the dispersion relation, performed in
the Appendix. Note that the band-gap size vanishes rapidly with
increasing frequency, at a point far below the typical frequencies
associated with an optical pulse.

propagation distance over which the pulse doubles in length is
given by

LGV D � k0c
2τ 2

(
k0

kp

)2

. (27)

For our given density range, LGV D ranges from about 600
to 100 cm, which is significantly longer than the simulation
length.

Although GVD happens relatively slowly, the pulse may
still disperse due to the Floquet structure of the EM modes in
our system. The laser pulse is composed of Floquet modes,
meaning that each mode consists of a set of spatial harmonics.
For any given mode the group velocity of each spatial harmonic
is the same; however, if the bandwidth of the pulse overlaps a
band gap, some of the modes will have significantly different
group velocities than they would in a pulse traveling in a
uniform channel, leading to rapid pulse deformation.

This, however, is not an issue in our system. The pulse band-
width extends over several band gaps, which at high frequency
are separated by ω � kmc/2. The band gaps themselves,
however, have essentially zero width in the high-frequency
regime. This may be seen by referring to the calculation
performed in the Appendix, the relevant results of which are
displayed in Fig. 2. Note that the frequency at which the
band-gap size vanishes is significantly lower than the laser
frequency, and hence the approximate dispersion relation in
Eq. (12) becomes exact in the high-frequency limit.

Our conclusion, therefore, is that although an optical-
frequency pulse in a corrugated system will be composed of
modes consisting of several spatial harmonics, the dispersion
structure of each of the harmonics in a mode will be the same
(up to a k offset) as those of the corresponding mode from a
pulse in an axially uniform channel.

In order to reinforce the validity of the nonevolving pulse
approximation, we perform simulations with the code WAKE

[20] using our channel parameters over many Rayleigh lengths.
Plots (a)–(c) of Fig. 3 show the Fourier transforms of the
pulse envelope from such a simulation, conducted for a mod-
ulated plasma channel with central density n0 = 1018 cm−3,
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FIG. 3. (Color online) Plots of the Fourier transforms of 50-fs laser pulses with wavelength 800 nm and spot size 15 μm, recorded
initially (red, solid) and after (orange, circles) propagation for 40 Rayleigh lengths for normalized vector potential amplitudes of (a) a0 = 0.2,
(b) a0 = 0.4, and (c) a0 = 0.8. These potentials correspond to pulse energies of 0.03, 0.1, and 0.5 J, respectively. Plot (d) is for a0 = 0.8 for a
pulse propagating over one Rayleigh length. These plots were generated using the simulation WAKE [20].

modulation amplitude δ = 0.9, and modulation wavelength
50 μm for a pulse of length 50 fs, width 15 μm, wavelength
800 nm, and normalized vector potential amplitudes of a0 =
0.2, a0 = 0.4, and a0 = 0.8. As can be seen from the plots,
the frequency content of the weakest pulse changes little over
a length of 40 Rayleigh lengths, which corresponds to about
15 cm for a 15-μm-width pulse. Such a pulse is consistent
with the first regime of validity. Over this length, the frequency
content of a stronger pulse changes significantly. In Fig. 3(b)
there appears to be some pulse broadening, whereas in
Fig. 3(c), significant pulse depletion has occurred. In Fig. 3(d)
we see that the frequency content of even a strong pulse
changes little over one Rayleigh length, and so it is marginally
consistent with the first regime of validity.

From the preceding discussion we conclude that we can
obtain useful results from our model. In particular, the first
regime of validity of the nonevolving approximation holds
over a wide range of parameters. Care must be taken when
using the results to obtain estimates of the depletion length,
since violations of the second regime of validity may occur.
In the case of low-energy pulses, the depletion length LD

often exceeds the group velocity dispersion length LGVD,
while in the case of high-energy pulses, significant changes in
pulse shape occur despite the the depletion length being much
shorter. In this discussion we have neglected instabilities (such
as the Raman instability) that cause the pulse shape to change.
These can be ignored for a 50-fs laser pulse, and we consider
any effect they may have as a subject for future study.

B. Algorithm

The fact that the plasma responds in a linear fashion allows
us to use a simple algorithm to simulate the time evolution
of the fields and currents. The electric and magnetic field
components are solved on a two-dimensional Yee grid as
follows:

[Er ]n+(1/2)
i,j+(1/2) − [Er ]n−(1/2)

i,j+(1/2)

c�t
= −4π [Jr ]ni,j+(1/2)

c

− [Bθ ]ni,j+1 − [Bθ ]ni,j
�z

[Ez]
n+(1/2)
i+(1/2),j − [Ez]

n−(1/2)
i+(1/2),j

c�t
= −4π [Jz]ni+(1/2),j

c

+ (i + 1)[Bθ ]ni+1,j − i[Bθ ]ni,j
[i + (1/2)]�r

[Bθ ]n+1
i,j − [Bθ ]ni,j

c�t
= [Ez]

n+(1/2)
i+(1/2),j − [Ez]

n+(1/2)
i−(1/2),j

�r

− [Er ]n+(1/2)
i,j+(1/2) − [Er ]n+(1/2)

i,j−(1/2)

�z
.

(28)

Here, n is the time index, i is the radial index, and j is the
axial index. The current is evaluated at integer time steps, and
each component is evaluated on the spatial grid at the same
location as the corresponding electric field component. This is
possible because of the absence of the convective term in the
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momentum equation, and because the ponderomotive force is
a known function Vp(r,z − vgt) which can be evaluated at any
point in space and time.

The damping term in Eq. (19) requires a manipulation to
allow the evaluation of the current. Writing vn+(1/2) = 1

2 (vn +
vn+1) and approximating the derivative as a central difference
centered around n + 1

2 , we have

(
1 + ν�t

2

)
mev

n+1 =
(

1 − ν�t

2

)
mev

n

−�t
(
eEn+(1/2) + ∇V n+(1/2)

p

)
.

(29)

From this, it is a simple matter to calculate the current
components [Jr ]ni,j+(1/2) and [Jz]ni+(1/2),j via J = −en0(r,z)v.

C. Postprocessing

We implement this algorithm using the relatively new
NVidia Tesla General Purpose Graphical Processing Units [21]
designed for use in desktop-scale parallel computation. During
the simulation, we allow the laser pulse to pass through the
system several times by using periodic boundary conditions
in z, and on the first laser pulse “pass” we ramp Vp0 from
zero to full strength to eliminate transients. The collisional
damping term in Eq. (19) is set so as to reduce the laser wake
significantly after one laser pass, thus preventing overlap of
the pulse with its wake from the previous pass. For these
simulations, we use ν = 8c/LS , where LS is the chosen system
length. For a density of n = 1018 cm−3 and a system length
of 0.32 cm (both typical values), this is 1.3% of the plasma
frequency.

We must also deal with radial boundary conditions. At
the origin, these are Er = Bθ = 0 and ∂Ez/∂r = 0, while
all fields must vanish at infinity. Noting that the structure
of the Yee cell means that we only need specify Ez and Jz

at the boundaries, we choose the inner simulation boundary
to be at r = −�r/2 and set [Ez]

n+(1/2)
−(1/2),j = [Ez]

n+(1/2)
+(1/2),j and

[Jz]n−(1/2),j = [Jz]n+(1/2),j . For the outer boundary, we use a
perfectly matched layer the size of two plasma wavelengths
to ensure that any terahertz radiation that escapes the channel
will not be reflected from the boundary.

Once the laser pulse has passed through the system several
times, we must determine the amount of terahertz radiation
emitted. On the last pass of the laser pulse, we store various
field quantities for this purpose. We store for all z and
t the r integral of the product of the radial part of the
ponderomotive potential and the current divergence for the
purpose of calculating the power transferred to the plasma by
the laser pulse. We also store for all z and t the z component
of the electric field and the magnetic field at a fixed radius R

outside the channel for the purpose of calculating the radial
Poynting flux, and for all r and t the r component of the electric
field and the magnetic field at a fixed axial position Z for the
purpose of calculating the radial Poynting flux.

Storing information about individual time steps allows us
to calculate time-averaged quantities as sums in frequency

space. Writing the ponderomotive potential as Vp(r,z − ct) =
Vp0g(z,t)h(r), we have

〈PT 〉 =
∫

dω

2π
pT

=
∫

dω

2π

[
− 2πVp0

eT

×
∫

dz g̃(z,ω)
∫

rdr h(r)∇ · ˜J(r,z, − ω)

]

〈Pr〉 =
∫

dω

2π
pr

=
∫

dω

2π

[
− c

2T

∫
Rdz Ẽz(R,z,ω)B̃θ (R,z, − ω)

]

〈Pz〉 =
∫

dω

2π
pz

=
∫

dω

2π

[
c

2T

∫
rdr Ẽr (r,Z,ω)B̃θ (r,Z, − ω)

]
, (30)

where tilde indicates a Fourier transform in time, and the
quantities in brackets are power densities in frequency space.
For the simulation, integrals are replaced by the appropriate
sums and T is the duration of one laser pulse pass. Studying
the power densities will reveal the frequencies of the excited
modes. In addition to calculating these quantities, we may
gain information about the spatial structure of the modes by
looking at the Fourier transform in both z and t of the stored
field quantities.

D. Code verification

Before using the code to generate results, we must ensure
correct operation. We do this by comparing numerical results
to analytic results and by verifying energy conservation in
the small-stepsize limit. Various plots associated with the first
stage of code verification are shown in Fig. 4.

Fig. 4(a) shows the linear density perturbation as a function
of axial distance calculated analytically and numerically. In
the simulation, the laser pulse is allowed to pass through
the system several times before the density perturbation is
recorded, and the small oscillations leading the pulse are
the damped wake from the previous laser pass. Fig. 4(b)
shows the quantity �P = 〈PT 〉 − 〈PL〉 as a function of the
square of the normalized time step, where 〈PL〉 is the power
extracted from the system due to the collisional damping term.
The power difference �P varies linearly, as expected from
the second-order numerical error associated with the chosen
algorithm. It converges in the limit dt → 0 to a value six orders
of magnitude less than the individual power measurements;
hence we conclude that in this case, our code displays the
appropriate energy conservation properties.

In Figs. 4(c) and 4(d) we see Fourier transforms of Ez

generated by a laser pulse in an axially uniform parabolic
plasma channel. In both plots the horizontal line indicates
the plasma frequency on axis, while the curved lines are the
dispersion curves for the first three radial eigenmodes. In
Fig. 4(c), the transform is taken on axis. There is a strong
excitation at the plasma frequency, as evidenced by the peaks
of Ẽz(kz,ω) at the intersection of the light line and the plasma
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FIG. 4. (Color online) Plots from a simulation of a laser pulse passing through a uniform plasma showing (a) density perturbation δn/n0

calculated analytically (red, solid) and numerically (orange, circles) for a uniform plasma and (b) difference between power input and output
as a function of normalized stepsize squared. Plots of Ẽz(kz,ω) from a simulation of a laser pulse passing through a parabolic plasma channel
evaluated for (c) vg = c at r = 0 and (d) for vg = 2c at r > r0. The dotted blue lines are the dispersion curves for plasma waves and the first
three radial eigenmodes.

frequency, which is consistent with the expectation that strong
excitation requires phase matching.

In Fig. 4(d), the transform is taken at a radius outside the
plasma channel and with the laser pulse group velocity set to
vg = 2c. While not physically realistic, this is possible in the
code because the pulse is modeled as a force that depends on
z − vgt , where vg is a free parameter. Here there are several
excitations corresponding to the lowest frequency EM modes
in the channel. There is no plasma wave excitation, since the
density at the point of measurement is zero. While we match
the laser pulse spot size to the fundamental mode width (which
is a requirement if our nonevolving laser pulse assumption is to
be valid), the ponderomotive force consists of a broad spectrum
of radial eigenmodes. Since this is responsible for driving the
current, we expect to see excitations above the fundamental.

Now we look at axial and radial average power outputs
recorded for the cases of δ = 0 and δ = 0.05 in both radially
uniform plasmas and finite radius plasma channels. We choose
a density of n0 = 1018 cm−3, 16 corrugations of length 50 μm
and a laser pulse mode width of wch = 15 μm. In the radially
uniform case, the mode width does not carry its usual physical
interpretation and is to be thought of as just a length scale. In
all cases, we use a laser pulse with an energy of UL = 0.01 J
and we choose cutoff parameters rc = 2wch and r0 = 3wch.

In Fig. 5(a), we see a very small excitation around the
plasma frequency (which for our chosen density is 9.0 THz).
This is to be expected, since in a uniform plasma we expect
no EM excitation and plasma waves have no Poynting flux. In
Fig. 5(b) we see much larger excitations. The radial Poynting

flux is an EM mode, since the plasma density is zero at the
point of measurement. The nature of the axial excitations is not
clear, since in a channel with nonuniform density the magnetic
fields generated by the plasma wave currents do not sum to
zero. In these simulations, however, the axial Poynting flux is
of less importance than the radial Poynting flux. This is because
the periodic boundary conditions make our channel infinite in
length, and so even if we could isolate the contribution to the
axial flux from EM modes, the recorded value would not be
an accurate representation of the amount of terahertz exiting
the end of a finite-length waveguide.

In Fig. 5(c) we again see an excitation in the axial power
flow plot. There is no significant excitation in the radial
plot, consistent with δ = 0. In Fig. 5(d) we see excitations
between 10 and 20 THz in the radial power flow plot. For
comparison, the first seven predicted Floquet frequencies for
the fundamental radial eigenmode are 12.7, 13.5, 15.4, 16.4,
17.7, 20.2, and 22.9 THz. We note that a much smaller
amount of radiation escapes radially than in the case of
Fig. 5(b). This is because the generated modes are unbound
and have a Rayleigh length much shorter than the simulation
length.

Finally, we study the power balance in the four scenarios
in Fig. 5. The results are listed in Table I. In the case of
Figs. 5(a), 5(c), and 5(d), we see that the different measures
produce somewhat different results. This is of no concern,
however, since the �P results are six orders of magnitude less
than their respective values of 〈PT 〉 and 〈PL〉 and are probably
influenced by floating point error. Accordingly, the result for
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FIG. 5. (Color online) Axial and radial power flow density in frequency space for (a) uniform plasma, (b) δ = 0.05 axial corrugations
but no radial density dependence, (c) a finite radius plasma channel with no axial corrugations, and (d) a finite radius plasma channel with
δ = 0.05 axial corrugations.

Fig. 5(b) is much more accurate. A similar level of accuracy is
demonstrated in the last row of the table, in which we record
the results for a “full-strength” corrugated channel of the type
that will be studied in the next section.

IV. SIMULATION RESULTS

We begin by presenting results for the total power output
calculated from the simulation for various densities and laser
spot sizes. Fig. 6 contains the average radial power exiting the
side of the waveguide as well as the average axial power flow,
the percentage of laser energy converted to terahertz, and the
average angle of emission. These results are recorded for a
range of densities and mode widths, for a laser pulse energy
U0 = 0.01 J, modulation amplitude δ = 0.9, and density cutoff
parameters rc = 2wch and r0 = 3wch. The pulse length is 50 fs,
and the optical wavelength (which is used in conjunction with
U0 to determine the peak ponderomotive potential) is 800 nm.

TABLE I. Values of the difference between power input and
output �P and the radial power flow 〈Pr〉 for the different scenarios
in Fig. 5. For comparison, the result for a full-strength (δ = 0.9)
channel is listed.

Figure lim
�t→0

�P (W) lim
�t→0

〈Pr〉 (W)

5(a) 0.117 0.000 164
5(b) 306 305
5(c) 0.0930 0.000 276
5(d) 1.47 0.404
δ = 0.9 475 472

The density modulation period is 50 μm and the total system
length is 0.32 cm.

In Fig. 6(a) we see the radial power flow as a function of
average on-axis density, measured for several different mode
widths. We see that the largest terahertz generation occurs
for small mode widths. In general, this occurs because we
have kept the energy content of the pulse fixed, and so the
peak ponderomotive potential is larger in the case of smaller
mode width. The amount of terahertz produced increases with
density, because the work done on the plasma by the laser
pulse is larger for larger density.

In Fig. 6(b) we see the axial power flow as a function of
average on-axis density, measured for several different mode
widths. This quantity may take a negative value, since the
mode may propagate either way along the channel. Backward-
propagating waves come from lightline intersections with the
dispersion function when its gradient is negative. We see that
the axial flow is typically several times smaller than the radial
flow, which is a desirable property because of the difficulties
in calculating accurately the terahertz output from the end of
a real channel.

In Fig. 6(c) we plot the ratio of 〈Pr〉 to 〈PT 〉 as a percentage,
which serves as an estimate of the fraction f of laser energy
that is converted to terahertz. This can be seen by writing f ∼
〈Pr〉τD/U0 and replacing the expression for the depletion time
τD with that calculated in Sec. III. Importantly, both 〈Pr〉 and
〈PT 〉 scale like V 2

p in the linear regime, which means that the
fraction of laser energy converted to terahertz is independent
of the pulse energy.

We may now estimate the amount of terahertz generated.
The peak value of f in Fig. 6(c) is less than 1% . We note,

056403-9



PEARSON, PALASTRO, AND ANTONSEN PHYSICAL REVIEW E 83, 056403 (2011)

0.5 1 1.5 2 2.5
x 10

18

0

3000

n (cm−3)

<
P

r>
 (

W
)

(a)

0.5 1 1.5 2 2.5
x 10

18

−600

100

n (cm−3)

<
P

z>
 (

W
)

(b)

0.5 1 1.5 2 2.5
x 10

18

0

1

n (cm−3)

<
P

r>
/<

P
T
>

 (
%

)

(c)

0.5 1 1.5 2 2.5
x 10

18

45

90

135

n (cm−3)
θ 

(d
eg

re
es

)

(d)

FIG. 6. (Color online) Plots involving various quantities as a function of density for channel widths wch = 15 μm (blue, solid), wch = 25μm
(red, dashed), wch = 50 μm (green, dash-dot), and wch = 75 μm (magenta, dotted). The quantities are (a) average power flow in the radial
direction, (b) average power flow in the axial direction, (c) percentage of laser energy converted to terahertz, and (d) angle between the Poynting
vector measured outside the channel and the axis.

however, that these results are from a system with artificially
high collisional damping, which in these simulations is ν =
8c/LS , and so we expect the recorded conversion fraction is
lower than that for a real channel. Extrapolation from a study
of the variation of f with damping rate, along with crude
estimates of the effect of damping [for example, multiplying
f by exp (νr0)] suggest that at most, the presence of damping
reduces f by a factor of two. The values of the pulse depletion
length are displayed in Table II for different mode widths
using a conversion fraction of 2f . The depletion length was
calculated for a U0 = 0.01 J pulse and rescaled for a U0 = 0.5 J
pulse at a density of 1.3 × 1018 cm−3, which corresponds to
a peak in Fig. 6(c) for both small and large mode widths.
The rescaling was accomplished using the fact that LD scales
like V −1

p .
The results in Table II must be discussed in the context of the

nonevolving pulse approximation, details of which are found in

TABLE II. Values of energy emitted in terahertz radiation and
laser pulse depletion length for two different values of pulse energy
and various mode widths. These quantities are calculated for a density
of 1.3 × 1018 cm−3, corresponding to peaks in Fig. 6(c).

U0 = 0.01 J U0 = 0.5 J

wch (μm) ETHz (mJ) LD (cm) ETHz (mJ) LD (cm)

15 0.12 1000 6.1 22
25 0.15 3700 7.8 76
50 0.054 16 000 2.7 340
75 0.0034 37 000 0.17 780

Sec. III. The depletion lengths calculated for the low-energy
pulse are longer than the group velocity dispersion lengths,
although the amount of terahertz produced is so low that
this case is of little interest. The high- energy pulse produced
sufficient terahertz to be of interest, although for small mode
widths the plasma response is weakly relativistic (a0 = 0.8
for the 15-μm case), and so the pulse evolution will not be
represented accurately by Eq. (25).

During nonlinear pulse evolution in an axially uniform
channel, however, the pulse initially compresses due to the
reduction in plasma density behind the pulse. During this
phase, the depletion rate increases. At later times the pulse
lengthens and the depletion rate is reduced. Let us assume
that the qualitative features of nonlinear pulse evolution in a
corrugated channel are similar to those in an axially uniform
channel. Then, since most of the pulse energy is depleted
during the first phase of pulse evolution and the terahertz
production rate is larger for stronger pulses, the values of
LD for the 0.5 J pulse serve as an upper bound for an effective
depletion length, defined to be the length over which significant
terahertz production occurs in a real channel. We note that
some of the linear features of pulse evolution in a corrugated
channel, such as the fact that the depletion length is longer than
that given in Eq. (26) due to variation of plasma wavelength
with density modulations, are already accounted for in the
depletion estimates given in Table II.

An interesting feature of Fig. 6(c) is the presence of peaks
in the value of f at different densities. There are two possible
reasons for this density-dependent enhancement of terahertz
output. The first reason is that the angle of the Poynting vector
outside the channel is not always perpendicular to the axis, as
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seen in Fig. 6(d). The reason for this will be discussed later
in this section. The result is that 〈Pr〉 is enhanced when the
measured angle is close to 90 degrees. Multiplying the data in
Fig. 6(c) by the sine of the angles in Fig. 6(d) reveals, however,
that this effect is minimal.

The second reason is related to enhanced coupling of the
laser to terahertz modes at the so-called π and 2π points. These
are the points on the dispersion curves at which k/km = n

and k/km = 2n, respectively. Antonsen et al. [14] discusses
the importance of these special points in their treatment of
the δ-function periodic profile. Of central importance in their
calculation is a coupling constant that is proportional to the z

average of the electric field divergence, i.e.,

I = 1

d

∫ d

0
dz ∇ · E, (31)

where d = 2π/km.
We may evaluate this for our density profile by assuming

that the electric field divergence takes the form of a Floquet
solution, as is found in Eq. (10). Adding this to its complex
conjugate and integrating over one period of the structure
yields

I =
∞∑

γ=−∞

(
2 Im{Bγ }cos (kd) − 1

(k − γ km)d

+2Re{Bγ } sin (kd)

(k − γ km)d

)
. (32)

The π (2π ) points occur when kd = nπ for odd (even) n. The
second term in this sum is a maximum when n = 2γ , which
only occurs at a particular 2π point and is zero for all other
2π points and all π points. Conversely, the first term is an ex-
tremum for all π points and vanishes for all 2π points. Because
the dispersion curves, and hence the lightline intersections,
shift with changing density, there are special densities at which
the lightline intersects a dispersion curve at a π or 2π point. We
can estimate the densities at which the coupling is maximum
by combining the trigonometric functions in Eq. (32) with
Eq. (13), which predicts the frequencies of generated terahertz
modes. The results depend on the lightline intersection
number, which must be determined by a frequency-space
analysis of the system, and on the Fourier coefficients Bγ ,
which are not known. This makes it impossible to determine
exactly the coupling as a function of density; however, for
the first lightline intersection in a 50-μm channel, the 2π

points occur at densities of 1.3 × 1018 and 2.2 × 1018 cm−3,
while the π points occur at densities of 8.5 × 1017 and
1.7 × 1018 cm−3. Comparing these numbers to Fig. 6(c), we
see that the enhanced terahertz output occurs at densities
corresponding to 2π point intersections.

The results presented thus far have been for a fixed pulse
length of 50 fs. For the purpose of optimizing terahertz
production, it is useful to study the effects of pulse length on
power output. Fig. 7 contains the results of a study conducted
for pulse lengths ranging from 6 to 150 fs, again for a
pulse energy of U0 = 0.01 J, modulation amplitude δ = 0.9,
density cutoff parameters rc = 2wch and r0 = 3wch, optical
wavelength 800 nm, density modulation period 50 μm, and
total system length 0.16 cm. The smaller system length is

necessary because a larger resolution is required to resolve the
shorter pulse lengths considered. Since we choose the damping
to vary with inverse simulation length, the result of this change
is to reduce the amount of terahertz radiation that escapes
from the channel. Note that this reduction would not appear
in an experimental result, in which the damping rate would be
independent of simulation length.

The prominent feature of Fig. 7(a) is the decrease in
power output with increasing pulse length over much of the
domain, with a maximum at τ � 12 ps. The decrease occurs
since the ponderomotive force is stronger for smaller pulse
lengths, both because the gradient of Vp scales like 1/τ and
because the pulse energy is fixed, leading to a variable peak
ponderomotive potential. In Fig. 7(b) we see the average power
transferred from the laser pulse to the plasma. This is linear in
the range 25–100 fs, with some deviation outside this range.
This quantity varies with τ for the same reason as 〈Pr〉. The
increase in the gradient of 〈PT 〉 at small pulse lengths occurs
because the bandwidth of plasma excitations increases rapidly
as τ → 0, and so more energy is transferred to plasma waves.
The increase in energy going into plasma waves means that
less is available for terahertz radiation, which explains the
peak seen in (a) Publisher is John Wiley and Sons, 605 Third
Avenue, New York NY 10158.

In Fig. 7(c) we see the ratio of 〈Pr〉 to 〈PT 〉, which we
again interpret as the fraction of pulse energy that can be
converted to terahertz radiation. As before, the combination
of these two quantities results in a maximum, although this
now occurs at τ � 25 ps. Thus, our previous choice of a 50-fs
pulse did not result in the maximum terahertz generation. The
final Fig. 7(d) contains the same results as (b), but rescaled
so that the ponderomotive potential is fixed. The pulse energy
is no longer constant, but its value for a 6-fs pulse is U0 =
0.01 J. The purpose of this last plot is to verify that the results
presented here are consistent with the fact that for fixed a0, the
maximum density perturbation occurs when the pulse duration
matches the plasma period, which in this case is ∼100 fs.

Now we present recorded values of the average radial power
flow per unit frequency. We begin by studying the effect of
different cutoff radii on the terahertz output and then study
the power spectrum as a function of density. The first set of
results, seen in Fig. 8, are for channels with mode widths of
wch = 15μm and wch = 50 μm, both with an on-axis mean
density of n0 = 1018 cm−3. The cutoff function is found in
Eq. (3), and we consider 1.5wch � rc � 3.5wch and r0 − rc =
wch. According to the discussion in Sec. II, different values
of rc will result in different numbers of quasibound modes
in the channel. The pulse length is once more 50 fs, and the
remaining parameters are the same as for previous results.

In Fig. 8(a) we see several different excitations. For rc =
1.5wch (top), there should only be one bound mode in the
system, and so the visible excitations correspond to several
different Floquet modes of the fundamental radial eigenmode.
These excitations are somewhat broader than those for larger
cutoff radius because for small rc, the mode loses energy
through the channel wall more rapidly. There is therefore
a damping rate associated with the measured modes, and
broadening occurs. For larger values of rc we see higher
frequency excitations. We show later that the excitation at
about 23 THz that appears for rc > 2.5wch is a second-order
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FIG. 7. (Color online) Plots involving various quantities as a function of pulse duration for density n0 = 1.25 × 1018 cm−3 and channel
width wch = 25 μm. The quantities are (a) average power flow in the radial direction, (b) average power transferred from the laser pulse to the
plasma, (c) percentage of laser energy converted to terahertz and (d) average power transferred from the laser pulse to the plasma rescaled for
fixed peak ponderomotive potential. Note that at τ = 50 fs, these quantities do not match the results in Fig. 6 because the simulation length
was shorter, and the damping rate ν was necessarily larger.

radial eigenmode. The appearance of second-order radial
eigenmodes is consistent with the number of modes we expect
the channel to support, as calculated from Eq. (17).

Fig. 8(b) shows a single peak at about 12 THz for small
values of rc and two peaks for larger cutoff radii. In this case,
the frequency difference between successive Floquet modes is
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FIG. 8. (Color online) Average radial power spectral density for different cutoff radii and for corrugated channels with mode width (a)
wch = 15 μm and (b) wch = 50 μm. The topmost plots have rc = 1.5wch, and the cutoff radius increases by 0.5wch for each successive plot.
The subfigure to the right of each power plot displays a z-averaged radial density profile.
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at most 3 THz, while the frequency difference between (the
same Floquet excitation of) successive radial eigenmodes is at
most 0.6 THz. These frequency differences are less than in the
case of a smaller channel, and so while the excitations occur
at around the expected frequency, we cannot claim them to be
modes of a particular type and index.

We may study the excitations we see here in more detail
by looking at the z-t Fourier transform of a field quantity
measured outside the channel. This result is shown for the
case rc = 2wch in Fig. 9, along with the lightline and a set of
dispersion curves. We make this choice since this channel has
one quasibound mode but may still leak a significant amount
of radiation. We can easily identify in these plots the modes
seen in Fig. 8. We see at each excited frequency several
different axial wavenumbers. These different wavenumbers
come from the different spatial harmonics that comprise the
Floquet modes, and as such they are separated by km. In
vacuum these correspond to electromagnetic waves with wave
vectors that are oblique to the z axis. The angle of propagation
may be calculated using ω = |k|c. We note that for kzc > ω,
there are no spatial harmonics present. This is easily explained
by considering the perpendicular wavenumber k⊥, which
outside the channel is given by

ck⊥ =
√

ω2 − k2
z c

2. (33)

The perpendicular wavenumber is imaginary for |kzc| > ω,
and so these spatial harmonics are evanescent outside the
channel boundary. Harmonics outside the channel boundary
that have |kzc| � ω have a real perpendicular wavenumber and
must therefore propagate away from the channel at an angle θ

given by cos (θ ) = kzc/ω. Since there are multiple spatial har-
monics that satisfy the inequality for real k⊥, we conclude that
there will be a set of “scattering” angles associated with each
channel and that the number of angles in this set will increase
with density, increase with lightline intersection number, and
decrease with mode width. These angles are given by

θ = arccos

(
1 − βkmc

ω

)
β = 0,1, . . . ,int(2ω/kmc).

(34)

The next set of results once again consists of values of
the average radial power flow per unit frequency, this time
recorded for a fixed value of rch = 2wch. This is done for mode

widths of 15, 25, 50, and 75 μm, and densities ranging from
5 × 1017 cm−3 to 2.5 × 1018 cm−3. The remaining parameters
are the same as those used previously to generate Fig. 8.

In Fig. 10 we see the variation of frequency of side-coupled
radiation with density. For comparison, we plot the frequencies
predicted by the small δ theory for the first five Floquet modes
associated with the fundamental and second radial eigenmodes
of the channel.

The fit is surprisingly good given our choice of δ = 0.9.
We explain this by considering the perturbative “solution” to
the Matthieu equation (i.e., assuming that coefficients Aα in
Eq. (10) vanish for sufficiently large α). This solution yields a
finite number of dispersion curves with approximate band gaps
that range up to some maximum frequency and that are periodic
in k out to some integer multiple of km. As we increase the
perturbative order, the number of dispersion curves increases
(increasing the range in ω), as does the number of periods in k

over which they extend. Thus, since the excitations we observe
come from the first few intersections of the lightline with the
dispersion curves, which occur within the first few periods
in k, a low-order perturbative approximation should give an
accurate result, with predictions far from the band gaps being
more accurate than those close to the band gaps.

The gradient (dn/df ) of the line corresponding to the
lowest-numbered Floquet mode is significantly different than
other Floquet modes. We see in Fig. 10(a) that this follows the
excitation corresponding to the 17-THz peak in the second plot
of Fig. 8(a). (This figure corresponds to a line out of Fig. 10(a)
at density n = 1018 cm−3.) Furthermore, the same line plotted
for the second radial eigenmode is shifted to significantly
higher frequency. Comparing this to the third line in Fig. 8(a)
suggests that the 23-THz excitation here is a second-order
radial eigenmode.

The general trend seen in Fig. 10(a) is for the power output
to increase with density, which is consistent with the total
power output results presented at the beginning of this section.
The behavior is somewhat different for larger mode widths,
however. For Fig. 10(b), the peak output occurs at 15 THz
at a density of about 1.4 × 1018 cm−3 and at higher densities
remains at a roughly constant level, albeit with a larger number
of excitations. For Figs. 10(c) and 10(d) the peak output occurs
at 18 THz at a density of about 2 × 1018 cm−3 in both cases,
and is sufficiently pronounced that it is difficult to see any other
excitations. Other excitations are present at a much lower level,

FIG. 9. (Color online) Two-dimensional Fourier transforms of Ez taken at fixed radius outside the channel for (a) wch = 15 μm and
(b) wch = 50 μm. The red (solid) line is the lightline of the laser pulse, and the blue (dotted) curves are the functions in Eq. (12) that constitute
the approximate dispersion relation.
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FIG. 10. (Color online) Plots of power density in frequency space as a function of density for channel widths (a) wch = 15 μm,
(b) wch = 25 μm, (c) wch = 50 μm, and (d) wch = 75 μm. The orange (dashed) lines indicate the first five Floquet modes of the fundamental
radial eigenmode, as predicted by the small δ theory.

as may be demonstrated with a plot of the logarithmic power
output seen in Fig. 11.

In many cases the peak excitations in Fig. 10 occur at or near
an intersection of two frequency prediction lines generated by
Eq. (13). We explain this by noting that an intersection in
Fig. 10 corresponds to an intersection of the lightline in a
dispersion plot constructed with functions of the form given
in Eq. (12) at a point where two of these functions themselves
intersect. An intersection in Fig. 10 therefore corresponds to a
π or a 2π point, and so we expect to see strong excitations at
some of them.

The presence of a dominant excitation from a single
lightline intersection for large mode widths, as opposed to
many excitations for small mode widths, explains the features
seen in Fig. 6(c) discussed at the beginning of this section. For

large mode widths, there are densities at which the conversion
fraction f is a maximum, and it was shown that for an α = 1
lightline intersection, these densities correspond to 2π points.
We now see, upon examination of Figs. 10(c) and 10(d), that
this choice was justified. For smaller channels we see many ex-
citations corresponding to different lightline intersection num-
bers, and each will have a different 2π point density. We expect
that this will reduce the variation of the coupling with density
and so there will not be a large variation with density in the
conversion factor f . This is consistent with what is observed.

V. CONCLUSION

In conclusion, we have studied numerically the generation
of terahertz radiation in a corrugated plasma channel. We have

FIG. 11. (Color online) Log plots of power density in frequency space as a function of density for channel widths (a) wch = 50 μm and
(b) wch = 75 μm. Comparing this with Fig. 10 verifies that the frequency predictions are accurate for large mode widths.
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found that terahertz modes are indeed excited, the reason being
that the laser pulse can phase-match with the slow-wave spatial
harmonics supported by the channel. Some of these harmonics
can then couple to free-space radiation modes on the side of the
channel, with the angle of propagation being determined by
the period in kz in which the spatial harmonic wavenumber
corresponding to the free space mode resides. Our results
suggest that a significant fraction of the terahertz radiation
power flow is radial, which is advantageous since these modes
do not have to travel the length of the channel in order to
escape. We have not completely discounted the possibility of
axial terahertz extraction, however. We have also found that
a small-density-modulation-amplitude approximation predicts
terahertz radiation at frequencies similar to those observed in
simulation results, despite the fact that the simulations were
run with large modulation amplitudes.

We have found that the total radial power output is larger
for smaller mode widths and for higher densities. The variation
with mode width occurs because smaller mode widths lead to
larger gradients of the ponderomotive potential, and because
for fixed pulse energy, the peak ponderomotive potential
increases with decreasing wch. The power output is larger for
higher densities because the laser pulse drives larger currents
and so does more work. We have found that terahertz is
strongly emitted at certain angles corresponding to the axial
wavenumbers of the different spatial harmonics, and we have
found variation in power output with density due to the
presence of π and 2π points in the dispersion relation. An

experiment should therefore target the “special” densities at
which enhanced coupling occurs.

Finally, we have estimated the total fraction of laser pulse
energy that is converted into terahertz to be around 1% for
the densities and mode widths we considered. We have also
shown for one set of channel parameters that the 50-fs pulse
length is not optimum for generating terahertz and that the ideal
pulse is somewhat shorter. It appears, however, that this will
not increase the pulse energy conversion fraction significantly.
Extrapolating our results into the nonlinear regime, we obtain
6 mJ of terahertz from a 0.5 J pulse, with a linear depletion
length of approximately 20 cm. This depletion length is for
a 15-μm matched spot, and it increases significantly with
spot size. Given the experimental constraints and the fact
that the estimated terahertz power output assumes total pump
depletion, we find that terahertz production requires small spot
sizes.

A 0.5 J, 15-μm pulse has a normalized amplitude of
a0 = 0.8, and so pump depletion will proceed in the weakly
relativistic regime. Therefore we treat the estimated depletion
length as the upper bound to an effective depletion length
over which most of the terahertz would be produced in a
real system. The general conclusion is that a small-spot,
short pump pulse containing a significant fraction of a Joule,
and a corrugated channel of several centimeters, is required
to produce millijoule-level amounts of terahertz radiation.
Simulating such a system requires a nonlinear and relativistic
analysis of pulse evolution in a corrugated plasma channel.
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FIG. 12. (Color online) Dispersion curves (blue, dotted) generated by evaluating a finite-sized version of the determinant shown in Eq. (A1).
Fig. (a) contains the dispersion construction discussed in Sec. II, which is the dispersion relation from a single-element determinant reproduced
many times. The remaining figures contain dispersion curves calculated for (b) 3, (c) 9, and (d) 15 nonzero Fourier coefficients. The lightline
(red, solid) is displayed also.
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FIG. 13. (Color online) Frequencies of lightline intersections with the dispersion curves in Fig. 12(a) (orange, dashed) and Fig. 12(b) (red,
solid) for (a) δ = 0.05 and (b) δ = 0.9.
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APPENDIX: CALCULATING THE APPROXIMATE
DISPERSION RELATION

In calculating the mode structure in a corrugated plasma
waveguide in Sec. II, we encounter a one-dimensional ODE
[Eq. (9)] which is related to the Matthieu equation. We
construct a dispersion relation in the δ → 0 limit by super-
imposing the dispersion curves for all of the different spatial
harmonics of the solution, found in Eq. (10). This dispersion
relation possesses the correct periodicity but is somewhat
inaccurate near the band gaps. We note, however, that the
results obtained from simulations in the δ → 1 limit match to
some degree the approximate dispersion relation. The purpose
of this Appendix is to understand this result and to quantify
the differences between our dispersion relation and the exact
result.

We begin by writing Eq. (11) in matrix form. The result
is a vanishing product of a tridiagonal matrix and a vector
of Fourier coefficients, i.e., M · A = 0. Defining for brevity
�2

α = k2
0c

2 − (kz − αkm)2c2, the dispersion relation (which
is the condition for the existence of a nontrivial solution) is
given by

det(M) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . .
. . . 0

. . . 2�2
α−1 −iω2

p0δ

iω2
p0δ 2�2

α −iω2
p0δ

iω2
p0δ 2�2

α+1

. . .

0
. . .

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (A1)

We proceed by considering the strength of the coupling
between Fourier coefficients Aα . For neighboring coefficients,
we write this schematically as Aα ∼ εAα±1, and thus
Aα ∼ εNAα±N . If ε is small, we may choose to keep terms
only to order εN ; hence a particular Fourier coefficient will
only be coupled to 2N of its neighbors, after which it will be
decoupled. Because of this decoupling, our product M · A of an

infinitely extended matrix and vector will reduce to an infinite
number of products of a (2N + 1) × (2N + 1) matrix with a
vector.

We need only evaluate the determinant of one of these
matrices, since the dispersion curves resulting from the
determinant centered around α will be related to those
from the determinant centered around α + 1 by a trans-
lation of km. We note that this is exactly the procedure
used to calculate the dispersion relation in Sec. II, where
we kept terms to order ε0 and thus evaluated a 1 × 1
determinant.

In general, the small parameter ε depends on both δ, the
modulation wavenumber km, and the frequency and wavenum-
ber associated with the region of interest in the dispersion
relation. Since we are interested in the region surrounding
the first few lightline intersections, we have ε ∼ ω2

p0δ/ω
2
c .

We may estimate the required size of the determinant using
2N + 1 ∼ 2 ln (τ )/ ln (ε) + 1, where τ is the desired fractional
contribution of the most distantly coupled Fourier coeffi-
cient. For τ = 0.01, we have for a δ = 0.9, n = 1018 cm−3,
wch = 15μm channel a required determinant size of
2N + 1 ∼ 13.

In Fig. 12 we see dispersion curves plotted for n =
1018 cm−3, δ = 0.9, and wch = 15 μm for various determinant
sizes, including N = 1. In the N = 1 graph, we plot multiple
dispersion curves to show a full dispersion relation; however,
for larger sizes we plot only the solutions from a single
determinant centered around α = 0. We observe that as the
number of nonzero Fourier coefficients increases, the number
of individual curves increases, as does their extent in kz space.
We note, however, that the curve structure and band-gap size
for small ω and kz is accurate for much smaller truncation
values than are necessary for correct curve structure at large ω

and kz.
We also note that the curve structure at large frequency

very closely matches the piecewise dispersion relation, which
explains why our simulation results conform so closely. For
the case δ = 0.05 (not shown), the large band gaps that appear
at low frequencies in the above plots reduce significantly, and
the dispersion curves match the piecewise dispersion relation
at low frequencies also.

Finally, we compare the frequencies generated by cal-
culating the lightline intersections for the same density
range as used in the simulations. These results are seen in
Fig. 13 and should be compared to the simulation results in
Fig. 10(a).
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