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Presence of a Richardson’s regime in kinematic simulations
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In this paper we investigate kinematic simulation (KS) consistency with the theory of Richardson [Proc. Roy.
Soc. A 110, 24 (1926)] for two-particle diffusivity. In particular we revisit the sweeping problem. It has been
argued by Thomson and Devenish [J. Fluid Mech. 526, 277 (2005).] that due to the lack of sweeping of small
scales by large scales in kinematic simulation, the validity of Richardson’s power law might be affected. Here,
we argue that the discrepancies between authors on the ability of kinematic simulation to predict Richardson
power law may be linked to the inertial subrange they have used. For small inertial subranges, KS is efficient
and the significance of the sweeping can be ignored, as a result we limit the KS agreement with the Richardson
scaling law t3 for inertial subranges kN/k1 � 10000. For larger inertial range KS does not fully follow the t3 law.
Unfortunately, there is no experimental data to compare KS with and draw conclusions for such large inertial
subranges. It cannot be concluded either that the discrepancy between KS and Richardson’s theory for larger
inertial subranges is exactly taken into account by the theory developed in Thomson and Devenish [J. Fluid Mech.
526, 277 (2005).].
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I. INTRODUCTION

A. The two-particle dispersion problem

The two-particle separation is defined as

�(t) = |X2(t) − X1(t)|, (1)

where X1(t) is the position of the first particle and X2(t) the
position of the second particle at time t . The first quantity
of interest is the mean-square separation between the two
particles 〈�2(t)〉 as a function of time which has received
much research attention since the pioneering work of [1] (see,
e.g., [2–14]).

It is worth noting that the reference work in [1] refers to
the diffusivity (d/dt)〈�2(t)〉 as a function of the mean-square
separation, 〈�2(t)〉, for two particles in the inertial subrange of
turbulence, that is, for particle pairs such that η < �(t) < L,
where L is the upper limit length scale of the inertial range
or integral scale and η the lower limit or Kolmogorov scale.
Richardson introduced the locality assumption and derived his
four-third law of diffusion,

d

dt
〈�2(t)〉 ∼ �

4
3 (t). (2)

His locality assumption states that the mean-square separation
reaches a limit as the averaging time is increased because only
eddies comparable in size with the separation are effective in
further statistical increase of the mean-square separation.

From Eq. (2), neglecting the initial separations �0 and
applying Kolmogorov’s similarity theory to the relative dif-
fusion of particles, [15] and [16] obtained the famous t3 law
for the diffusion in isotropic turbulence and in the inertial range
of times:

〈�2(t)〉 = G�εt3, (3)

where G� is the Richardson universal dimensionless constant
and ε the rate of energy dissipation per unit mass.

*F.Nicolleau@Sheffield.ac.uk

B. Observation of the Richardson law

Since Richardson derived his formula for the particle
relative diffusion there has been much endeavor to verify it.
However, experimental measurements of Lagrangian statistics
and validation of the power law (3) are not straightforward.
This comes from the problem of tracking the positions
of particle pairs at the very large frequencies required in
high Reynolds number flows. Laboratory experiments [17,18]
report observations of Richardson scaling in two-dimensional
and three-dimensional flows for Reynolds numbers Reλ up to
104.

Numerical simulations [19–22] also struggle to achieve
sufficiently large Reynolds numbers owing to the high
computational demands required to solve the Navier-Stokes
equations. [14] concluded that DNS with Reynolds numbers
large enough to observe (3) and measure directly the constant
G� are not possible in the near future and we can only, for the
time being, rely on extrapolations from the present Reynolds
numbers (see also [23] for a review of Richardson’s validation).

This is something to bear in mind when assessing kinematic
simulation’s ability to reproduce (3) at large Reynolds num-
bers. KS can give prediction for particles’ Lagrangian statistics
at large Reynolds numbers but to our knowledge there are no
experimental data to compare with for inertial scale ranges of
104 or larger.

C. Kinematic simulation’s predictions

Many studies have been done using KS to understand the
turbulent diffusion of particle pairs. This has been done either
to validate the power law in different ranges of Reynolds
numbers or to find a specific value for the Richardson constant,
G�, which still has uncertainties in its value. There have
been some contradictory conclusions as to the ability of KS
to predict a t3 law. According to [5,6,9,12] KS predicts (2);
according to [2] it does not. The main argument against KS to
be found in this latter reference [2] is that
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“A consequence of the way the flow is constructed is that, in
contrast to real turbulence, there is no sweeping of the smaller
eddies by the larger eddies.”

In this paper, we limit our study to the classical KS for
isotropic flows without a mean velocity. For this case Ref. [2]
predicted that

“The separation process then follows t6 in the bulk of
the flow but follows Richardson’s classical t3 law in regions
where the velocity is much smaller than the r.m.s. velocity. [...]
Because of the way the size of these regions varies in time, the
resulting mean-square separation grows like t9/2.”

In the present work, we study particle pair separations in
an isotropic turbulent flow using KS and investigate the ability
of this method to reproduce the well-known Richardson’s law.
The numerical approach used to generate the turbulent flow
field is introduced in Sec. II; the results obtained are presented
in Sec. III. We generalize the approach to energy distribution
different from the classical −5/3 power spectrum in Sec. IV
and examine the effect of the KS unsteadiness parameter in
Sec. V. Conclusions are summarized in Sec. VI.

II. KINEMATIC SIMULATION TECHNIQUE

Kinematic simulation is a particular case of synthetic turbu-
lence. By synthetic turbulence we mean handmade analytical
flows which spare one the need to fully solve Navier-Stokes
equations. Synthetic turbulence has been used as an approach
to understand the general mechanisms of turbulent diffusion,
and also to make quantitative predictions of relative dispersion
and higher order Lagrangian statistical moments. A simple
model should capture the essence of the physics. Such is the
idea with synthetic turbulence which retains less information
than the whole flow, but try to keep what is paramount for the
Lagrangian statistics.

Synthetic turbulence began to emerge with [24] (see
also [25–27]), in which diffusion was simulated on a one-
dimensional grid with a random velocity field. Reference [28]
continued with a random flow field in three dimensions, and
constructed incompressible fields as an isotropically random
sum of unsteady Fourier modes. These were the basis for
the kinematic simulation developed in [3,29]. These models
are not intended as a simulation of the Eulerian field, but
only of the Lagrangian statistics that would arise from such
synthesized underlying Eulerian fields. This Eulerian field is
only intended to be a qualitatively accurate representation of
an actual turbulent field, which contains certain important flow
structures in an qualitative way. This kind of computation does
not require the storage of a lot of data with very big tables as
with direct numerical simulation.

In [6] KS were compared to the direct numerical simulation
(DNS) results of [19]. It was found that KS did exhibit
Richardson’s scaling and also reproduced the large flatness
in the relative velocity observed in DNS. This was important
as the relative velocity flatness is a measure of Lagrangian
intermittency and this supported the idea that relative diffusion
happens in sudden bursts when an appropriate flow structure
is encountered. Here lies one of the most important aspects
of kinematic simulation, the incorporation of flow structure,
upon which the relative diffusion and higher order statistics
depend.

A. The KS method for isotropic turbulence

In kinematic simulation the underlying Eulerian velocity
field is generated as a sum of random incompressible Fourier
modes with a prescribed energy spectrum. The computational
simplicity of KS allows one to consider large inertial subranges
and Reynolds numbers Re. With this method, the computa-
tional task reduces to the calculation of the trajectory of each
particle placed in the turbulent field, each trajectory is, for a
given initial condition, solution of the differential equation:

dx
dt

= uE(x,t), (4)

where uE is the analytical Eulerian velocity used in KS. In
this paper, as in [5,30], it takes the form of a truncated Fourier
series, sum of Nk random Fourier modes:

u(x,t) =
Nk∑
n=0

ancos(kn · x + ωnt) + bnsin(kn · x + ωnt), (5)

where an and bn are decomposition coefficients corresponding
to the wave vector kn, and ωn is the unsteadiness frequency.

The wave vectors kn = knk̂n are oriented randomly by
ensuring that the unit vectors k̂n have a random, uniformly
distributed, orientation. The magnitude of the wave num-
bers included in the summation can be given an arbitrary
distribution. Usually they are decimated so as to reduce
computational demands, while including enough modes for the
convergence of the Lagrangian statistics. Reference [31] tried
arithmetic, geometrical, and linear distributions and found that
the distribution,

kn = k1

(
kNk

k1

)(n−1)/(Nk−1)

, (6)

where n is an integer satisfying 1 � n � Nk , gives the fastest
convergence of the statistics.

The coefficient vectors an and bn are chosen randomly and
independently in the plane normal to kn,

an · kn = bn · kn = 0, (7)

to ensure that the random field is incompressible. In order
to impose an energy spectrum, E(k) upon the field, the
magnitudes of the coefficients are chosen as follows:

|an|2 = |bn|2 = 2E(kn)�kn, (8)

where

�kn = kn+1 − kn−1

2
. (9)

The spectrum used usually follows the universal form in the
inertial range,

E(k) = Ckε
2/3k−5/3, (10)

where Ck is the Kolmogorov constant (Ck = 1.5) and ε is the
dissipation rate of energy per unit mass, but departures from
this scaling have also been studied, partly for intermittency
corrections but also to try to gauge the importance of the energy
spectrum scaling on the Lagrangian statistics in kinematic
simulation. In this study, we will use an energy spectrum
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characterized by a power law with an exponent, p, varying
from 1.15 to 1.96:

E(kn) ∼ u2
rmsL (knL)−p for k1 � kn � kN, (11)

where we have introduced the rms of the turbulent velocity
fluctuation,

urms =
√

2

3

∫ kN

k1

E(kn)dk, (12)

and the integral length scale of the isotropic turbulence is
defined as follows:

L = 3π

4

∫ kN

k1
k−1E(kn)dk∫ kN

k1
E(kn)dk

. (13)

The Kolmogorov length scale is defined as η = 2π/kN . The
ratio between the integral and Kolmogorov length scales
is L/η = kN/k1 which is used to determine the inertial
range and the associated Reynolds number: Re = (L/η)4/3 =
(kN/k1)4/3. A characteristic time for normalization is intro-
duced as td = L/urms.

B. The Eulerian field time dependence

A time dependence of the velocity field can be incorporated
through the unsteadiness frequency ωn. This is often taken as
the eddy turnover time of the nth mode,

ωn = λ

√
k3
nE(kn). (14)

A wide range of values of the parameter λ has been studied,
from near-frozen fields to extremely unsteady fields. It has
been shown [6] that in three-dimensional isotropic KS for
two-particle diffusion, most of the statistical properties are
insensitive to the unsteadiness parameter’s value, provided that
it rests in the range 0 � λ � 1.

The interactions between the random Fourier modes are
not modeled as such in KS, hence KS misses their dynamics.
As a result the small eddies are not advected by the large
ones, a KS shortcoming called “lack of sweeping” between
different modes. Recently Ref. [2] has proposed that the
second-order statistics in kinematic simulation are dominated
by this absence of sweeping. They have investigated the
particle pair separation using KS paying a particular attention
to this problem. As a consequence of the lack of sweeping, it is
expected that the two-particle mean-square separation will be
different from Richardson’s scaling because the large scales
in real life do influence the rate of separation. Reference [2]
predicted that in the absence of sweeping, the variance of the
particle separation should increase as t9/2. This was confirmed
by their KS results for two inertial subranges kN/k1 = 106

and 108.
However, Ref. [32] has investigated the separation of

particle pairs using kinematic simulation for inertial subrange
in the range kN/k1 = 104 and concluded that KS reproduces
Richardson’s power law over their range of scales. This was
also consistent with the results in Ref. [12].

TABLE I. Different cases studied for two-particle diffusivity,
urms = 1, L = 1, p = 5/3, and �0/η = 10.

Case kN

k1
λ η Case kN

k1
λ η

A 103 0 6.28 × 10−3 J 104 1 6.28 × 10−4

F 104 0 6.28 × 10−4 N 105 0 6.28 × 10−5

G 104 0.25 6.28 × 10−4 S 106 0 6.28 × 10−6

H 104 0.5 6.28 × 10−4 T 106 0.5 6.28 × 10−6

I 104 0.75 6.28 × 10−4 U 106 1 6.28 × 10−6

III. RICHARDSON REGIME AND KS INERTIAL RANGE

A. Varying the inertial range

To clarify these apparent contradictory conclusions, it
is worth reporting from the main studies cited here the
inertial subrange which was used for the particle diffusion.
In [5] the two-particle diffusion was investigated using a
two-dimensional KS and Richardson’s law was observed on
an inertial subrange kN/k1 = 4000.

In [9], three-dimensional KS was used to determine the
relation between the generalized Richardson’s power law
exponent for the pair separation, γ , and the fractal dimension of
the stagnation points, Ds . The inertial range used was kN/k1 =
1000. The results showed remarkable consistency between
the KS predictions and the generalization of Richardson’s
theory for different values of the energy spectrum exponent
1 � p � 2.

In [12], two-particle diffusion in a three-dimensional KS
was studied for different power law exponents of the energy
spectrum from 1.2 to 3. Richardson’s prediction was again
verified in the limited range kN/k1 = 2000 provided that the
initial pair separation was larger than the Kolmogorov length
scale.

We can conclude from this partial survey that KS studies
using inertial ranges kN/k1 up to 4000 yield results in
agreement with Richardson’s prediction, whereas Ref. [2]
results questioning this agreement were obtained for a much
larger range up to 108.

In this section we present KS made for the full range 103 �
kN/k1 � 106, in order to study the effect of the Reynolds
number. We fix the initial separation to be �0/η = 10 to make
a direct comparison with the results obtained in [2]. All the
runs’ parameters are tabulated in Table I for an rms velocity
urms = 1 m s−1 and an integral length scale L = 1 m. The
statistics were performed over 4000 realizations of the flow
field.

B. Particle pair diffusivity for p = 5/3:

In Fig. 1, the particle pair separation 〈�2〉/L is plotted
as a function of time for different inertial subranges, 103 �
kN/k1 � 106. The slope of Richardson’s scaling (t3) and the
slope proposed in [2] (t9/2) are added to the figure. It can be
noticed that for small inertial subranges, up to kN/k1 = 104,
the curves seem to follow Richardson’s scaling t3, but for
higher inertial ranges they seem rather to follow the scaling
t9/2. As mentioned in Sec. I, for [1] the reference quantity was
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FIG. 1. (Color online) Two-particle separation as a function of
time for different inertial subranges (cases A, F, N, and S in Table I).

the two-particle diffusivity. The locality in scale assumption
was made for the diffusivity. Working directly on

d

dt
〈�2(t)〉 ∼ 〈�2(t)〉2/3 (15)

is keeping closer to this fundamental assumption. Furthermore,
Ref. [12] argued that plots of pair separations as functions of
time as in Fig. 1 can be misleading and their analysis needs
to be complemented by an analysis in terms of diffusivity.
In particular, conclusions are easier to draw from plots of
(d/dt)〈�2(t)〉 as they remove part of the initial separation
(�0) effects.

Accordingly, we compute directly the diffusivity by dif-
ferentiating 〈�2(t)〉. In Fig. 2(a) we plot the compensated
diffusivity,

d

dt
〈�2〉/〈�2〉2/3, (16)

as a function of 〈�2〉/L2 for the different cases of
Fig. 1, whereas, for comparison in Fig. 2(b) we plot
(d/dt〈�2〉)/〈�2〉7/9 as a function of 〈�2〉/L2 for the same
cases. A horizontal trend will validate each law, respectively.
There are two other well-known regimes which are worth
mentioning: the Batchelor regime at small times t , where
〈�2〉 ∼ �2

0 + V 2
0 t2, and the diffusive regime where 〈�2〉 ∼ t

for large times. The diffusive regime is clearly identified by
the dashed line having the corresponding slope in Figs. 2(a)
and 2(b). The advantage of the plots we use is that the small
time and small separation regimes are squeezed with respect
to the large diffusivity regimes (those in the inertial range
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FIG. 2. (Color online) Compensated diffusivity, for the cases in Fig. 1, p = 5/3. (a) (d/dt)〈�2〉/〈�2〉2/3 as a function of �2/L2;
(b) (d/dt〈�2〉)/〈�2〉7/9 as a function of 〈�2〉/L2; the dashed line corresponds to the large time t regime and the solid line to the Batchelor t2

regime; (c) magnification of plot (a) around the Richardson range with a linear scale along the y axis; (d) magnification of plot (b) for the same
range of scales with a linear scale along the y axis.
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FIG. 3. (Color online) Compensated diffusivity as a function of 〈�〉2/L2 for different initial separations (cases G, J, L, and M in Table II).
(a) d/dt〈�2〉/〈�2〉2/3, (b) d/dt〈�2〉/〈�2〉7/9, (c) same as (a) with a linear scale on the y axis, (d) same as (b) with a linear scale on the y axis.

of scales). This is confirmed in Fig. 2 where the diffusivity
exhibits a constant slope down to the smallest scales, that is,
the Batchelor regime cannot be seen in such plots; for the sake
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FIG. 4. Power law exponent from Eq. (16) as a function of L/�0

for cases in Table II. The dashed line corresponds to the Thomson
and Devenish prediction, the plain line to Richardson’s value 2/3.
Symbols correspond to different �0/η, namely (cross) �0/η = 1,
(circle) �0/η = 2, (square) �0/η = 5, (diamond) �0/η = 10, (up-
triangle) �0/η = 20, and (down-triangle) �0/η = 40.

of completeness we add the solid line corresponding to a t2

regime.
Comparing Figs. 2(a) and 2(b) we can conclude as sug-

gested by [32] that neither law are satisfactorily observed over
the entire inertial range of scales. More precisely,

d

dt
〈�2〉 ∼ 〈�2〉2/3 (17)

seems to be observed for inertial ranges kN/k1 � 104 only. For
larger ranges, Eq. (17) is verified only after large separations
[i.e., when �/L � 100 as can be seen in Fig. 2(c)]. Otherwise,
for the inertial ranges kN/k1 > 104 and �/L < 100, compar-
isons of Figs. 2(a) and 2(b) indicate that the diffusivity is closer
to 〈�2〉7/9 than to 〈�2〉2/3 but the power dependence is not 7/9
which appears clearly as an overestimation, except perhaps for
the range 3 × 10−10 < 〈r2〉/L2 < 3 × 10−6 for L/�0 > 105;
the exact value reported later on in Fig. 4 is 0.75.

To clarify this behavior in Fig. 3(a) we plot the compensated
diffusivity (16) as a function of 〈�2〉/L2 for four different
ratios �0/L, namely 0.01, 0.005, 0.001, and 0.0001, cases
G, J, L, and M in Table II. The different curves have been
arbitrarily translated along the y axis to have a clearer view of
the two ranges. The two vertical arrows point toward the range
of scales where a Richardson law is observed, that is,

0.03 <

√
〈�2〉
L

< 0.26. (18)
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TABLE II. In all cases λ = 0, p = 5/3, the number of realizations is larger than 3000, and η = 2π .

Case L

�0

�0
η

kN

k1
Case L

�0

�0
η

kN

k1
Case L

�0

�0
η

kN

k1

A 103 1 103 G 102 10 103 N 5 × 102 20 104

B 105 1 105 H 2 × 102 10 2 × 103 O 103 20 2 × 104

C 2 × 105 1 2 × 105 I 4 × 102 10 4 × 103 P 2 × 103 20 4 × 104

D 5 × 104 2 105 J 5 × 102 10 5 × 103 Q 3 × 103 20 6 × 104

E 105 2 2 × 105 K 6 × 102 10 6 × 103 R 4 × 103 20 8 × 104

F 2 × 104 5 105 L 103 10 104 S 5 × 103 20 105

M 104 10 105 T 2.5 × 103 40 105

That range is independent of L/�0 provided that L/�0 > 100.
It persists when L/�0 increases so it is not an effect of small
inertial range. For smaller ranges the determination of a power
law cannot be conclusive. This corresponds to L/�0 < 102 in
our KS as illustrated in Figs. 2 and 3. This is the minimum
range needed to observe the plateau we identified at large
scales. Figure 3 indicates that this plateau is then fixed for
L/�0 � 5 × 102. However, most DNS would correspond to
such small ranges, so for the sake of comparison we show
results down to L/�0 = 102 in Fig. 4.

Before that large-scale range (when 〈�2〉/L2 < 10−4),
the law followed by the diffusivity depends on the initial
separation, more exactly on the ratio L/�0 and departs more
and more from Richardson’s prediction. We will see in the next
section that eventually it reaches an asymptote in between 2/3
and 7/9. In other words, Fig. 3 shows that KS seems to struggle
with Richardson’s locality-in-scales hypothesis at small scales
but follows that hypothesis for larger scales. For the sake
of comparison we plot the same diffusivity compensated by
〈�2〉7/9, the figure shows clearly that there is no region where
that scaling is observed. However, the scaling seems to get
closer to 7/9 when L/�0 increases.

C. Estimation of the diffusivity power law at small scales

In order to quantify better the power law dependence on
the initial separation L/�0 we run many different cases with
different ratios L/�0 and �0/η. These different cases are
reported in Table II. For each case we plot

d

dt
〈�2〉/〈�2〉b, (19)

as a function of �2/L2, tuning the coefficient b in order to find
the best power law describing the diffusivity before the range
(18) where Richardson’s prediction is observed. The values
for b as a function of L/�0 are reported in Fig. 4. The two
horizontal lines correspond to Richardson’s prediction (2/3)
and to the Ref. [2] prediction (7/9).

The general trend confirms our previous observation, that
is, for small L/�0, b is close to Richardson’s prediction. It
then starts to depart significantly from that prediction around
L/�0 = 1000 to come closer to the 7/9 prediction. It becomes
closer to that prediction than to Richardson’s for L/�0 >

3000. It then levels off for L/�0 > 3 × 104 around a value
of b in the range [0.74; 0.75]. That is slightly short of
the Ref. [2] prediction. Computing cost prevented us from
investigating larger inertial ranges but the asymptote of the
curve seems clearly below 7/9. We estimate the error in

the slope measurements to be smaller than ±0.01, in most
cases smaller than ±0.005. We also varied the ratio �0/η (see
Table II) and find no effect of this parameter confirming that
the main parameter is L/�0, that is, the portion of the inertial
range that is seen by the particle pair (provided, of course, that
�0/η � 1).

IV. SENSITIVITY TO THE ENERGY SPECTRUM
POWER LAW

A. Generalization of diffusivity formula

The difference between the Richardson and the Ref. [2]
predictions, respectively, 0.67 and 0.78 is certainly significant
but it remains a difference of just about 16%. Furthermore,
we have seen that larger scales seem to follow Richardson’s
theory.

It is therefore important to support our work with a
generalization to a range of spectral power laws to look for
a general trend or isolate p = 5/3 as a peculiar case. the
effect of the energy spectrum power law on the diffusivity was
introduced in [33] and [34]. Generalizing [1] it is assumed that
the diffusivity depends only on the spectrum E(k) and a wave
number k� which is of the order of

√
〈�2〉 so that

d

dt
〈�2〉 = f {E(k�),k�} , (20)

with k� ∼
√

〈�2〉. Using dimensional arguments, the diffu-
sivity must be of the form,

d

dt
〈�2(t) ∼ 〈�2〉1/4

√
E(

√
〈�2〉). (21)

Equation (15) can then be written in a general form for a
turbulence energy spectrum (11) as follows:

d

dt
〈�2(t)〉 ∼ urmsL

( 〈�2(t)〉
L2

)c

, (22)

with c = 1+p

4 , which leads to

〈�2(t)〉 ∼ L2

(
t
urms

L

) 1
1−c

, (23)

with 1
1−c

= 4
3−p

. The characteristic time associated with the
pair is defined as

τ ∼ L

urms

( 〈�2(t)〉
L2

) 3−p

4

, (24)
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TABLE III. Different cases studied for two-particle separations,
for different power spectra; �0/η = 10 for all cases.

Case kN

k1
p λ η Case kN

k1
p λ η

N 106 1.15 0 6.28 × 10−6

B 104 1.27 0 6.28 × 10−4 O 106 1.27 0 6.28 × 10−6

C 104 1.37 0 6.28 × 10−4 P 106 1.37 0 6.28 × 10−6

D 104 1.47 0 6.28 × 10−4 Q 106 1.47 0 6.28 × 10−6

E 104 1.57 0 6.28 × 10−4 R 106 1.57 0 6.28 × 10−6

S 106 1.62 0 6.28 × 10−6

T 106 1.70 0 6.28 × 10−6

K 104 1.77 0 6.28 × 10−4 V 106 1.77 0 6.28 × 10−6

L 104 1.87 0 6.28 × 10−4 W 106 1.87 0 6.28 × 10−6

M 104 1.96 0 6.28 × 10−4 X 106 1.96 0 6.28 × 10−6

where p is the energy spectrum exponent and varies as
1 � p � 2. When E(k) ∼ k−5/3 we retrieve c = 2/3 and
〈�2〉 ∼ t3. Equation (22) is more general but still relies on
Richardson’s locality-in-scale hypothesis.

B. KS prediction for E(k) ∼ k− p

In order to see the consistency of KS with this hypothesis
and to have a better idea of the effect of increasing the inertial
subrange on the KS prediction of Richardson’s law, we repeat
the previous results for different spectral power laws. We vary
p in Eq. (11) from 1.15 to 1.96 and also vary the inertial range
kN/k1 (see the different cases reported in Table III).

Figure 5 shows (d〈�2〉/dt)/〈�2〉c as a function of 〈�2〉/L2

where c is given by Eq. (22) for the different spectral
power laws and an inertial range kN/k1 = 104. For easier
interpretation we plot the cases p < 5/3 in Fig. 5(a) and the
cases p > 5/3 in Fig. 5(b). The results are consistent with what
was observed for the case p = 5/3 (i.e., all the curves show
a remarkable consistency of KS with Richardson’s locality-
in-scale hypothesis and the prediction in Refs. [5,33] (22) for
the same small range

√
〈�〉2/L given in (18). For smaller√

〈�〉2/L, similarly to the case p = 5/3, the diffusivity
departs from the generalization of Richardson power law in
Refs. [5,33].

When comparing Figs. 3 and 5 we can conclude that
the locality-in-scale hypothesis and Eq. (22) are verified for
1.15 � p � 1.96 over the same range of scales

√
〈�2〉/L (18).

This generalizes the conclusion made for p = 5/3 that KS is
remarkably consistent with the locality assumption as it shows
this agreement for the different values of p. The KS difficulty
to match Richardson’s prediction can therefore be localized to
small scales and there is no effect of the spectral power law p

on this range.

C. Generalization of Thomson and Devenish sweeping
effect to E(k) ∼ k− p

The argument of [2] on the effect of sweeping can be
generalized to any spectral law. We follow the simplified
approach of [32] here: The eddy diffusivity as the rate of the
particles’ mean-square separation can be expressed in terms
of a characteristic relative velocity �V between fluid element
pairs and a time scale τ over which such relative velocities
change.

d

dt
〈�2(t)〉 ∼ �V 2τ. (25)

Both �V and τ are functions of the mean-square separation
〈�2(t)〉. The relative velocity is given by the spectral law as
follows for a structure of characteristic size r:

�V ∼
√

E(k)�k ∼ urms

(
L

r

) 1−p

2

, (26)

and τ is given by

τ (〈�2(t)〉,u′) ∼ min

(√
〈�2(t)〉

u′ ,
L

urms

(√
〈�2(t)〉

L

) 3−p

2
)

.

(27)

Reference [2] introduces mean-square separations conditional
on u′, that is, 〈�2〉u′ , so that

〈�2〉 =
∫ ∞

0
〈�2〉u′ p(u′)du′, (28)

where p(u′) is the probability density function associated with
the turbulence velocity u′. There are two regimes:
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FIG. 5. (Color online) (d〈�2〉/dt)/〈�2〉c as a function of 〈�2〉/L2 for different energy spectrum power laws and kN/k1 = 104 (cases B, C,
D, E, F, K, L, and M in Table I).
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(1) According to the assumption in Ref. [2] when u′
is small enough the sweeping problem is absent and (23)

applies, therefore 〈�2(t)〉 ∼ L2 (t urms
L

)
4

3−p , that is, for p = 5/3
〈�2〉u′ ∼ εt3.

(2) Whereas, when u′ is large enough, we start from (25)
which becomes

d

dt
〈�2(t)〉 ∼ u2

rms
L

u′

( 〈�2(t)〉
L2

) p

2

. (29)

〈�2〉u′ is sweeping dominated so that

〈�2〉u′ ∼ L2

(
u2

rms

u′L
t

) 2
2−p

, (30)

that is, for p = 5/3 〈�2〉u′ ∼ ε4t6/u′6.
The separation which divides these two regimes can be

estimated as L2 (t urms
L

)
4

3−p ∼ L2( u2
rms

u′L t)
2

2−p , that is,

u′
sep ∼

(
turms

2
p−1

L

) p−1
3−p

, (31)

which corresponds to u′ ∼ √
εt for p = 5/3.

〈�2〉u′ ∼
∫ u′

sep

0
L2

(
t
urms

L

) 4
3−p

p(u′)du′

+
∫ ∞

u′
sep

L2

(
u2

rms

u′L
t

) 2
2−p

p(u′)du′. (32)

We use for u′ the pdf proposed in [2]:

p(u′) =
√

2

π

u′2

u3
rms

e
− 1

2
u′2

u2
rms , (33)

and obtain

〈�2〉 ∼ L2
(
t
urms

L

) 3p+1
3−p

, (34)

which leads to results in Ref. [2] for p = 5/3. The expression
for the diffusivity is obtained by differentiating (34)

d

dt
〈�2(t)〉 ∼ urmsL

( 〈�2(t)〉
L2

) 4p−2
3p+1

. (35)

In Fig. 6(a) we compare the results from KS to the two
predictions (23) from [5,33] and (35) from the generalization
of the Ref. [2] argument. The points in Fig. 6(a) are the results
from KS. Similarly to the case p = 5/3 reported in Fig. 4,
for p �= 5/3, when L/�0 � 105 results do not change. We
measured c outside the range of scales for which Morel and
Larchevêque is observed. It is measured for an inertial range
L/�0 � 105 large enough for it to have reached its asymptotic
value. It is neither Morel and Larchevêque nor the extension
of 7/9 which is observed but the intermediary value c that we
are reporting, which is clearly above the Ref. [5,33] prediction
and below the generalization of the Ref. [2] theory.

The departure from the theory in Refs. [5,33] increases up
to p = 5/3 and then levels off around a value c = 0.77, very
close to 0.75, the limit value for p = 2.

Figure 6(b) shows the relative error of the two theories
when compared to the KS values. Interestingly, the maximum
discrepancy between KS and the theory in Refs. [5,33] is
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FIG. 6. Power c from Eq. (22). (a) (Solid line) Theoretical value
(23) as predicted by Morel and Larchevêque, (points) results from
KS, (dashed line) value as predicted from (35); (b) relative error in
% between the power c measured from KS and the values from (23)
(solid line) and (35) (dashed line). kN/k1 = 106 (cases N to X in
Table III).

observed for the case p = 5/3 where the Ref. [2] theory gives
a better prediction of the KS result. Apart from that range
around p = 5/3, KS results are very close to the predictions
in Refs. [5,33]. It is worth noting that the generalization of [2]
converges to predictions for p = 1 and p = 1 from [5,33].
p = 1 corresponds to the lower limit of integrability for the
energy spectrum. Such spectra would have a much more
even distribution of energy than the classical 5/3. The largest
discrepancy between the two theories occurs for p = 1.775.
This value could be thought of as the point where the absence
of sweeping is the most harmful to KS, however, as noted
before KS departs the most significantly from [5,33] earlier at
p = 5/3 where it gets closer to the generalisation of [2].

It is reasonable to believe that, approaching the two limiting
cases p = 1 and p = 3, the lack of sweeping of the small
eddies becomes less relevant, for two opposite reasons.

As p gets closer to 1, the energy spectrum becomes flatter,
the characteristic velocity is more or less the same over the
range of scales modeled by KS so that a sweeping of small
eddies by large eddies loses its relevance as indicated by the
convergence of both theories to the same prediction c = 0.5.
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FIG. 7. (Color online) Effect of the unsteadiness parameter on the
normalized diffusivity with respect to Richardson’s law as a function
of the two-particle separations, p = 5/3 and kN/k1 = 104 (cases F,
G, H, I, and J in Table I).

Similarly for p → 3 both theories converge to c = 1. In this
case the energy spectrum tends to a very sharp distribution
on the large scales. The particle advection is completely
dominated by the large scales in the flow. The contribution
of the small eddies where KS struggles with Richardson’s
locality assumption becomes less important. Therefore the
accurate modeling of their sweeping by large scales is not
so important anymore. This is supported by our observation
that KS follows remarkably Richardson’s locality assumption
at large scales.

Overall KS seems more consistent with the generalization
in Refs. [5,33] of Richardson’s hypothesis to p �= 5/3 than
expected from a generalization of the Ref. [2] approach.

V. EFFECT OF VARYING THE UNSTEADINESS
PARAMETER ON THE VALIDITY OF

RICHARDSON REGIME

It is worth remembering that sweeping mechanisms have
been proposed for KS; the most popular is the term ωn defined
in Eq. (14). In all the cases we studied before, the unsteadiness

parameter λ was fixed to 0 as there is no conclusive result from
previous researches showing it has any significative effect in
three-dimensional KS.

In order to show if this parameter has an effect on KS
prediction of Richardson law, we repeat our results for p = 5/3
for 0 � λ < 1. Figure 7 shows the results for kN/k1 = 104

corresponding to cases F, G, H, I, and J in Table I. From that
figure it can be noticed that λ has no effect on the prediction of
the diffusivity scaling. We repeated the results for kN/k1 = 106

(not shown here) and did not find any effect of λ either.

VI. CONCLUSION

Questions were raised about the applicability of the kine-
matic simulation approach to the separation of pairs in real
turbulent flows, in particular, because of their inability to model
accurately the sweeping of small eddies by large eddies.

We can conclude from our study that KS is consistent with
Richardson’s prediction for turbulence with inertial ranges up
to kN/k1 < 104. That may be enough for practical applications
of KS as a subgrid, for instance. This would already correspond
to very high actual engineering Reynolds numbers.

The problem remains: KS prediction departs from the
Ref. [33] prediction at small scales for large inertial ranges.
However, our results are still close to the theoretical prediction
and it would be fairer to conclude that the KS prediction is
not as good at small separation than at large separation. It is
perhaps premature to discard the KS prediction altogether for
larger inertial range as there are no experimental results on
such large ranges we can rely on for comparison.

Furthermore, if we accept the sweeping problem as it is used
in [2] we can conclude that it does not seem to have much effect
at larger scales where KS follows remarkably Richardson’s
theory as extended to spectral power laws 1.15 � p � 1.96
(Refs. [5,33] prediction) and limited effects at small scales for
1 < p < 1.6 and 1.7 < p < 2.
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[33] P. Morel and M. Larchevêque, J. Atm. Sc. 31, 2189 (1974).
[34] J. C. H. Fung, J. Geophys. Res. 103, 27905 (1998).

056317-10

http://dx.doi.org/10.1017/S0022112003007584
http://dx.doi.org/10.1017/S0022112003007596
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102224
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102224
http://dx.doi.org/10.1016/S0065-2687(08)60105-3
http://dx.doi.org/10.1002/qj.49711046620
http://dx.doi.org/10.1063/1.864956
http://dx.doi.org/10.1063/1.864956
http://dx.doi.org/10.1063/1.865784
http://dx.doi.org/10.1063/1.1692799
http://dx.doi.org/10.1017/S0022112092001423
http://dx.doi.org/10.1103/PhysRevE.74.046302
http://dx.doi.org/10.1103/PhysRevE.74.046302
http://dx.doi.org/10.1103/PhysRevE.71.015301
http://dx.doi.org/10.1103/PhysRevE.71.015301
http://dx.doi.org/10.1103/PhysRevE.74.036309
http://dx.doi.org/10.1103/PhysRevE.74.036309
http://dx.doi.org/10.1175/1520-0469(1974)031<2189:RDOCBI>2.0.CO;2
http://dx.doi.org/10.1029/98JC02822

