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Lagrangian velocity autocorrelations in statistically steady rotating turbulence
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Lagrangian statistics of passive tracers in rotating turbulence is investigated by particle tracking velocimetry.
A confined and steadily forced turbulent flow is subjected to five different rotation rates. The PDFs of the velocity
components clearly reveal the anisotropy induced by background rotation. Although the statistical properties
of the horizontal turbulent flow field are approximately isotropic, in agreement with previously reported results
by van Bokhoven and coworkers [Phys. Fluids 21, 096601 (2009)], the velocity component parallel to the
(vertical) rotation axis gets strongly reduced (compared to the horizontal ones) while the rotation is increased.
The auto-correlation coefficients of all three components are progressively enhanced for increasing rotation rates,
although the vertical one shows a tendency to decrease for slow rotation rates. The decorrelation is approximately
exponential. Lagrangian data compare favorably with previously reported Eulerian data for horizontal velocity
components but show a different behavior for the vertical velocity components at higher rotation rates.
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I. INTRODUCTION

The influence of the rotation of the Earth on oceanic
and atmospheric currents, as well as the effects of a rapid
rotation on the flow inside industrial machineries like mixers,
turbines, and compressors, are only the most typical examples
of fluid flows affected by rotation. Despite the fact that
the Coriolis acceleration term appears in the Navier-Stokes
equations with a straightforward transformation of coordinates
from the inertial system to the rotating noninertial one, the
physical mechanisms of the Coriolis acceleration are subtle
and not yet fully understood. Several fluid flows affected
by rotation have been studied by means of direct numerical
simulations (DNS) and analytical models. For example, DNS
studies addressing the role of rotation on velocity correlations
and mixing [1,2], the role of vertical confinement [3], energy
spectra in (decaying) rotating turbulence [4–7], and scaling
laws in rotating turbulence [8] have been reported. Several
experimental studies of rotating turbulence have been carried
out [9–19]. However, quantitative experimental data are rather
scarce and purely of Eulerian nature [18,19].

The present work addresses experimentally the topic,
focusing on a class of fluid flows of utmost importance:
confined and continuously forced rotating turbulence. In recent
experimental investigations on (decaying) rotating turbulence
quantitative information is extracted by means of particle
image velocimetry (PIV) [19] and stereo PIV [18]; the
present investigation is based on particle tracking velocimetry
(PTV), acquiring Lagrangian statistics of rotating turbulence
in laboratory settings.

A useful insight into the structure of a turbulent flow field
is represented by the auto-correlations of the velocity field
in the Lagrangian frame. The integral time scales derived
from the Lagrangian velocity correlations give a rough
estimate of the time a fluid particle remains trapped inside
a large-scale eddy, and therefore it might be used as a lower
bound for the typical lifetime of the large eddies. Lagrangian
correlations of velocity have been recognized as the key
ingredient of the process of turbulent diffusion since the work
by Taylor [20,21]. Since then, the Lagrangian viewpoint has

received growing attention; for a recent review, see Ref. [22].
Lagrangian correlations of velocity in nonrotating turbulence
were recently measured with an acoustic technique at very high
Taylor-based Reynolds number (Reλ � 800) and a decay of the
correlation coefficients of single velocity components propor-
tional to e−τ/τ0 was proposed, with τ0 comparable to the energy
injection time scale [23,24]. The same decay has been observed
by Gervais et al. [25], who compared Eulerian and Lagrangian
correlations of velocity in a Reλ � 320 turbulent flow, also
relying on acoustic measurements. Here, some of these issues
are addressed for rotating turbulence as measured by means
of PTV.

II. EXPERIMENTAL SETUP

The experimental setup consists of a fluid container, made
of transparent perspex in order to ensure optical accessibility,
equipped with a turbulence generator, and an optical measure-
ment system. A side view of the setup is shown in Fig. 1,
and a photograph of the setup partially mounted is shown in
Fig. 2. Four digital cameras (Photron Fastcam X-1024 PCI,
three of them partially visible in Fig. 2) acquire images of the
central-bottom region of the flow domain through the top lid.
The fluid is illuminated by means of an LED array composed
of 238 Luxeon K2 LEDs (1.4-kW total dissipation and roughly
150 W of light) mounted on a thick aluminium block provided
with water-cooling channels. The illumination system and its
cooling connections are visible in Fig. 2. These key elements
are mounted on a rotating table, so the flow is measured
in the rotating frame of reference. The inner dimensions of
the container define a flow domain of 500 × 500 × 250 mm3

(length × width × height); note that the free surface deforma-
tion is inhibited by a perfectly sealed top lid. The turbulence
generator is an adaptation of a well-known electromagnetic
forcing system commonly used for shallow-flow experiments
[26–28] and currently operational in our laboratory for both
shallow flow and rotating turbulence experiments [18,29,30].
The tank is filled with a highly concentrated sodium chloride
(NaCl) solution in water, 28.1% brix (corresponding to
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FIG. 1. (Color online) Schematic drawing of a side view of the the
experimental setup. A perspex container sits on top of a rotating table
and is filled with a NaCl solution. An array of permanent magnets is
placed below the container, and two linear electrodes are immersed in
the fluid. An aluminium frame holds four digital cameras in a stable
position (three of them are visible in the drawing), and their common
field of view is sketched. A powerful LED array, on the left of the
container, provides the necessary illumination.

25 g NaCl in 100 g of water). The fluid density ρf is
1.19 g/cm3 and the kinematic viscosity ν is 1.319 mm2/s. Two
titanium elongated electrodes are placed near the bottom at
opposite sidewalls of the container. A remote-controlled power
supply (KEPCO BOP 50 8P) is connected to the electrodes
and provides a stable electric current of 8.39 A. An array of

FIG. 2. (Color online) Picture of the setup partially mounted: the
full magnet array is surrounded by the light source (on the right) and
the cameras (on top). The full array of 7 × 7 large magnets, and the
smaller magnets placed between them, are visible. The position of the
Cartesian reference frame {x,y,z} is indicated by the (red) arrows.

axially magnetized permanent (neodymium) magnets is placed
directly underneath the bulk fluid. Figure 2 reveals the array of
magnets before the fluid container is mounted on the table. The
magnets have a magnetic field strength of approximately 1.4 T
at the center of the magnet surface, and they are arranged
following a chessboard scheme, i.e., alternating north and
south poles for the magnets top faces. The magnets, kept in
position by a polyvinyl chloride (PVC) frame, are fixed on a
10-mm-thick steel plate to increase the density of the magnetic
field lines in the fluid bulk. A range of flow scales is forced
by using two differently sized magnets, viz., (i) elongated bar
magnets, 10 × 10 × 20 mm3 in size, and (ii) flat bar magnets,
40 × 40 × 20 mm3 in size [18]. With such an arrangement, the
largest scales that are forced are comparable with the spacing
between adjacent large magnets, i.e., LF = 70 mm.

The Lagrangian correlations are measured by means of
particle tracking velocimetry, making use of the code de-
veloped at ETH, Zürich [31–35]. Poly methyl methacrylate
(PMMA) particles, with a mean diameter dp = 127 ± 3 μm
and particle density ρp = 1.19 g/cm3, are used as flow tracers.
The concentration of the salt solution is adjusted to match
the PMMA density. The Stokes number (St) for these tracers
expresses the ratio between the particle response time and a
typical time scale of the flow. For the present experiments it can
be estimated as St = τp/τη = O(10−3), where τp = d2

p/(18ν)
is the particle response time (with ρp/ρf = 1) and τη is the
Kolmogorov time scale of the turbulent flow, which values are
given in the following section. The chosen seeding particles
can thus be considered as passive flow tracers both in terms
of buoyancy and inertial effects. An accurate calibration of
the measurement system on a 3D target, followed by the
optimization of the calibration parameters on seeded flow
images, permits retrieval of the 3D positions of the particles
with a maximum error of 9 μm in the horizontal directions
and 18 μm in the vertical one. The data are then processed
in the Lagrangian frame, where the trajectories are filtered to
remove the measurement noise produced by the positioning
inaccuracy: Third-order polynomials are fitted along limited
segments of the trajectories around each particle position (for
details, see Ref. [36]). From the coefficients of the polynomial
in each point, the 3D time-dependent signals of position and
velocity are extracted. With the present setup, up to 2500
particles per time step have been tracked on average in a
volume with size 100 × 100 × 100 mm3, thus roughly 1.5LF

along each coordinate direction.
A detailed description of the experimental setup and the data

processing routines, together with an in-depth characterization
of the flow, can be found in Ref. [37].

III. CHARACTERIZATION OF THE FLOW

The flow is subjected to different background rotation
rates � ∈ {0; 0.2; 0.5; 1.0; 2.0; 5.0} rad/s around the vertical
z axis. The measurements are performed when the turbulence
is statistically steady (measured by the kinetic energy of the
flow). The mean kinetic energy of the turbulent flow is then
constant in time and decays in space along the upward vertical
direction. The flow is fully turbulent in the bottom region of the
container where the measurement domain is situated. Eulerian
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TABLE I. Root-mean-square (rms) values of the components of
velocity; ratio of horizontal and vertical rms values ξ ≡ 0.5(ux,rms +
uy,rms)/uz,rms; Rossby number Ro ≡ urms/(2�LF ); Ekman number
Ek ≡ ν/(�L2

z), with Lz = 250 mm the vertical size of the flow
domain; and thickness of the Ekman boundary layer δEk ≡ √

ν/�,
for each experiment.

� (rad/s) 0 0.2 0.5 1.0 2.0 5.0

Root mean square x 9.6 9.4 9.8 12.0 17.0 14.4
〈u2

i 〉1/2, with i = y 9.6 9.1 9.8 12.1 17.5 12.2
(mm/s) z 8.3 7.7 7.8 6.6 7.3 2.2

ξ (−) 0.86 0.83 0.80 0.55 0.42 0.17
Ro(−) ∞ 0.47 0.20 0.13 0.09 0.02
Ek × 105(−) ∞ 10 4 2 1 0.4
δEk(mm) ∞ 2.5 1.6 1.1 0.8 0.5

characterization of the (rotating) turbulent flow with stereo
PIV measurements has been reported elsewhere [18].

The values of important flow quantities in the measurement
domain are reported in Table I: the root-mean-square (rms)
of each velocity component ui,rms ≡ 〈u2

i 〉1/2 and the ratio of
horizontal and vertical values ξ ≡ 0.5(ux,rms + uy,rms)/uz,rms,
the Rossby number Ro ≡ urms/(2�LF ), the Ekman number
Ek ≡ ν/(�L2

z), and the thickness of the Ekman boundary
layer δEk ≡ √

ν/�. It is noteworthy to emphasize the higher
value of the rms of the velocity components for � =
2.0 rad/s: this anomalous behavior may be connected with
instabilities of large-scale anticyclonic vortical structures (see,
e.g., Refs. [38,39]) at this rotation rate, to be expected for
Rossby close to the critical value 0.1 (Ro � 0.2 in similar
experiments by Hopfinger et al. [10]). Such instabilities are
under further investigation. Furthermore, the strong suppres-
sion of vertical velocity at the maximum rotation rate � =
5.0 rad/s represents a classical signature of fast rotation, i.e.,
the two-dimensionalization of the flow field. The transition
to 2D, in a first approximation, can be quantified in terms
of the ratio ξ . Despite the anomaly observed for � =
2.0 rad/s, the ratio ξ is monotonically decreasing with increas-
ing rotation rate �, indicating that the two-dimensionalization
process proceeds despite the probable occurence of anticy-
clonic instabilities. The Ekman number varies from 10−4

to 4 × 10−6, and the Ekman viscous boundary layer has
negligible thickness. For the Kolmogorov length and time
scales we found the typical values 0.6 mm � η � 0.8 mm and
0.25 s � τη � 0.55 s, respectively. The Taylor-scale Reynolds
number is in the range 70 � Reλ � 110 for all rotation rates,
except for � = 2.0 rad/s, for which a larger value is found.

In order to investigate the horizontal homogeneity of the
forced flow field in case of no rotation, and to quantify the
vertical inhomogeneity, profiles of the rms of the velocity
magnitude are plotted in the three directions and shown in
Fig. 3. The flow appears to be homogeneous to a good
approximation in the horizontal directions. On the vertical
profile, the corresponding values obtained via stereo PIV
measurements (van Bokhoven et al. [18]) on three horizontal
planes are also reported for comparison. Circles represent
the values obtained from experiments with a lower forcing
intensity (4.00 A in place of 8.39 A used for PTV experiments);
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FIG. 3. Profiles of the rms velocity magnitude urms ≡ 〈u2〉1/2

averaged over planes perpendicular to the coordinate direction under
consideration, for the nonrotating experiment. The large symbols on
the z profile indicate the corresponding values as measured with
stereo PIV during previous experimental campaigns (circles: 4.00 A;
triangles: 8.00-A forcing current).

triangles come from experiment with almost the same forcing
settings (8.00 A), and a very good agreement is observed
for these runs between PTV and stereo PIV measurements.
Such agreement is also supported by an almost perfect match
between Eulerian horizontal longitudinal integral length scales
from stereo PIV and PTV measurements for the range of
rotation rates considered [37], which are shown in Fig. 4.
Rotation induces a significant increase of the horizontal length
scales up to 1 rad/s and a decrease for faster rotations, in
excellent agreement with the stereo PIV measurements. The
data by van Bokhoven et al. [18] also show that the flow
is approximately isotropic at midheight in the measurement
domain, an important result which can be and is used in the
analysis of the present data.

FIG. 4. Eulerian longitudinal integral length scales LE
ii in

the horizontal directions against the rotation rate � for the
midheight horizontal slice, z ∈ [40; 60] mm (open symbols). The
corresponding horizontal length scales measured by means of
stereo PIV at z = 50 mm are also indicated on the plot (solid
symbols).
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IV. RESULTS

We present and discuss here the PDFs of velocity and the
Lagrangian autocorrelations of velocity as obtained from the
described experiment.

A. Probability distribution functions of velocity

We first report on the PDFs of velocity (each one computed
on roughly 4 × 106 data points). The PDFs are shown
in Fig. 5 in linear-logarithmic scale for all experiments
together. Using the assumptions of horizontal homogeneity
and isotropy, the PDFs of the x and y component are averaged
together and shown in the top panel of the figure; in the
bottom panel, the PDF of the z component is reported. The
background rotation is seen to induce only a slight anisotropy
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FIG. 5. PDFs of the velocity components for all experiments,
in linear-logarithmic scale. (Top panel) Average of the PDFs of
the two horizontal components. (Bottom panel) PDF of the vertical
component. The two plots share the same legend.
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FIG. 6. Lagrangian autocorrelation coefficients of velocity for all
rotating experiments, with time normalized with the Kolmogorov
time scale τη. (Top panel) Average of the correlation coefficients of
the horizontal components ux and uy . (Bottom panel) Correlation
coefficient of the vertical component uz. Only one symbol every 10
data points is plotted for readability.

of the horizontal components of velocity (the PDFs for � =
2.0 rad/s clearly reflect a larger urms). The most important
effect of rotation is seen on the vertical velocity component, for
which the standard deviation of the PDF gets strongly damped
for � = 5.0 rad/s. The distributions for � ∈ {0; 1.0; 5.0} rad/s
are in good quantitative agreement with the ones published by
van Bokhoven et al. [18] (see Figs. 8 and 14 therein). The PDFs
have in both cases almost Gaussian shapes (minor skewness,
except for � = 2.0 rad/s) and the kurtosis is only slightly
larger than the Gaussian value. We found 3.0 � 〈u4

i 〉/〈u2
i 〉2 �

4.0, except for the vertical velocity component at � =
5.0 rad/s which shows a substantially larger value for the
kurtosis. Once more, the latter describes the well-known effect
of rotation, which suppresses the fluid motion in the direction
of the rotation axis, hence inducing a strong 2D character of
the flow field.

B. Lagrangian velocity autocorrelations

The autocorrelation coefficients RL
ui(τ ) for each velocity

component ui(t) (with i ∈ 1,2,3 denoting the x, y, and z

component, respectively), which are functions of the time
separation τ , are obtained by averaging over a sufficient
number of trajectories and normalizing with the variance of
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the single component, i.e.:

RL
ui(τ ) ≡ 〈ui(t)ui(t + τ )〉〈

u2
i (t)

〉 . (1)

It is also useful to define the three associated integral time
scales:

T L
ui ≡

∫ ∞

0
RL

ui(τ )dτ. (2)

For strongly anisotropic turbulence, as the one influenced by
fast background rotation, the individual scales in directions
parallel and perpendicular to the rotation axis may differ
substantially. Their comparison permits quantification of the
anisotropy of the large-scale flow.

The Lagrangian autocorrelation coefficients of velocity for
all experiments are shown in Fig. 6 with time τ normalized with
the Kolmogorov time τη. The top panel shows the average of
the correlation coefficients of the two horizontal components
of velocity; the bottom one shows the correlation coefficient
of the vertical velocity component. For times separations τ

longer than 10τη, some of the correlations show a nonperfect
statistical convergence, which is due to the limited recording
time available with the present camera system (equipped with
onboard RAM memory). Despite this, the correlations describe
clearly a monotonic influence of rotation: The coefficients gets
progressively higher for increasing �, both for the horizontal
components and for the vertical one. Additionally, a stronger
Lagrangian autocorrelation is found for the vertical velocity
component (relative to those of the horizontal components)
than previously reported for the Eulerian temporal velocity
correlations [18]. The linear-logarithmic plots reveal that
the decorrelation is roughly exponential, at least until the
coefficients drop under 0.4, in good agreement with the
relevant literature (see, e.g., Refs. [23–25]). The exponential
decay of the velocity autocorrelation plays an essential role
in some dispersion models, strongly characterizing them [40].
Following Ref. [23], we fit the function e−τ/τ0 over all curves,
limited to the time interval over which each curve shows a
convincing exponential decay. The Lagrangian integral time
scales T L

ui are then estimated as the constant τ0 retrieved
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FIG. 7. Horizontal and vertical Lagrangian integral time scales
against the rotation rate �. The values are estimated as the constant
τ0 of the exponential fit e−τ/τ0 performed over the correlation curves
shown in Fig. 6, for the time interval over which each curve shows
a convincing exponential decay. The two horizontal time scales are
averaged together and compared with the vertical time scale.

from each fit. In order to facilitate the comparison between
horizontal and vertical time scales, we average together the
two horizontal scales, in view of the symmetry of our flow
around the x and y axis (horizontal isotropy). The results
are plotted against the rotation rate and compared with the
vertical time scale in Fig. 7. Despite the limited accuracy
of the estimated Lagrangian integral time scales, the trends
summarized in Fig. 7 reflect the results shown in Fig. 6 and
allow an easier quantification of the process. The horizontal
scale progressively increases with increasing rotation rate (and
are of similar size as the earlier reported Eulerian integral
time scales [18]). The vertical one, on the contrary, shows
a tendency to decrease slightly for � up to 1.0 rad/s, and
increases only for higher rotation rates.

V. CONCLUSIONS

We set up an experiment to investigate the statistical proper-
ties of a continuously forced statistically steady turbulent flow
subjected to different background rotation rates. The flow was
first characterized in terms of the velocity rms, Rossby and
Ekman numbers. The profiles in the three coordinate directions
were inspected, revealing the horizontal homogeneity of the
flow and describing the vertical decay of energy due to the
increasing distance from the forcing system. The data obtained
with a different measurement system in similar experiments
(with access to the full range of vertical velocity fluctuations
in a horizontal plane) [18] confirm the same vertical decay of
energy and reveal that the flow is isotropic at midheight in the
measurement domain. The good agreement between the two
data sets was also shown in terms of the Eulerian horizontal
integral length scales, which are seen to increase substantially
for mild background rotation rates and to decrease slightly for
higher rotation rates. The influence on the PDFs of the velocity
components is shown, revealing the two-dimensionalization
process induced by rotation. We then used the PTV data
to explore the autocorrelations of the velocity components
in the Lagrangian frame in order to quantify the memory
of the velocity of fluid parcels along their trajectories.
All autocorrelation coefficients are progressively enhanced
for increasing rotation rates, although the vertical one first
decreases slightly for slow rotation rates. The decorrelation
process is found to be approximately exponential. Comparison
of the Lagrangian data with the Eulerian measurements from
similar rotating turbulence experiments [18] suggests that
fluid parcels, being restricted to coherent flow structures, have
limited access to vertical velocity variations when the rotation
rate is increased. Eulerian measurements would overestimate
the sampling over vertical velocity fluctuations. This is
particularly shown by the enhanced memory in the Lagrangian
vertical velocity autocorrelation compared to its Eulerian
counterpart.
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