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Self-propulsion of a planar electric or magnetic microbot immersed in a polar viscous fluid

B. U. Felderhof*

Institut für Theoretische Physik A, RWTH Aachen University, Templergraben 55, D-52056 Aachen, Germany
(Received 17 February 2011; published 16 May 2011)

A planar sheet immersed in an electrically polar liquid like water can propel itself by means of a plane
wave charge density propagating in the sheet. The corresponding running electric wave polarizes the fluid and
causes an electrical torque density to act on the fluid. The sheet is convected by the fluid motion resulting from
the conversion of rotational particle motion, generated by the torque density, into translational fluid motion by
the mechanism of friction and spin diffusion. Similarly, a planar sheet immersed in a magnetic ferrofluid can
propel itself by means of a plane wave current density in the sheet and the torque density acting on the fluid
corresponding to the running wave magnetic field and magnetization. The effect is studied on the basis of the
micropolar fluid equations of motion and Maxwell’s equations of electrostatics or magnetostatics, respectively.
An analytic expression is derived for the velocity of the sheet by perturbation theory to second order in powers
of the amplitude of the driving charge or current density. Under the assumption that the equilibrium magnetic
equation of state may be used in linearized form and that higher harmonics than the first may be neglected, a set
of self-consistent integral equations is derived which can be solved numerically by iteration. In typical situations
the second-order perturbation theory turns out to be quite accurate.
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I. INTRODUCTION

It is known that a ferrofluid can be pumped by the
application of a running magnetic wave [1,2]. Similarly, a
neutral electrically polar liquid such as water can be pumped
by the application of a running electric wave, or even by a
rotating electric field if advantage is taken of spatial asymmetry
[3]. Earlier work on pumping in electrohydrodynamics or
magnetohydrodynamics involved fluids with free ions or
electrons [4].

Previously we have studied ferrohydrodynamic pumping
of a ferrofluid through a planar duct by means of a running
magnetic wave [5]. The theory of electrohydrodynamic pump-
ing of a polar liquid by means of a running electric wave is
quite analogous [5]. The possibility of pumping implies that
self-propulsion of a rigid body by means of a running electric
or magnetic wave, generated by a plane wave charge or current
density on its surface, should also be feasible. In the following
we study the phenomenon for the simple geometry of a planar
sheet immersed in infinite fluid.

In practice, it is not necessary to consider an infinite sheet
in order to achieve propulsion. An electrical circuit located on
a finite-sized body, generating a running electric or magnetic
wave in the surrounding fluid, will be sufficient to make the
body move. The plane wave character of the excitation may
be achieved by geometric arrangement of conductors, as in the
case of magnetic wave pumping [1,2].

For definiteness we discuss only the magnetic case in
detail. The problem is nonlinear, since the magnetic torque
density acting on the fluid is bilinear in magnetic field and
magnetization, and moreover the flow velocity of the fluid
and the rotational velocity of suspended magnetic particles
couple convectively to the magnetization in the magnetic
relaxation equation. On a slow time scale the inertial terms
in the equations of motion for flow velocity and particle
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rotational velocity may be neglected. In analogy to the theory
of ferrohydrodynamic pumping [5] we calculate the propulsion
velocity of the sheet first in perturbation theory to second order
in powers of the amplitude of the exciting current density.

The perturbation calculation has the advantage of simplic-
ity. It leads to an explicit expression for the propulsion velocity
and hence allows insight into its dependence on the system
parameters. Moreover, one obtains a picture of the flow and
the magnetic field and magnetization.

With the additional assumptions that the equilibrium mag-
netic equation of state may be used in linearized form and
that harmonics higher than the first may be neglected, a more
complete solution may be obtained. With these assumptions
the coupled differential equations for flow velocity and particle
rotational velocity can be integrated. This leads to a self-
consistent set of integral equations which may be solved by
iteration, with the perturbation solution as a starting point. We
call the solution thus obtained the primary solution. In both
the magnetic and the electric case the primary solution hardly
differs numerically from the perturbation solution for typical
situations under consideration.

II. EQUATIONS OF MOTION

We consider a planar sheet immersed in an incompressible
polar viscous fluid with shear viscosity η. We use Cartesian
coordinates such that the sheet is located at x = 0. The fluid can
be either electrically or magnetically polar. For definiteness we
use language appropriate to a magnetic ferrofluid. With minor
changes the same equations apply in the electrical case.

Due to incompressibility of the fluid the divergence of the
flow velocity v(r,t) vanishes, ∇ · v = 0. The flow velocity
satisfies the momentum balance equation

ρ
dv

dt
= ∇ · (σ hyd + σm), (2.1)

where d/dt = ∂/∂t + v · ∇ is the substantial derivative, σ hyd

is the hydrodynamic stress tensor, and σm is the Maxwell

056315-11539-3755/2011/83(5)/056315(7) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.056315


B. U. FELDERHOF PHYSICAL REVIEW E 83, 056315 (2011)

stress tensor. The hydrodynamic stress tensor has Cartesian
components [6,7]

σhyd,αβ = −pδαβ + η(∂αvβ + ∂βvα)

+ ζ εαβγ (∇ × v − 2ωp)γ , (2.2)

where p is the pressure, η is the shear viscosity, ζ is the
vortex viscosity [8], and ωp is the rate of rotation of suspended
particles. In SI units the Maxwell stress tensor has the form [8]

σm = B H − μ0

2
H 21, (2.3)

where B(r,t) is the magnetic induction, H(r,t) is the magnetic
field, μ0 is the magnetic permeability of vacuum, H 2 = H ·
H , and 1 is the unit tensor. The fields are related by

B = μ0(H + M), (2.4)

where M(r,t) is the magnetization. The fields satisfy
Maxwell’s equations of magnetostatics

∇ · B = 0, ∇ × H = j , (2.5)

where j (r,t) is the electrical current density located in the
planar sheet. The latter acts as a source of the fields, and is
assumed to be known. The current density is taken to be given
by

j (r,t) = K(z,t)δ(x)ey (2.6)

in the rest frame of the sheet, where K(z,t) has the plane wave
form

K(z,t) = K0 cos(kz − ωt), (2.7)

with amplitude K0, positive wave number k, and positive
frequency ω.

The relaxation of magnetization is assumed to be governed
by the constitutive equation [8]

∂ M
∂t

+ v · ∇M − ωp × M = −γ [M − Meq(H)], (2.8)

where Meq(H) is given by the equilibrium equation of state,
and the relaxation rate γ is the inverse of the relaxation time
τ . The rotation rate ωp is related to the spin S per unit mass
by S = Iωp, where I is an average moment of inertia per unit
mass. The equation of motion for the spin per unit mass is
taken as

ρ
dS
dt

= 2ζ (∇ × v − 2ωp) + μ0 M × H + η′∇2ωp, (2.9)

where η′ is the spin viscosity [8]. The first term on the right
is the hydrodynamic torque density, and the second term is
the magnetic torque density. In the situations considered in the
following, ∇ · ωp = 0 due to spatial symmetry, so that there
is no need to introduce a bulk spin viscosity [9].

We neglect the inertial term on the left-hand side in
Eqs. (2.2) and (2.9). Then Eq. (2.9) reduces to

2ζ (∇ × v − 2ωp) = −μ0 M × H − η′∇2ωp. (2.10)

Substituting this into Eq. (2.2) we find from Eq. (2.1)

η∇2v − ∇p + ∇ · σ S
m + 1

2
η′∇ × ∇2ωp = 0, (2.11)

where σ S
m is the symmetric part of the Maxwell stress tensor,

σ S
m = 1

2
(B H + H B) − μ0

2
H 21. (2.12)

Using Maxwell’s equations of magnetostatics one may express
the divergence of this tensor as [10]

F = ∇ · σ S
m = μ0 M · (∇H) + μ0

2
∇ × (M × H). (2.13)

The first term on the right is the Kelvin force density.
The second term may be expressed as the divergence of
an antisymmetric tensor. For our purposes the alternative
expression [11]

F = μ0

2
∇(M · H) − μ0

2
H × (∇ × M) − 1

2
B(∇ · M)

(2.14)

is also useful.
The reduced equations of motion (2.10) and (2.11) must be

supplemented with boundary conditions for v and ωp at the
plane x = 0. We assume that v satisfies the no-slip condition
v|x=±b = 0 and that ωp satisfies the mixed boundary condition

∓λs

∂ωp

∂x

∣∣∣∣
x=±0

+ ωp|x=±0 = 0, (2.15)

with slip length λs . The field H is assumed to vanish for
x → ±∞. Together with Maxwell’s equations of magneto-
statics (2.5) and the magnetization relaxation equation (2.8)
the equations constitute a nonlinear set. We first solve the
equations by formal perturbation expansion in powers of the
amplitude K0 of the exciting current density, putting

H = H1 + H3 + · · · , M = M1 + M3 + · · · ,

v = v2 + v4 + · · · , p = p0 + p2 + p4 + · · · ,

ωp = ωp2 + ωp4 + · · · , (2.16)

where p0 is the static equilibrium pressure and the subscripts
denote the power of K0. We perform the calculation to second
order in K0. In a later section we present a calculation valid to
all orders.

III. FIRST-ORDER FIELDS AND SECOND-ORDER
FLOW AND DISSIPATION

As a first step in the perturbation calculation we must
calculate the first-order fields H1 and M1 in the absence of
flow and particle rotation. To first order in the current amplitude
K0 we need to deal only with the set of Eqs. (2.4)–(2.7) and
the linearized version of Eq. (2.8). It is clear by symmetry
that the components H1y and M1y vanish and that the x and
z components of the fields depend on z and t in plane wave
fashion. It is convenient to decompose as

H1α(x,z,t) = H1αc(x) cos(kz − ωt) + H1αs(x) sin(kz − ωt),

M1α(x,z,t) = M1αc(x) cos(kz − ωt) + M1αs(x) sin(kz − ωt),

(3.1)
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and to use complex notation. Then with linear susceptibility
χ = χ ′ + iχ ′′ the field and magnetization components are
related by

M1c = χ ′ H1c + χ ′′ H1s , M1s = χ ′ H1s − χ ′′ H1c. (3.2)

In the present case we find from Eq. (2.8)

χ ′ = χ0
γ 2

ω2 + γ 2
, χ ′′ = χ0

ωγ

ω2 + γ 2
, (3.3)

where χ0 is the zero field susceptibility, also called the initial
susceptibility. The magnetic field is irrotational and may be
derived from a potential φ1 as H1 = −∇φ1. The potential
satisfies Laplace’s equation ∇2φ1 = 0 in the fluid. In complex
notation we write K(z,t) = K0Re exp(ikz − iωt). We can
then put φ1(x,z,t) = Ref (x) exp(ikz − iωt) and find from the
continuity of Bx and from the jump condition for Hz at the sheet

f (x) = ± 1

2k
K0e

−k|x|, for x ≷ 0. (3.4)

Hence the first-order magnetic field components are given by

H1xc(x) = 0, H1xs(x) = 1
2K0e

∓k|x|,
(3.5)

H1zc(x) = ∓ 1
2K0e

−k|x|, H1zs(x) = 0, for x ≷ 0.

From Eq. (3.2) we find for the components of the first-order
magnetization:

M1xc(x) = 1
2χ ′′K0e

−k|x|, M1xs(x) = 1
2χ ′K0e

−k|x|,

M1zc(x) = ∓ 1
2χ ′K0e

−k|x|, M1zs(x) = ± 1
2χ ′′K0e

−k|x|,
for x ≷ 0. (3.6)

This yields for the second-order magnetic torque density

N2 = μ0 M1 × H1 = (0,N2y,0), (3.7)

with

N2y = ±Ce−2k|x|, C = 1
4μ0χ

′′K2
0 , for x ≷ 0. (3.8)

The torque density is independent of time. The magnetic force
density can be expressed as the gradient of a pressure. The y

component of Eq. (2.10) and the z component of Eq. (2.11)
yield the pair of equations

η′ d
2ωp2y

dx2
− 2ζ

(
dv2z

dx
+ 2ωp2y

)
= ∓Ce−2k|x|,

(3.9)

for x ≷ 0, η
d2v2z

dx2
+ 1

2
η′ d

3ωp2y

dx3
= 0.

Note that in the second equation the Maxwell stress tensor
does not contribute. The first term in Eq. (2.14) is balanced
by the pressure gradient, and the second and third terms
vanish because ∇ × M1 = 0 and ∇ · M1 = 0. The transverse
component v2x of the flow field vanishes. The transverse
component of the force density is balanced by a transverse
pressure gradient.

The Eqs. (3.9) have the solution

v2z(x) = U2 + η′κW

2η
e−κ|x| + η′kC

ηξ
e−2k|x|,

(3.10)

ωp2y(x) = ±We−κ|x| ± C

ξ
e−2k|x|, for x ≷ 0,

z

y

x

c
U

FIG. 1. Sketch of a planar sheet moving in the −z direction due to
a plane wave current density, polarized in the y direction, and running
in the z direction with phase velocity c = ω/k. The torque density in
the ferrofluid, which generates the motion, is in the y direction.

where

κ =
√

4ηζ

η′(η + ζ )
, ξ = 4ζ

(
1 − 4k2

κ2

)
. (3.11)

The coefficients U and W can be determined from the
boundary conditions. From the no-slip condition for v and
from Eq. (2.14) for ωp one finds

U2 = C

2(η + ζ )(2k + κ)(1 + κλs)
,

(3.12)

W = Cκ2(1 + 2kλs)

4ζ (4k2 − κ2)(1 + κλs)
.

The flow velocity v2z(x) is even in x and the particle rotational
velocity ωp2y(x) is odd in x. At large distance |x| the flow
velocity tends to U2. This implies that in the laboratory frame
the sheet moves in the −z direction with velocity U = −U2ez.
In Fig. 1 we show a sketch of the geometry.

To second order in K0 the dissipation in the system is purely
magnetic. From the linear relaxation equation

∂ M1

∂t
= −γ (M1 − χ0 H1), (3.13)

one derives

∂

∂t

(
μ0

2χ0
M2

1

)
= μ0 H1 · ∂ M1

∂t
− μ0γ

χ0
(M1 − χ0 H1)2.

(3.14)

The left-hand side is the rate of change of the second-
order magnetization energy density, the first term on the
right represents the work done by the magnetic field as
the magnetization varies, and the second term on the right
represents the local rate of dissipation:

�m2 = μ0γ

χ0
(M1 − χ0 H1)2. (3.15)

This is the heat produced locally by the relaxation process [6].
Substituting from Eqs. (3.1) and (3.2) we find

�m2 = μ0

4
ωχ ′′K2

0 e−2k|x|, (3.16)
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independent of z and t . Integrating over the transverse
coordinate we obtain

P2 =
∫ ∞

−∞
�m2 dx = μ0

4k
ωχ ′′K2

0 . (3.17)

This has the dimension power per unit area. The efficiency

E = ηω
U2

P2
= η

2(η + ζ )

k

2k + κ

1

1 + κλs

(3.18)

is dimensionless and independent of frequency. The efficiency
is of order unity provided k is of order κ or larger.

IV. PRIMARY SOLUTION

In the following we assume that the equilibrium equation
of state appearing in the relaxation equation (2.8) can be
approximated by the linear relation

Meq(H) = χ0 H . (4.1)

The approximation is accurate provided the magnetization is
small relative to the saturation magnetization. It is then clear
that the solution of Eqs. (2.5), (2.8), (2.10), and (2.11) can be
expressed as a sum of harmonics in the phase kz − ωt . The
same would be true if, for example, the Langevin equation of
state were used, but we shall use Eq. (4.1) for simplicity. The
primary solution of the problem is defined as the one obtained
by truncation at first harmonics for field and magnetization and
at zeroth harmonics for translational and rotational velocity.
To second order in K0 the primary solution reduces to the
expressions found in the preceding section. In principle one
can improve the solution by including higher harmonics up to
a chosen order.

In the primary solution the flow field v = [0,0,vz(x)]
and the particle rotational velocity ωp = [0,ωpy(x),0] depend
only on the transverse coordinate x and are independent of
time. In the present geometry the coupled partial differential
equations (2.10) and (2.11) for flow velocity v and particle
rotational velocity ωp reduce to ordinary differential equations
which can be integrated. The integration of the equations leads
to integral equations which relate the velocity components
vz(x) and ωpy(x) to field and magnetization in self-consistent
manner.

As in Eq. (3.1) it is convenient to decompose the x and z

components of field and magnetization as

Hα(x,z,t) = Hαc(x) cos(kz − ωt) + Hαs(x) sin(kz − ωt),

Mα(x,z,t) = Mαc(x) cos(kz − ωt) + Mαs(x) sin(kz − ωt).

(4.2)

By symmetry the components Hy and My vanish. Substi-
tuting the above expressions into the magnetic relaxation
equation (2.8) with the approximation (4.1) and putting v =
(0,0,vz) and ωp = (0,ωpy,0), we find the relations

(ω − kvz)Mxc − ωpyMzs = −γ (Mxs − χ0Hxs),

−(ω − kvz)Mxs − ωpyMzc = −γ (Mxc − χ0Hxc),
(4.3)

(ω − kvz)Mzc + ωpyMxs = −γ (Mzs − χ0Hzs),

−(ω − kvz)Mzs + ωpyMxc = −γ (Mzc − χ0Hzc).

We can write the relation between magnetization and field
resulting from the solution of these equations in a form
analogous to Eq. (3.2)

Mc = χ ′
f Hc + χ ′′

f H s , Ms = χ ′
f H s − χ ′′

f Hc, (4.4)

with χ ′
f the real part and χ ′′

f the imaginary part of the complex
susceptibility in the presence of flow, χf = χ ′

f + iχ ′′
f ,

χf = iγ χ0
ω − kvz + iγ

(ω − kvz + iγ )2 − ω2
py

, (4.5)

in analogy to Eq. (3.3). The relations (4.4) are nonlinear,
since the velocity components vz and ωpy depend on field
and magnetization.

The magnetic torque density,

N = μ0 M × H = (0,Ny,0), (4.6)

takes the form

Ny = μ0χ
′′
f (HxcHzs − HzcHxs). (4.7)

This is independent of z and t . The y component of Eq. (2.10)
and the z component of Eq. (2.11) yield the pair of equations

η′ d
2ωpy

dx2
− 2ζ

(
dvz

dx
+ 2ωpy

)
= −Ny,

(4.8)

η
d2vz

dx2
+ 1

2
η′ d

3ωpy

dx3
= −Fz,

in analogy to Eq. (3.9). Here Fz is the z component of the
time-averaged magnetic force density

F = μ0

T

∫ T

0
M · ∇H dt + 1

2
∇ × N, (4.9)

where T = 2π/ω. From Eqs. (4.2) and (4.4) we find

Fz = 1

2
μ0kχ ′′

f

(
H 2

xc + H 2
xs + H 2

zc + H 2
zs

) + 1

2

dNy

dx

= μ0kχ ′′
f H 2 + 1

2

dNy

dx
. (4.10)

Here we have used the relations

dHzc

dx
= kHxs,

dHzs

dx
= −kHxc, (4.11)

which follow from ∇ × H = 0. To second order in K0 one has
Fz2 = 0. In a region of uniform susceptibility the two terms in
Eq. (4.10) cancel. The pressure gradient does not contribute in
Eq. (4.8) because the time-averaged pressure does not depend
on z.

Differentiating the first equation (4.8) with respect to x,
and eliminating ωpy one derives the fourth-order differential
equation

d2

dx2

(
d2vz

dx2
− κ2vz

)
= 1

2(η + ζ )

d2

dx2

(
dNy

dx
− 2Fz

)
+ κ2

η
Fz.

(4.12)

By symmetry the velocity component vz(x) is even in x, and
the rotational velocity component ωpy(x) is odd in x. For
simplicity we therefore consider in the following only the
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region x > 0. The solution of Eq. (4.12) which vanishes at
x = 0 and tends to a constant U as x → ∞ is given by

vz(x) = U (1 − e−κx) + V (x) − V (0)e−κx

+ 1

4(η + ζ )

[
e−κx

∫ ∞

0
e−κx ′

W+(x ′) dx ′ − eκx

×
∫ ∞

x

e−κx ′
W+(x ′) dx ′ + e−κx

∫ x

0
eκx ′

W−(x ′) dx ′
]
,

(4.13)

where

V (x) = −1

η

∫ ∞

x

∫ ∞

x ′
Fz(x

′′) dx ′′dx ′, (4.14)

and

W±(x) = Ny(x) ± 2ζ

ηκ
Fz(x). (4.15)

Integrating the second equation in (4.8) twice we find

dωpy

dx
= 2η

η′ [U + V (x) − vz(x)]. (4.16)

Substituting Eq. (4.13) and integrating we obtain for the
particle rotational velocity

ωpy(x) = −2η

η′κ
[U + V (0)]e−κx − 1

2η

∫ ∞

x

Fz(x
′) dx ′

+ η

2η′κ(η + ζ )

[
e−κx

∫ ∞

0
e−κx ′

W+(x ′) dx ′

+ eκx

∫ ∞

x

e−κx ′
W+(x ′) dx ′

+ e−κx

∫ x

0
eκx ′

W−(x ′) dx ′
]
. (4.17)

Hence, we find by use of the boundary condition (2.15) the
relation

U =−V (0) + 1

2(1 + κλs)(η + ζ )

∫ ∞

0
e−κxNy(x) dx. (4.18)

The expression (4.17) may be cast in the alternative forms

ωpy(x) = 1

4ζ
Ny(x) − η + ζ

2ζ

dvz

dx
+ η

2ζ

dV

dx

= −η + ζ

2ζ

dvz

dx
+ μ0k

2ζ

∫ ∞

x

χ ′′
f (x ′)H 2(x ′) dx ′. (4.19)

The magnetic field must be determined from Maxwell’s
equations. From ∇ × H = 0 it follows that the field can be
derived from a potential φ as H = −∇φ. In accordance with
Eq. (4.2) we write

φ(x,z,t) = φc(x) cos(kz − ωt) + φs(x) sin(kz − ωt). (4.20)

From ∇ · B = 0 we find the pair of equations

d2φc

dx2
− k2φc = dMxc

dx
+ kMzs,

(4.21)
d2φs

dx2
− k2φs = dMxs

dx
− kMzc.

The solution of these equations with proper behavior for x →
∞ is

φc(x) = −1

2
ekx

∫ ∞

x

e−kx ′
(M̂xc(x ′) + M̂zs(x

′)) dx ′

+1

2
e−kx

∫ x

0
ekx ′

(M̂xc(x ′) − M̂zs(x
′)) dx ′,

φs(x) = K0

2k
e−kx − 1

2
ekx

∫ ∞

x

e−kx ′
(M̂xs(x

′) − M̂zc(x ′)) dx ′

+1

2
e−kx

∫ x

0
ekx ′

(M̂xs(x
′) + M̂zc(x ′)) dx ′, (4.22)

where

M̂ασ (x) = Mασ (x) − M1ασ (x), α = (x,z), σ = (c,s)

(4.23)

are the contributions to the magnetization of order higher than
first in K0. The magnetic field components are given by

Hxc(x) = −dφc

dx
, Hxs(x) = −dφs

dx
,

(4.24)
Hzc(x) = −kφs(x), Hzs(x) = kφc(x).

The magnetization is found from Eq. (4.4).
The primary solution may be found to any desired numerical

accuracy from the integral form of the equations by iteration,
with use of the lowest order solution found in Sec. III as a
starting point. The translational velocity U may be found from
the flow velocity vz(x) at large x. In numerical examples the
iteration scheme converges rapidly.

V. NUMERICAL RESULTS

In this section we show some numerical results for param-
eter values as in the calculation of Mao and Koser [1]. They
consider K0 = 1000 A/m, ω = π × 105 Hz, k = 100 m−1,

χ0 = 1.7, τ = 10 μs, η = 0.006 kg/m s, ζ = 0.0008 kg/m s,
and η′ = 0, 10−9, 10−8, 10−7, 10−6 kg m/s (the units
of η′ are given incorrectly by Mao and Koser). We put
η′ = 10−8 kg m/s. This is in the range of values found
experimentally by Chaves et al. [12]. Then the length 1/κ

equals 0.19 cm. Like Mao and Koser we put λs = 0. The

0 0.01 0.02 0.03 0.04 0.05
x m

0

0.025

0.05

0.075

0.1
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0.15

N
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N
m
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FIG. 2. Plot of the magnetic torque density Ny(x), given by
Eq. (4.14), in N/m2 as a function of x for parameter values given
in Sec. V.
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FIG. 3. Plot of the magnetic field component Hxs(x) in A/m as a
function of x for parameter values given in Sec. V.

validity of this boundary condition is supported by molecular
dynamics calculations for water [13].

In Fig. 2 we show the torque density Ny(x) as a function
of x, as calculated from the perturbation calculation of
Sec. III and from the calculation in first harmonic approxi-
mation of Sec. IV. On the scale of the figure the two curves
cannot be distinguished. In Fig. 3 we show the magnetic field
component Hxs(x) as a function of x. The component Hxc(x)
is very small in comparison. In Fig. 4 we show the flow profile
vz(x) as a function of x. In Fig. 5 we show the profile ωpy(x)
as a function of x. The velocity of the sheet is U = 0.016 m/s.
For all these quantities the second-order calculation and the
primary solution yield nearly identical results. Presumably
the corrections due to contributions from higher harmonics
are quite small, but we have not investigated this in detail.

In the numerical example we find χf ≈ χ ; that is, the
terms with kvz and ωpy in Eq. (4.5) can be neglected to
good approximation. In the approximation the susceptibility
is spatially uniform and the magnetic force density has no
effect on the flow. The latter statement follows from Eq. (2.14)
and the fact that for uniform susceptibility ∇ · M = 0 and
∇ × M = 0, as follows from Maxwell’s equations. The first
term in Eq. (2.14) is canceled by a pressure gradient.
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FIG. 4. Plot of the flow velocity vz(x) in m/s as a function of x

for parameter values given in Sec. V.
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FIG. 5. Plot of the particle rotational velocity ωpy(x) in s−1 as a
function of x for parameter values given in Sec. V.

VI. ELECTROHYDRODYNAMIC PROPULSION

The theory of electrohydrodynamic propulsion runs parallel
to that for ferrohydrodynamic propulsion with slight changes
due to the change in jump conditions. The magnetic field
H is replaced by the electric field E, the magnetization M
is replaced by the reduced electric polarization P ′ = P/ε0,
and the magnetic induction B is replaced by the electric
displacement D. The magnetic permeability of vacuum μ0

is replaced by ε0. The fields satisfy Maxwell’s equations of
electrostatics

∇ · D = ρe, ∇ × E = 0, (6.1)

where ρe is the electric charge density. The charge density is
taken to be

ρe(r,t) = σ (z,t)δ(x), (6.2)

where σ (z,t) has the plane wave form

σ (z,t) = σ0 cos(kz − ωt). (6.3)

The relaxation of polarization is given by Eq. (2.8) with
replacements as specified above and with electric suscepti-
bility χ0. For the first-order fields we get exactly the same
expressions as in Sec. III with the replacement of K0 by −σ0.
The second-order calculation is therefore exactly the same as
in Sec. III, and we get the same expression (3.12) for the
second-order speed. The calculation of Sec. IV holds with
appropriate replacements.

For water the viscosity is [13] η = 9.2 × 10−4 kg/m s, the
vortex viscosity is ζ = 1.7 × 10−4 kg/m s, the spin viscosity
is η′ = 3 × 10−21 kg m/s, and the relaxation rate is γ =
1011 Hz. Hence, the length 1/κ equals 2.3 nm, correspond-
ing to the nanometer length scale. For typical values [3]
ω = 108 Hz, k = 108 m−1, and σ0 = 105 V/m the velocity
U2 equals 1.26 nm/s. The second-order calculation and the
primary solution yield nearly identical results. The flow profile
is qualitatively the same as that for the magnetic system studied
in Sec. V.

VII. DISCUSSION

The perturbation calculation of Sec. III provides insight
into the propulsion caused by a running plane wave current
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density in a planar sheet immersed in a magnetic ferrofluid, or
by a running plane wave charge density in a sheet immersed
in a polar liquid like water. We consider a slow time scale and
consequently neglect inertial effects so that the equations of
motion for flow velocity and particle rotational velocity reduce
to the static equations (2.10) and (2.11).

The problem is nonlinear due to the bilinear expressions
for force and torque density, as well as to the appearance of
flow velocity and particle rotational velocity in the magnetic
relaxation equation (2.8) or its equivalent in the electrical
case. The perturbation calculation of Sec. III provides analytic
insight into the dependence of the velocity of the sheet on
the system parameters. The self-consistent integral equations,
developed in Sec. IV and derived in the approximation
of a linear magnetic equation of state and of neglect of
higher harmonics, allow numerical calculation by means of

an iterative scheme. We have found that for typical values of
the parameters the perturbation scheme, evaluated to second
order in the driving charge or current density, and the primary
solution leads to nearly identical numerical results.

It would be of interest to study different geometries. For
example, one could study the effect of confinement of the fluid
to a planar duct on the propulsion of the sheet. For a cylindrical
body confined to a cylindrical pipe the calculation will be quite
similar. For both ferrofluids and polar liquids such as water it
may be of interest to look for experimental realizations, and
possibly, practical applications.

The method of self-consistent integral equations will have
application in other situations, in particular in the problem of
ferrohydrodynamic pumping of a ferrofluid [5]. The method
provides an interesting resolution of the problem of coupling
of translational fluid motion and rotational particle motion.
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Phys. 132, 184907 (2010).
[12] A. Chaves, M. Zahn, and C. Rinaldi, Phys. Fluids 20, 053102

(2008).
[13] J. S. Hansen, H. Bruus, B. D. Todd, and P. J. Daivis, J. Chem.

Phys. 133, 144906 (2010).

056315-7

http://dx.doi.org/10.1016/j.jmmm.2004.11.058
http://dx.doi.org/10.1088/0957-4484/17/4/007
http://dx.doi.org/10.1103/PhysRevLett.103.144503
http://dx.doi.org/10.1103/PhysRevLett.103.144503
http://dx.doi.org/10.1063/1.3567251
http://dx.doi.org/10.1080/00268977800101491
http://dx.doi.org/10.1063/1.1711295
http://dx.doi.org/10.1103/PhysRevE.64.063501
http://dx.doi.org/10.1063/1.3430726
http://dx.doi.org/10.1063/1.3430726
http://dx.doi.org/10.1063/1.2907221
http://dx.doi.org/10.1063/1.2907221
http://dx.doi.org/10.1063/1.3490664
http://dx.doi.org/10.1063/1.3490664

