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Capillary climb dynamics in the limits of prevailing capillary and gravity force
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The dynamics of capillary climb of a wetting liquid into a porous medium that is opposed by gravity force
is studied numerically. We use the capillary network model, in which an actual porous medium is represented
as a network of pores and throats, each following a predefined size distribution function. The liquid potential in
the pores along the liquid interface within the network is calculated as a result of capillary and gravity forces.
The solution is general, and accounts for changes in the climbing height and climbing velocity. The numerical
results for the capillary climb reveal that there are at least two distinct flow mechanisms. Initially, the flow is
characterized by high climbing velocity, in which the capillary force is higher than the gravity force, and the
flow is the viscous force dominated. For this single-phase flow, the Washburn equation can be used to predict
the changes of climbing height over time. Later, for longer times and larger climbing height, the capillary and
gravity forces become comparable, and one observes a slower increase in the climbing height as a function of
time. Due to the two forces being comparable, the gas-liquid sharp interface transforms into flow front, where
the multiphase flow develops. The numerical results from this study, expressed as the climbing height as a power
law function of time, indicate that the two powers, which correspond to the two distinct mechanisms, differ
significantly. The comparison of the powers with experimental data indicates good agreement. Furthermore, the
power value from the Washburn solution is also analyzed, where it should be equal to 1

2 for purely viscous force
driven flow. This is in contrast to the power value of ∼0.43 that is found experimentally. We show from the
numerical solution that this discrepancy is due to the momentum dissipation on the liquid interface.
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I. INTRODUCTION

Liquid imbibition in a porous medium is a pore-scale
phenomenon that has received considerable attention in the
field of multiphase flow owing to a large number of applica-
tions. In soil physics and plant science, unsaturated flow in
which wetting fluid (water) displaces nonwetting fluid (air) is
commonly encountered [1]; in petroleum engineering some
oil recovery mechanisms are based on imbibition [2]; other
notable applications can be found in textile engineering [3],
paper coating [4], flow in fibrous filters [5], and imbibition in
carbon nanotubes used in design of nanofluidic devices [6]. A
commonly encountered imbibition process includes capillary
force driven flow that is opposed by the gravity force, and
therefore, the liquid flow occurs in a two-potential field. This
two-potential flow is often referred to as capillary rise or
climb. The important issue in capillary rise is the behavior
of liquid in the vicinity of the region where two potentials are
equal, the major question being what mechanism drives the
process before the liquid flow ceases completely. Given the
fact that the porous media are locally heterogeneous materials
with a distribution of pore sizes, one would speculate that the
flow does not stop in all points simultaneously, but rather it
ceases stepwise as the liquid reaches new points whose overall
potential is nonpreferable for the liquid flow to take place.

Capillary rise dynamics is driven by the interplay between
capillary, gravity, and viscous forces. Pioneering efforts on
determining dynamics of the advancing fluid front (height or
the macroscopic position of the interface) by using analytic
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methods indicated the square root dependence on time [7–10].
However, in a number of experimental studies it was observed
that for large times, the capillary rise height vs time depen-
dence does not follow the parabolic behavior. Furthermore,
in the experiments on the capillary rise of water through a
packing of glass beads, Delker et al. [11] found two distinct
powers, with the power at early times being larger compared
to the power for longer climbing times. This two-time regime
dependence of capillary rise height was also observed in
the experiments in an array of packed spheres by Lago and
Araujo [12]. They provide a detailed data set on the interfacial
front position as well as the velocity of front propagation with
time. Most importantly, at later times they observed the decay
in sharpness of the saturation gradient at the interface, as
opposed to the early stages of the experiment. This implies
that the Washburn equation can no longer be used.

Improvements on the Washburn equation for a single cap-
illary were suggested to include consideration of acceleration
that was shown to be important only in the initial stages, as the
liquid is accelerated due to the capillarity [13]. Zhmud et al.
[14] generalized a number of equations describing capillary
rise dynamics (including the Lucas-Washburn equation) by
showing them to be the limiting cases of the Newton dynamics
equation. However, the most interesting development is to
predict the dynamics of capillary rise in the later-times regime.
Lockington and Parlange [15] have solved Richard’s equation
which allows us to keep the dynamic saturation gradients
that are ignored in the Washburn model. In their model the
behavior at later times critically depends on a parameter (A)
that varies with hydraulic conductivity of the medium and
defines the variability in the height—this parameter has to be
experimentally obtained.
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We use a capillary network model [16,17] to represent
the porous medium by preserving the statistics of pore size
distribution, which is a key determinant in describing the
dynamics of capillary climb. This approach is advantageous
when compared to the inherent assumption in the Lucas-
Washburn equation where porous medium is idealized by a
bundle of single, straight line capillaries. We use a physically
based description of two-phase flow in pore networks that
allows us to provide the detailed analysis of the balance of
capillary, gravity, and viscous forces. We explain how this
balance changes with time leading to the different dynamics
of capillary climb at later times, and present quantitative
agreement between our model predictions and the experiments
by Lago and Araujo [12] on the interfacial front position and
the velocity of front propagation for bead packs and Berea
sandstone.

II. MODEL SYSTEM

The schematic in Fig. 1 depicts a general problem of the
wetting liquid capillary climb into a porous medium column
opposed by the gravity force (g). The dynamics of how the
climbing height (z) changes in time (t) may be altered by
the presence of a porous medium layer placed on the bottom
of the porous medium column which has thickness l and
permeability Kl , and by height difference between the free
liquid surface in the liquid reservoir and the zero height in
the porous medium column (zd ). A wetting liquid of density
ρ and viscosity μ climbs a porous medium of porosity φ and
permeability K under the influence of the capillary pressure
pc, where pc is defined from the liquid surface tension σ ,
liquid-solid contact angle θ , and characteristic radius rch. The
value of rch can be defined macroscopically as the square root
of K/φ, or microscopically from the pore radius rp. Adopting
two assumptions, i.e., that the porous medium is homogeneous
and the liquid-solid contact angle is not a function of the
climbing velocity, the problem can be solved analytically. The
solution is often referred to as the Washburn equation [10] that

l
Kl

z

zd

K

FIG. 1. Capillary climbing height (z) of wetting liquid in porous
medium of permeability (K) opposed by gravity force (g) with bottom
supporting layer of thickness (l) and permeability (Kl) present. The
positions of zero level in porous medium (z = 0) and reservoir liquid
level (zd ) are shown.
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FIG. 2. Analytical solution of Eq. (1) for four combinations of
both (g, l) equal to or different than zero. The maximum climbing
height is defined for g �= 0. The bottom layer (l, Kl) influences the
slope of log10(t)–log10(z) for small z as z/K ≈ l/Kl , while for large z,
z/K � l/Kl and l > 0 approach the l = 0 solution.

is originally obtained for a liquid climb into a single capillary
in the following form:

t = μφ

ρgK

[(
p∗

c

ρg
+ K

Kl

l

)
ln

p∗
c

p∗
c − ρgz

− z

]
, (1)

where p∗
c is the capillary pressure adjusted for the hydrostatic

pressures of zd and l heights, p∗
c = pc + ρg (zd − l). The

solution can be easily recast for two special cases, i.e., for
the absence of the layer at the bottom of the column by setting
l = 0, and for the capillary flow without gravity (as for the
capillary flow in the horizontal porous medium bed). In this
case, the analytical expression is obtained from the limiting
process by setting the gravity (g) equal to zero in Eq. (1)
(l’Hôpital’s rule is used), where t(l = 0) = μφz2/(2Kpc) and
t(l > 0) = t(l = 0)[1+2Kl/(Klz)].

It can be seen from Eq. (1) that in the presence of gravity,
the liquid approaches a maximum climbing height (zmax) for
which the hydrostatic and capillary pressure are in equilibrium,
and zmax = pc/ (ρg) + (zd − l). Equation (1) shows also that
for l = 0 and g = 0, the slope of z as a function of t in
logarithmic axes is equal to 1

2 . The log10(t)–log10(z) plots of
all four combinations (l, g), in which either l or g is equal to or
different than zero are shown in Fig. 2. As expected, the initial
values of climbing height are not influenced by the presence of
gravity, as capillary pressure exceeds the hydrostatic pressure.
For larger heights and g<0, both curves (l = 0 or l > 0)
approach the similar zmax as pc/(ρg) � l, implying that zmax

is not influenced by l. On the other hand, setting l (and Kl)
to be greater than zero produces the log10(t)–log10(z) curves
with a slope > 1

2 as the flow resistance is large in layer l,
and it takes a longer time for the liquid to reach a specific
height compared to the l = 0 case (herein, the layer l is much
smaller than the overall column height and Kl < K). Finally,
for g = 0, the curves corresponding to l (and Kl) equal to
and greater than zero approach one another as the apparent
permeability of the layer and porous medium is calculated
from (l + z)/Kapp = l/Kl + z/K, and for sufficiently large
z, z � l and Kapp = K.

The porous media are heterogeneous materials with local
variations of their properties, namely φ and K. Very often,
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this fact is dealt with by defining the porous medium pore
size distribution (rp,i). Having the medium local variations,
the other transport properties as capillary pressure become
heterogeneous, where one needs to define a local capillary
pressure distribution (pc,i) instead of a single value of
the capillary pressure defined for the average pore size.
Furthermore, placing a heterogeneous porous medium into
a potential field (such as gravity) produces an unstable flow as
maximum climbing height becomes location specific, zmax ,i =
pc,i/ (ρg) + (zd − l). Instead of the sharp interface between
the liquid and gas phase as stipulated from the Washburn
equation, a liquid flow front in which liquid saturation
0 < s < 1 is formed. The lower limit of the flow front to emerge
(zf,l) can be estimated from the maximum pore size (rp,max),
and similarly, the upper limit of the flow front position (zf,u)
is proportional to the smallest pore (rp,min):

zf = 2σ cos (θ )

ρgrp,ch
+ zd − l, where rp,ch =

{
rp, max, for zf,l,

rp, min, for zf,u.

(2)

The actual values of zf,l and zf,u are altered by pore
connectivity within the porous medium, and zf,l and zf,u lie in
between the limiting bounds calculated from Eq. (2).

III. NUMERICAL SOLUTION

Equation (2) suggests that the capillary climb dynamics
are governed by two distinct flow mechanisms, the first being
the single-phase climb for z < zf,l and the latter being the
multiphase climb for zf,l < z < zf,u, where zf,l and zf,u are
influenced by porous medium heterogeneity. The influence of
local heterogeneities can be addressed using capillary network
models [18] based on representing an actual porous medium as
a network of small volumes—pores—which are connected by
flow conductance elements—throats. Both pores and throats
are random variables that follow some predefined distribution
law. For a network consisting of (nx × ny × nz) pores of vo-
lume and radius (Vp, rp), which are connected by throats of
radius and length (rt , lt ), the network porosity (φ), permeability
(K), and capillary pressure (pc) for a specific liquid are
calculated from

φ =
∑

i Vp,i

nxnynzl3
eq

,
Q

nxnyleq
= K

μ

�p

nz

,

(3)

and pc,i = 2σ cos (θ )

rp,i

,

where Q is flow rate through the network for given pres-
sure difference �p, and the network equivalent length
(leq = lx/nx = ly/ny = lz/nz) is calculated from the geomet-
rical dimensions of the actual porous sample (lx × ly × lz).
A regular cubic, three-dimensional network is depicted in
Fig. 3, where the dark and light gray colors represent liquid
and gas phase, respectively. Clearly, for a network to be an
equivalent of the porous medium, the network and porous
medium properties (φ, K, pc) need to coincide.

The solution of the capillary pressure driven flows that are
referred to as primary and secondary spread are explained in
detail in Markicevic et al. [19] and Markicevic and Navaz, [17],
including the problems of assemblage, boundary conditions

FIG. 3. A regular, three-dimensional network with each pore
connected to six adjacent pores, where the radii of both pores and
throats are defined from a distribution function. Two phases, gas and
liquid, are represented in black and gray.

and interface tracking. Both piston flow and snap-off flow, and
their irregularities defined as gas clusters and liquid ganglia
formations, are included. The solution is based on liquid phase
potential at the gas-liquid interface (ϕi). Adding the gravity
force, the potential (ϕi) needs to be redefined, where one can
write:

ϕi = pg,i − ρgzi − 2σ cos (θ )

rp,i

. (4)

Based on the liquid potential of pores at the interface, the gas
and liquid phase exert pint−Gas and pint−Liq pressure. The con-
dition for the interface to deform is found comparing the
absolute value of the pressure difference |pint−Gas–pint−Liq|
to the potential threshold (ϕc). Due to the presence of both
capillary and gravity forces at the interface, ϕc is defined
as –ρgz–2σcos(θ )/rp (note that g = –9.81m/s2 in our study)
and it varies along interfacial points as their climbing he-
ight and capillary pressure change. For the liquid to flow in an
interfacial point, the absolute pressure between the liquid and
gas phase needs to exceed the potential threshold; otherwise,
the liquid remains static in that particular point.

The threshold potential varies along the interfacial pores,
where depending on the pore actual potential and the threshold
potential, the pore at the interface is filled or emptied. These
are defined as the local flow rates at the interface and they are
proportional to the difference of the capillary pressures of pores
being filled and being emptied. The length scale for this flow
is proportional to the multiple throat lengths, since the pairs of
pores being emptied and being filled can be next to each other
or bridged by some number of fully saturated pores. In parallel
to the local flows at the interface, the liquid flow from the
inlet to the interface takes place. This flow rate is proportional
to the difference of liquid pressures at the inlet boundary and
at the interface over the length scale equal to the distance of
the flow front from the inlet. Depending on the ratio of the
two flow rates, the formation of one of four types of pores will
be favorable: (i) full (s = 1), (ii) empty (s = 0), (iii) partially
filled pores (s < 1) which are located next to at least one full
pore, and (iv) partially filled pores with all neighboring s < 1
pores. Hence, similarly to the general evaporation problem
[20,21], four regions with distinct pore pairs saturation (si , sj )
can be defined: fully saturated (si = sj = 1), highly saturated
(si = 1, sj < 1), low saturated (si<1, sj < 1) and nonsaturated
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(si = sj = 0) regions. The numerical solution predicts the pore
saturations based on the dynamic scheme, and all regions are
identified directly from the numerical solution.

IV. RESULTS AND DISCUSSION

The experimental results for the capillary climb for water
in four distinct porous media consisting of glass beads, and
for the capillary climb in Berea sandstone, have been reported
by Lago and Araujo, [12] (see also [11]). For each glass bead
medium, specific sieve fractions are used, with average particle
diameters (in μm), dp = {165,196,231,275}. The glass bead
porosity is measured, φ = 0.37, and the permeability is
estimated from the Kozeny equation and known φ and dp. For
Berea sandstone, φ = 0.22 and K = 1×10−12 m2 is reported.
Both climbing height and interstitial climbing velocity, as
functions of time, are measured. With respect to Fig. 1 and
the physical parameters shown, all five capillary climbs are
unidirectional and against the gravity force (g < 0). For the
glass bead porous media, a thin, l = 3 mm, porous plate at the
bottom of the column is used to keep the beads from pouring
out (no such layer is used for the Berea sandstone). The layer
permeability (Kl) is estimated through the time parameter, τp.
The experimental log10(t)–log10(z) for glass beads shows two
slopes (n1 and n2), whereas a single slope (n) is observed for
Berea sandstone. The maximum climbing height (zmax) which
is determined from the capillary and hydrostatic pressure being
equal (equilibrium height, heq in Lago and Araujo [12]) is
calculated and used in the Washburn equation. Finally, the
experimental results show that the climbing height (z) reaches
much larger values compared to zmax, suggesting a change in
capillary climb mechanism.

We implement the capillary network model to solve the
same capillary climb dynamics for the experimental flow cases
listed in the Lago and Araujo [12] study. Based on the exper-
imental column height (z = 0.24 m and z = 0.48 m for glass
beads and Berea, respectively) and computational limitations,
a network consisting of nx × ny × nz = 20 × 10 × 240 pores is
generated. Hence, the network equivalent length leq = li/ni is
equal to 1 mm and 2 mm for the two porous media studied. The
pore radii are set uniformly distributed, rp,min < rp,i < rp,max,
and hence, the heterogeneity parameter can be defined as
χ = rp,max/rp,min–1. The values of rp,min and rp,max for glass
beads are estimated from two limiting flow front heights (zf ),
as defined in Eq. (2), of the experimental log10(t)–log10(z)
curves. The lower limit zf,l is the height for which log10(t)–
log10(z) changes its slope. This corresponds to rp,max, and
rp,max = 2σcos(θ )/(ρgzf,l). The upper limit zf,u is larger than
the asymptotic height that the liquid would reach if left for
an infinite amount of time to climb the porous medium, and
therefore, rp,min = 2σcos(θ )/(ρgzf,u). This height, zf,u, is also
estimated from the experimental results and it is larger than
the maximum height that the liquid front reaches. For Berea
sandstone, the log10(t)–log10(z) curve has a single slope (n)
implying that the capillary pressure is significantly larger than
the hydrostatic pressure for experimentally measured climbing
heights. The flow is viscous force controlled. However, the
log10(t)–log10(z) curve has a slope (n) that is < 1

2 , and we
attribute this reduced slope to the heterogeneity parameter
χ . For χ = 0, the slope is equal to n = 1/2 and the slope

FIG. 4. Numerical solution of the climbing height as a function
of time for dp = 165-μm glass beads. Liquid distribution in flow front
of pores that have saturation (s > 0.95) in the transition region and
capillary (gravity) force controlled region are shown in the insets.

decreases as χ increases. This characteristic is used to find pore
distribution rp,min < rp,i < rp,max for Berea sandstone. For the
pore radius distribution defined, rp,min < rp,i < rp,max, the
network throat radii are calculated, where for two neighboring
pores, i and j, the throat radius (i, j) is equal to the arithmetic
average of pore radii rp,i and rp,j , rt,ij = (rp,i+rp,j )/2. The
network properties (φ, K, pc) are calculated from Eq. (3) (note
Vp,i ∝ r3

p,i) and network permeability (K) is calculated varying
lt until two permeabilities (network and porous medium)
coincide [19].

Having estimated the network parameters, the capillary
climb is solved numerically, and the log10(t)–log10(z) plot is
shown in Fig. 4 for glass beads dp = 165 μm. Two different
slopes (n1 and n2) can be observed pointing out the transition
from viscous to gravity (capillary) force dominated flow. For
viscous force dominated flow, a sharp interface between gas
and liquid phase exists, with a jump in liquid saturation (s) from
s = 1 to s = 0. The capillary (gravity) force controlled flow
produces the multiphase flow front with the liquid saturation
0 < s < 1. The liquid distribution at the flow front is given in
the two inset figures in Fig. 4 for two distinct times, t = 1700 s
and t = 6 × 104 s, where the liquid pore saturation is shown at
the specific planes at the flow front with the dark gray pores
representing s > 0.95. The time, t = 1700 s, is in the range
of flow transition, and multiphase flow starts to develop with
the fluid front being thin. The flow front thickness grows for
the longer times, where there is a significant number of pores
with s < 0.95 (the light gray regions). Finally, these changes in
the liquid saturation for viscous and capillary (gravity) force
dominated flows are also given in Fig. 5 as the axial saturation
profiles s(z) for three distinct times, where gas-liquid interface,
flow front emergence, and full flow front developed are
shown.

Equation (2) gives a measure of the pores that are filled for
a particular height (z), where as the climbing height increases,
the saturation gradient in the z direction decreases, and the
fraction of large pores that are filled (s > 0.95) decreases.
Therefore, the pore radius distribution function of filled pores
fd (rp, s > 0.95) within the flow front should change from being
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FIG. 5. Axial saturation profiles s(z) for viscous force, transition,
and capillary (gravity) force controlled flow for dp = 165-μm glass
beads.

close to the uniform for the viscous force controlled flow to
a decreasing distribution function of rp for capillary (gravity)
controlled flow. Figure 6 summarizes the direct comparison
between porous medium pore size distribution function fd (rp)
shown by the solid line, and corresponding fd (rp,s > 0.95),
shown as a distribution histogram. Three cases are depicted
in Fig. 6: (i) viscous force controlled flow for which the flow
front resembles an interface (zero thickness), (ii) transition
to capillary (gravity) controlled flow for which the flow front
starts to develop, and (iii) capillary (gravity) force controlled
flow with the flow front growing. The fraction of large pores
filled decreases as the number of pores with positive threshold
potential ϕc,i = ρgzi − 2σ cos (θ ) /rp,i increases; here, g =
–9.81m/s2 and ϕc,i < 0 for pore i to be filled. In Fig. 6,
the pore size distribution function fd (rp) is normalized to
one, where it can be seen that the fraction of large pores
filled decreases. The fractions of pores with s < 0.95 for
any rp can also be calculated from the difference fd (rp)–
fd (rp,s > 0.95) and it is always greater than zero due to
the network morphology, as some small pores are shielded
by larger pores and remain empty during the multiphase
flow.

Furthermore, using the capillary networks with uniform
size distribution, rp,min < rp,i < rp,max, the capillary climb
dynamics are solved and compared to the experimental results
of Lago and Araujo [12]. In the numerical solution, both
climbing height (z) and climbing velocity (v), as functions of
time (t), are calculated. Since the experimental results for z and
v are very close for dp = 196 μm and dp = 231 μm, the flow in
the glass bead column with average dp = 231 μm is not solved
numerically for the comparison with the experiment. Thus,
the three experimental cases of capillary climb in glass beads
are solved numerically, where the pore sizes from the uniform
distribution (rp,min, rp,max) are set equal to (27.5, 82.4), (33.1,
110) and (37.1, 180) for dp = 165, 196, and 275, respectively
(measured in micrometers). Furthermore, the water standard
physical properties are used, and the contact angle between
glass beads and water is set at θ = 50◦ which is measured
for water droplets on the solid glass surface [22]. There is
an uncertainty of using this value of θ for glass bead porous
medium, but it should be noted here that in the numerical
calculations, the value of cos(θ )/rp determines the capillary

rp (µm)

f(
r p

,s
>

0.
95

)

30 40 50 60 70 800

0.01

0.02

0.03

0.04

0.05

(a)

t=300 s

rp (µm)

f(
r p

,s
>

0.
95

)

30 40 50 60 70 800

0.01

0.02

0.03

0.04

0.05

(b)

t=1700 s

rp (µm)

f(
r p

,s
>

0.
95

)

30 40 50 60 70 800

0.01

0.02

0.03

0.04

0.05

dp = 165µm

(c)

t=6x104 s

FIG. 6. Pore size distribution functions of overall sample fd (rp)
(solid lines) and distribution histogram of filled pores fd (rp, s > 0.95),
showing reduced fraction of large pores being filled during capillary
(gravity) force dominated flow.

pressure. Thus, as long as cos(θ )/rp is predicted correctly, the
numerical solution can predict the experimental results (note
that the network permeability is set equal to the glass bead
permeability using the throat length, lt ). For the glass bead
cases, the layer of thickness l = 3 mm and permeability Kl is
placed at the bottom of the column (see Fig. 1). The glass bead
column with dp = 165 μm is used to find Kl , and thereafter, the
same value of Kl is set for the dp = 196 μm and dp = 275 μm
cases. Thus, in all three numerical solutions for the distinct
glass beads dp, the value of Kl = 4.12 × 10−13 m2 is defined.
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FIG. 7. Dynamics of capillary climbing flow for three distinct
glass bead porous media samples: (i) dp = 165 μm, (ii) dp = 196 μm,
and (iii) dp = 275 μm, as revealed from experimental measurements
(symbols) and numerical predictions (solid lines).

The overall comparison between numerical and experimental
results is shown in Figs. 7 and 8 for climbing height and
velocity, respectively. In both figures, the experimental results
are given with symbols that are connected by thin lines for
better visibility, whereas the numerical results are shown with
the thick solid lines.

It can be seen that overall there is very good agreement
between the numerical predictions and the experimental results
for climbing height in Fig. 7. For the viscous force controlled
flow, the z ∼ t numerical results have slightly smaller slopes

than the experimental results—this may be attributed to the
(i) estimated values of the bottom layer permeability (Kl),
(ii) glass bead column permeability (K), and/or (iii) pore size
heterogeneity parameter (χ ). On the other hand, it appears
that the transition climbing height (zf,l) for which flow
mechanism changes (the slope changes from n1 to n2), is
predicted correctly, while the flow front upper limiting height
zf,u might be higher, as observed from the leveling off of
z ∼ t numerical profiles. In the numerical solution we alter
zf,u by varying rp,min, where a decrease of the minimum
size pore radius rp,min = 2σcos(θ )/(ρgzf,u) causes an increase
of the capillary pressure. Hence, rp,min is chosen such to
produce the best overall agreement between experimental and
numerical z ∼ t profiles and calculated slopes n1 and n2. All
three experimental log10(t)–log10(z) curves for distinct dp have
almost the same n1 = 0.80 ± 0.01 and n2 = 0.125 ± 0.007.
Similarly, the slopes predicted numerically, n1 = 0.67 ± 0.02
and n2 = 0.088 ± 0.008, do not depend on dp, but they are
smaller compared to the experimental values. This discrepancy
in slopes n1 and n2 may be caused by coarse network equivalent
length (leq = 1 mm), in which a broader distribution (rp,min,
rp,max) needed to be prescribed in order to get sufficiently
large climbing heights (z). However, this broad distribution
influenced the momentum dissipation at the gas-liquid inter-
face (or flow front) and smaller slopes are predicted from the
numerical solution. Additional evidence for leq being large
can be found from the numerically calculated intermittencies
of climbing velocity (v) for long times, as shown in Fig. 8.
These oscillations are found for small climbing velocities that
are not found experimentally, again due to the large momentum
dissipation. Still, there is very good agreement between
experimental and numerical data. From the form of both
experimental and numerical v ∼ t curves, one would expect
three distinct flow mechanisms, namely, constant velocity and
two distinct slopes of log10(t)–log10(v) curves. However, two
velocity regimes (constant and first slope) are both viscous
force controlled, but with two distinct apparent permeabilities,
(l + z)/Kapp = l/Kl + z/K. Since Kl is at least an order of
magnitude smaller than K, Kapp is not influenced by K for
small z, which is not true for larger z when l/Kl and z/K
become comparable.

In the experimental measurement of z ∼ t and v ∼ t profiles
for Berea sandstone, the bottom supporting layer (see Fig. 1) is
not used, and the z ∼ t solution is obtained by setting l = 0 into
Eq. (1) (note p∗

c = pc + ρgzd ). The slope of experimental
log10(t)–log10(z) curve is n = 0.43, that is less than n = 1/2
predicted from the Washburn equation. We attribute the
value of n = 0.43 to the medium heterogeneity, and hence
momentum dissipation, where at the gas-liquid interface, local
flows toward both the liquid and gas phase exist (referred to
as inbound and outbound flow in Markicevic and Navaz [17]).
Due to the momentum dissipation, the liquid climbing velocity
is reduced. Still, the climbing velocity is high preventing
the multiphase flow and fluid front to emerge. Both profiles
log10(t)–log10(z) and log10(t)–log10(v) are shown in Fig. 9,
where the experimental results are shown with the symbols
and the thick solid lines represent numerically calculated
profiles. Very good agreement between experimental and
numerical results is found, with the slope nn calculated
from the numerical results equal to nn = 0.40. The numerical
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FIG. 8. Experimental and numerical climbing velocities for glass
bead porous media with velocity intermittencies in the limit of
slow climb. The experimental velocities for only dp = 165 μm and
dp = 275 μm are shown.

results for log10(t)–log10(z) are slightly curved compared to
the experimental logarithmic curve, which follows a straight
line.

This may be caused by our equivalent length, leq = 2 mm,
used in the network generation, which is large for Berea
sandstone due to computational limitations. Finally, additional
evidence that the capillary climb for Berea sandstone is
completely viscous force dominated can be seen from the
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FIG. 9. Capillary climb height and velocity for the Berea sand-
stone with log10(t)–log10(z) slope < 1

2 (n = 0.43) explained by
momentum dissipation at the gas-liquid interface.

velocity results, where a single slope is observed for both
numerical and experimental results.

V. CONCLUSIONS

The capillary climb of a wetting liquid into a porous
medium, under the influence of capillary force which is op-
posed by the gravity force, is formulated as a multiphase flow
problem and solved numerically using the capillary network
models. The time changes of the liquid climbing height and
velocity reveal that there are two distinct flow mechanisms: (i)
viscous and (ii) capillary (gravity) force controlled flow. The
dominating force transition can be observed from the slope
change in the log10(t)–log10(v) characteristic. The viscous
force controlled flow is stable, which produces the sharp
interface between the liquid and gas phase. However, the
unstable flow develops for capillary (gravity) force controlled
flows, where the liquid and gas phase are separated with
a multiphase flow front of finite thickness. The numerical
formulation is compared against the experimental set of results
for the capillary climb, where very good agreement is found
and the experimental results have been fully explained using
the numerical solution. Furthermore, even in the viscous force
dominated flow, the experimental result deviations from the
Washburn equation are observed. We show that the porous
media heterogeneities produce the backward and forward local

056310-7



B. BIJELJIC, B. MARKICEVIC, AND H. K. NAVAZ PHYSICAL REVIEW E 83, 056310 (2011)

flows at the interface, causing the momentum dissipation.
The magnitude of the backward flow is not sufficient to
transform the interface to the flow front (unstable flow), but
it still can cause deviations from the Washburn equation.
Thus, for the Washburn equation to be valid, it is not only
sufficient that the flow is stable (existence of gas-liquid
interface and not flow front), but the flow velocity needs to
be high enough that the local flows at the interface can be
neglected.
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