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Elastic vibrations of a fiber due to impact of an aerosol particle and their influence
on the efficiency of fibrous filters
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The excitation of sound vibrations of a cylindrical fine fiber due to the impact of a spherical aerosol particle is
investigated. The equations describing the dynamics of impact are derived for an arbitrary shooting parameter.
The coefficient of restitution is calculated, and its analytical approximation is obtained. It is shown, for the case
of long fibers, that the coefficient of restitution depends upon a single parameter λc. The parameter λc depends
on the particle radial velocity component near the fiber surface, the mass of the particle, the density of the fiber,
the modulus of elasticity, and the geometric parameters of the fiber and the particle. The inertial deposition of
submicron aerosol particles on fine fibers in a filter is considered. The efficiency of filtration is studied as a
function of the gas flow velocity. The existence of a critical flow velocity U ∗, below which the losses of particle
energy during collision have no effect on the efficiency, is demonstrated. For velocities higher than the critical
velocity, the filtration efficiency is dependent on the mechanisms of nonelastic losses of the particle’s energy.
Its value can be significantly lower than that estimated when particle rebound effects are neglected. After they
have rebounded, some particles are not able to attain the initial high velocities in the stream, thus depositing on
neighboring fibers. The dynamics of these particles is investigated. For this case, it is shown that the filtration
efficiency is dependent on the velocity distribution of the rebounded particles and that it increases with the
packing density of fibers. A qualitative difference between the asymptotic behavior of a fiber and that of a flat
plate is found long after the initial impulse.
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I. INTRODUCTION

A high-efficiency air cleaning from fine suspended particles
is of key importance for several advanced technologies and
for environmental protection. Air cleaning is performed by
filtering materials consisting of a large number of layers of
fine fibers. Among various filtering materials, the fibrous filters
have a minimal resistance to air flow at a given filter collection
efficiency. The deposition of suspended particles upon fibers
within the filter occurs due to their diffusional or inertial shift
from the streamlines toward the fiber surface. The surface
forces attract and hold the particles that are touching the fiber
surface. To provide minimal pressure drop, filters are used
with low flow velocities of the order a few centimeters per
second. In this case for particles with a density of 1–2 g/cm3,
the inertial deposition may be neglected. However, in the case
of filtration of the fine particles of heavy metals, both the
inertia of particles and the mechanisms of the particle-fiber
interaction must be accounted for. This problem is of great
importance to many industries, including the atomic energy
industry.

A characteristic of heavy particle collection is the in-
fluence of gravity on the filtration efficiency at small flow
velocities [1] and particle rebound from fibers at high flow
velocities, as, for example, in the case of air sampling with
analytical filters. A decrease in the collection efficiency with
an increase in the face velocity has been observed experi-
mentally [2–6]. However, to date, no theoretical estimations
of inertial deposition of aerosol particles on fine fibers that
account for their contact interaction during collision have been
performed.

When considering the collection of submicron aerosol
particles with high density in the inertial regime with possible
rebound from fibers, the effect of gravity on the efficiency of
capture can be neglected together with that due to diffusion.
Relative particle velocity in the gas stream is not high; thus,
the drag force acting on the particle is given by Stokes’s law.
The inertial deposition of particles on fibers from the stream
is governed by the dimensionless Stokes number,

St = C1mU0

6πμRr0
,

where C1 is the Cunningham correction factor accounting for
the gas slip on the particle surface [1], m is the mass of the
particle, R is the particle radius, U0 is the undisturbed (face)
flow velocity before the filter, μ is the dynamic viscosity of
the gas, and r0 is the fiber radius.

When the Stokes number is small, St � 1, the filter
efficiency is determined by the mechanism responsible for the
capture of the aerosol particle by the fiber surface. Generally,
basic mechanisms of capture are the convective diffusion in
the gas flow or the movement due to external force fields [1].
The contact interaction of a particle with a fiber by itself has a
small effect on the collection efficiency.

For high velocities and heavy particles, the Stokes number
may well exceed unity. In this case, if no rebound is considered,
the fiber collection efficiency tends to the constant value
(ballistic limit), which is the case for large droplets [7,8].
The rebound is important for solid particles at St � 1. In
this case, the efficiency of deposition of particles is governed
by the mechanisms of particle energy losses during contact,
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like any dissipative process or loss of energy due to emission
of long-wave transverse waves [6]. For some conditions, the
particle energy losses are solely connected with the excitation
of transverse sound waves propagating along a fiber.

Timoshenko, in 1912, was the first to consider the excitation
of transverse vibrations of a beam at impact [9,10]. Energy
losses due to sound emission during the ball-plate collision
were considered in subsequent studies [6,11,12]. In general,
the investigation of particle rebound from solid surfaces
has gained significant attention. An entire issue of Aerosol
Science and Technology [13] was devoted to reviews on
the subject. References to later works can be found in
Refs. [14,15]. However, to our knowledge, there are no
theoretical works investigating the losses of energy due to
the sound emission when a heavy macroparticle collides with
a fine fiber. In the present work, we consider the collision
of a heavy aerosol particle with a fine cylindrical fiber
at an arbitrary shooting distance and with van der Waals
forces.

The remainder of this paper is organized as follows.
Section II deals with the excitation of sound vibrations in
fine fibers during impact with an aerosol particle at an
arbitrary shooting parameter and with van der Waals and
friction forces. For high-velocity particles having a kinetic
energy greater than adhesion energy, an equation for the
coefficient of restitution is derived, which differs from the
equation describing the particle-plate collision. The derived
equation is solved numerically, and the corresponding analytic
approximation for the restitution coefficient is found.

Using this approximation, in Sec. III we estimate the critical
initial velocities of particles defined so that the particles that
have greater velocities rebound from fibers at high Stokes
numbers. The values of the critical velocities are compared
with those computed from the solution of the complete system
of equations derived in Sec. II. Conditions are found under
which the losses of the particle energy due to different
nonelastic processes are negligibly small.

In Sec. IV, the formula for the coefficient of restitution,
derived in Sec. II, is applied for calculating the single-fiber
collection efficiency for aerosol particles in a model fibrous
filter. A plane gas flow field for a system of parallel fibers
is used. The particle trajectories are calculated at moderate
velocities with St ∼ 1. A decrease in the collection efficiency
due to rebound of particles is found. A qualitative comparison
of the obtained results with the experiment is done.

In Sec. V, a simple model of aerosol filtration with a fibrous
filter is considered for the case of high Stokes numbers and
for conditions when the particles have no time to attain the
flow velocity between sequential collisions with fibers. The
dependence of the coefficient of the particle penetration versus
the filter packing density is found using the Monte Carlo
technique.

In Appendix A, the dynamics of elastic deformation of a
fiber and a plate after initial impulse are compared. A signif-
icant difference between the fiber and the plate deformations
is found at large times. In Appendix B, a simplified model for
the multiple collisions of a particle with fibers is given. The
method of calculation of the retarded and instantaneous van
der Waals forces is given in Appendix C.

II. EXCITATION OF LONG-WAVE ELASTIC VIBRATIONS
IN A FIBER AT THE IMPACT OF AN AEROSOL

PARTICLE

Consider the collision of a spherical aerosol particle of
radius R with a fiber having radius r0 and length L and aligned
along the z axis, as shown in Fig. 1. Suppose that the vector of
the initial velocity of the particle lies in a plane perpendicular
to the axis of the fiber at z = z0.

The equation of the transverse displacement of the fiber due
to the action of the point force F is

ρS
∂2ξ

∂t2
= −EI

∂4ξ

∂z4
− δ(z − z0)F(t). (1)

Here ξ ≡ ξ (z,t) is the transverse displacement of the fiber
from its initial position, δ(z) is Dirac’s delta function, ρ is the
fiber density, S is the surface of the cross section, E is Young’s
modulus, and I is the moment of inertia of the fiber cross
section [16]. The equation describing the fiber vibrations (1)
should be supplemented with boundary conditions. Assume
that the fiber is fixed at the ends

ξ (0,t) = ξ (L,t) = 0.

The equation of vibrations of a fiber with fixed ends (1)
should be coupled with the equation of motion of the vector r,
defining the position of a particle with mass m:

m
d2r
dt2

= F(t) = Fw(t) + Fe(t). (2)

The force F is governed by its long-range part Fw acting in
the gap when s ≡ |r(t) − ξ (z0,t)| − (R + r0) > 0 and is gov-
erned by the force of elastic interaction of a spherical particle
and a fiber Fe at s < 0. We consider the interaction of a particle
with a fiber under the action of the nonretarded van der Waals
forces. The van der Waals (dispersion) forces significantly
contribute to the particle-fiber interaction dynamics at small
distances s < min(R,r0), where one can use the following
formula for the van der Waals force [17]:

Fw = − r(t) − ξ (z0,t)

|r(t) − ξ (z0,t)|
[

1

(s + ε)2
− ε

(10s + ε)3

]

× AR

6

(
r0

R + r0

)1/2

θ (s), (3)

FIG. 1. Sketch of the particle-fiber interaction during collision at
high Stokes numbers.
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where ε = 4 × 10−8 cm is the adhesion distance, A is
Hamaker’s constant, and θ (s) is the Heaviside step function,
which is 1 if s is greater than 0 and 0 if s is less than 0. The
second term in parentheses in Eq. (3) was added to provide a
continuity of the interaction force F = Fw + Fe at s = 0 for
numerical stability of the computations. The force of elastic
interaction is found from the theory of Hertz [16,18]:

Fe = r(t) − ξ (z0,t)

|r(t) − ξ (z0,t)|K(−s)3/2θ (−s). (4)

The coefficient K depends on Young’s modulus of the fiber
E and that of the particle E′, their Poisson coefficients σ

and σ ′, and the fiber and particle shapes and dimensions. For
a spherical particle of radius R and a cylindrical fiber with
radius r0 we have [16]

K = 1

D

R1/2

(1 + R
/
r0)1/4

f (e),

(5)

D = 3

4

(
1 − σ 2

E
+ 1 − σ ′2

E′

)
≡ 3

4E∗ .

The eccentricity of the elliptic region of contact e is found
from the relation

(1 − e2)−1E(e) − K(e)

K(e) − E(e)
= 1 + R

r0
, (6)

where K(e) and E(e) are complete elliptic integrals of the first
and second kind, respectively. The function f (e) is

f (e) = π

21/2

[K(e) − E(e)][(1 − e2)−1E(e) − K(e)]

eK(e)3/2
.

(7)

The larger semiaxis a of the elliptical region of contact and
the surface of the contact region Sc are

a = (FeDR)1/3

(
1 + R

r0

)−1/6

f1(e),

Sc = πa2(1 − e2)1/2 = π (FeDR)2/3

(
1 + R

r0

)−1/3

f2(e),

where

f1(e)

=
(

4

πe2

)1/3

{[K(e)−E(e)][(1−e2)−1E(e)−K(e)]}1/6,

f2(e) = (1 − e2)1/2f1(e)2.

The maximal stress in the center of contact is given by

σmax = 3Fe

2Sc

= 3

2π

F
1/3
e

(DR)2/3

(
1 + R

r0

)1/3

f −1
2 (e).

The dependencies of the eccentricity e(R/r0) and the
functions f [e(R/r0)], f1[e(R/r0)], f2[e(R/r0)] on the ratio
of the particle to fiber radii are shown in Fig. 2. It is seen that
the functions f (R/r0) and f2(R/r0) are almost unchanged and
are near a value of 1 over a significant interval. The dependence
of the force on the gap for s ∼ ε is illustrated in Fig. 3 for three

FIG. 2. The eccentricity of the elliptic region of contact e and the
functions f,f1,f2, defining the parameter K in the formula of Hertz,
the bigger semiaxis of ellipse a, and its surface Sc, respectively, vs
the ratio of the particle to fiber radii.

values of the radius of the particle interacting with the fiber.
At the initial moment the fiber is at rest,

ξ (z,0) = 0, ξ̇ (z,0) = 0,

while the particle is moving with the velocity V0,

ṙ(0) = V0,

and with the shooting parameter b. The displacement of the
fiber at the point of contact may be expressed in terms of
eigenmodes of vibration,

ξ (z,t) =
∑

n

ξn(t) sin
(πn

L
z
)

.

Inserting this expression into Eq. (1), we obtain equations
for the amplitudes ξn(t):

d2ξn

dt2
= −ω2

nξn − 2

ρSL
sin

(πn

L
z0

)
F[r − ξ (z0,t)], (8)

where n is the mode number, ωn = βcπ
2n2/L2 is the

eigenfrequency, βc = (EI/ρS)1/2, and z0 is the coordinate of

FIG. 3. The force of interaction between a spherical particle with
radius R = 0.5 (curve A), 1 (curve B), and 3 μm (curve C) and a
cylindrical fiber with radius r0 = 1 μm vs distance between their
nondeformed surfaces: A = 10−12 erg, ε = 4 × 10−4 μm, σ = σ ′ =
0.3, and E = E′ = 1012 erg/cm3.
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the point of impact. Assume that the vibrations are damping
with the decrement νn � ωn. Then, Eq. (8) is reduced to the
following form:

d2ξn

dt2
= −ω2

nξn−2νn

dξn

dt
− 2

ρSL
sin

(πn

L
z0

)
F[r−ξ (z0,t)].

(9)

The velocity and the displacement of the point of interaction
can be expressed in terms of force integrals:

d

dt
ξ (z0,t) = −

∫ t

0

2

ρSL

{ ∑
n

sin2
(πn

L
z0

)
exp[−νn(t − t ′)]

× cos[ωn(t − t ′)]
}

F(t ′)dt ′, (10)

ξ (z0,t) = −
∫ t

0

2

ρSL

{ ∑
n

sin2
(πn

L
z0

)
exp[−νn(t − t ′)]

× sin[ωn(t − t ′)]
ωn

}
F(t ′)dt ′. (11)

If the particle collides with the center of the fiber, then
the odd-n modes remain. For the nonzero shooting parameter
b and accounting for the friction force, one has to consider
not only the flexural but also the torsional vibrations. It is
convenient to introduce unit vectors ez, n, and t:

n(t) = r(t) − ξ (z0,t)

|r(t) − ξ (z0,t)| ,t(t) = [ez × n(t)]. (12)

These vectors are mutually normal and are oriented along
the fiber axis, along the line connecting the centers of the spher-
ical particle and the fiber, and along the surface tangent line
on the point of collision, respectively (Fig. 1). It is convenient
to decompose the interaction force in terms of these vectors:

F = nFn + tFt . (13)

The rotation of the particle and the fiber torsional vibrations
are governed by following equations:

I0
dω0

dt
= FtR, (14)

ρI1
∂2ϕ

∂t2
= C

∂2ϕ

∂z2
+ r0Ft (t)δ(z − z0), (15)

where ω0 is the angular velocity of the particle, ϕ is the angle
of rotation of the fiber, I0 = 2mR2/5 is the particle moment
of inertia, I1 = πr4

0 /2 is the fiber moment of inertia, and
C = πr4

0 E/4(1 + σ ) is the torsional rigidity. The velocity of
propagation of the torsional waves β̃c is

β̃c =
(

C

ρI1

)1/2

=
[

E

2(1 + σ )ρ

]1/2

. (16)

Expanding ϕ(z,t) in eigenmodes, we obtain the expression
for the angular velocity of the fiber ω accounting for the
possible damping of the torsional vibrations:

ω(z0,t) =
∫ t

0

4

ρLSr0

∑
n

sin2
(πnz0

L

)
exp[−ν̃n(t − t ′)]

× cos[ω̃n(t − t ′)]Ft (t
′)dt ′. (17)

The frequencies of the torsional vibrations are given by

ω̃n = β̃cπn

L
.

The force of friction is directed opposite to the tangential
component of the relative velocity, and it is proportional to the
normal component of the force of pressure during the collision
of a particle with a fiber:

Vt = t[(ṙ − ξ̇ ) · t − ω0R − ωr0], (18)

Ft = −kt

Vt

|Vt |Fn, (19)

where kt is the friction coefficient. The influence of the
tangential force on the value of the normal force is negligible
for kt � 1 [18].

For relatively long fibers, the bending waves have no time
to reach the limit ω1T � 1 during the collision. Thus, without
damping, Eqs. (10) and (11) are reduced to

ξ (z0,t) = −
∫ t

0

F(t ′)
ρSω(k)

sin[ω(k)(t − t ′)]
dk

2π
dt ′, (20)

∂ξ (z0,t)

∂t
= −

∫ t

0

F(t ′)
ρS

cos[ω(k)(t − t ′)]
dk

2π
dt ′. (21)

The frequency of vibrations of the fiber with wave number
k is

ω(k) = βck
2, βc =

(
EI

ρS

)1/2

. (22)

The integral over wave numbers in Eq. (21) is easily
calculated:∫ ∞

−∞
cos[βck

2(t − t ′)]
dk

2π
=

[
1

8πβc(t − t ′)

]1/2

.

Thus, the fiber velocity at the point of interaction is given
by

∂ξ (z0,t)

∂t
= −

∫ t

0

F(t ′)
ρS

1

[8πβc(t − t ′)]1/2
dt ′. (23)

Similar transformations for torsional waves at ω̃1T � 1
reduce Eq. (14) to the local form:

ω(z0,t) = 2Ft (t)

ρSr0
. (24)

Introducing nondimensional variables r = V0T r′, ξ =
V0T ξ ′, t = T τ , z = Lz′, r0ω = V0ω

′, and Rω0 = V0ω
′
0 and

setting T = (m2/K2V0)1/5, we arrive at a system of dimension-
less equations describing the dynamics of the particle collision
with a fiber:

d2r′

dτ 2
= F′(τ ), (25)

d

dτ
ξ ′(z′

0,τ ) = −
∫ τ

0

2m

ρSL

∑
n

sin2(πnz′
0)

× cos[ωnT (τ − τ ′)]F′(τ ′)dτ ′, (26)

dω′
0

dτ
= 5

2
F ′

t (τ ), (27)
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ω′(z′
0,τ ) =

∫ τ

0

4m

ρLS

∑
n

sin2(πnz′
0)

× cos[ω̃nT (τ − τ ′)]F ′
t (τ ′)dτ ′, (28)

F ′
n = (−s ′)3/2θ (−s ′) − λ2

×
[

1

(s ′ + ε′)2
− ε′

(10s ′ + ε′)3

]
θ (s ′), (29)

where s ′ ≡ |r′ − ξ ′(z′
00)| − (R + r0)/V0T , ε′ = ε/V0T , and

θ (s ′) is the Heaviside step function. The solution of the
system of Eqs. (25)−(29) is a function of the following
nondimensional parameters:

λ1 = m

ρSL
, λ2 = AR

6mV 3
0 T

(
r0

R + r0

)1/2

,

ω1T = βcπ
2T

L2
, ω̃1T = β̃cπT

L
.

For long fibers, the system of equations describing the
excitation of transverse waves at the zero shooting distance
and in the absence of friction may be reduced to the following
system:

dr′

dτ
= V′

n +
∫ τ

0
F′(τ ′)dτ ′, (30)

∂ξ ′(z0,τ )

∂τ
= −

∫ τ

0

λcF′(τ ′)
(τ − τ ′)1/2

dτ ′, (31)

where the parameter λc is expressed in terms of λ1 and ω1T ,

λc = m

ρS(8πβcT )1/2
= π1/2

81/2

λ1

(ω1T )1/2
. (32)

For the case of a spherical particle with density ρ̃ and a
cylindrical fiber, the parameter λc is given by

λc = 2

3π7/10

(
R

r0

)5/2 (
ρ̃

ρ

)4/5 (
E∗

E

)1/5

× f (e)1/5

(
r0

r0 + R

)1/20 (
ρV 2

0

E

)1/20

.

If the adhesion energy is lower than the kinetic energy of the
particle, AR/6ε � mV 2

0 /2, then the van der Waals forces can
be neglected. For this case, with head-on collision, we obtain
a scalar equation for the gap between the particle and the fiber,
s1 = [(R + r0)/V0T − |x ′ − ξ ′|], which is dependent on only
parameter λc:

ds1

dτ
= 1 −

∫ τ

0

[
1 + λc

(τ − τ ′)1/2

]
s1(τ ′)3/2dτ ′. (33)

Equation (33) differs from the corresponding equation
derived for the case of the particle-plate collision [12]. The
origin of the difference is related to different dimensions of
the fiber and the plate. At zero time, s1(0) = 0, ṡ1̇ = 1. The
collision is over when s1(τk) reaches zero again.

Define the coefficient of restitution ec as the ratio of the
relative velocity after and before an impact:

ec ≡ Vk

V0
= −ds1(τk)

dτ
. (34)

The particle velocity upon impact in the laboratory frame
of reference is

V (τk)

V0
= −1 +

∫ τk

0
s1(τ ′)3/2dτ ′. (35)

The dependence of the coefficient of restitution ec on
parameter λc was numerically calculated. For 0 < λc < 1, the
function ec(λc) is well approximated by

ec = exp
(−1.781λc + 0.753λ2

c − 0.452λ3
c

)
. (36)

Although Eq. (36) was derived for a head-on collision, in
the no-friction case, it is also valid for an arbitrary shooting
distance only if the λc parameter is determined by the radial
component of the velocity. It should be noted that for λc > 0.5
the particle and the fiber move in the same direction after the
collision, such that a complex dynamics of multiple collisions
may occur. This is possible, e.g., for large particles, for
which R/r0 � 1. A simplified system of equations describing
multiple collisions is given in Appendix B.

III. CRITICAL VELOCITY OF FLOW OF HEAVY
AEROSOLS AT HIGH STOKES NUMBERS

In this section, using Eq. (36), we compare simple estimates
for the critical velocity, which distinguishes the region of
deposition of a moving particle from the region of rebound,
with the computations by using the complete system of Eqs.
(25)–(29) at St � 1. The filtration of gas with aerosol particles
of a size smaller than or of the order of 1 μm is often
performed by pumping the air through a porous medium
consisting of fibers with hydrodynamic resistance directly
proportional to the flow velocity. As noted in the Introduction,
the filtration process is usually conducted at small velocities,
with the aim of lowering the gas flow resistance. Usually, for
particles having a low density, the Stokes number is St � 1.
In this case one has to know the flow field near fibers to
simulate the deposition of particles on a fiber. However, when
the Stokes number is high, St � 1, the influence of the gas flow
field on the particle near the fiber surface can be neglected. The
computation of the fiber collection efficiency in this limit is
reduced to the computation of the trajectory of the particle
motion as a function of the shooting parameter.

As an example, we investigate the high-velocity regime
of deposition of submicron particles of heavy metals in fine-
fibrous analytical filters. Consider the case of a filter with fine
glass fibers with a diameter of 2 μm subjected to uniform flow
with a velocity of 20 cm/s. For the elastic properties of the glass
and aerosol particles, we assume that E = E′ = 1012 erg/cm3,
σ = σ ′ = 0.3. Hamaker’s constant A is assumed to be equal
to 10−12 erg, and the length of the fiber is L = 100 r0. For
a particle with radius R = 0.3 μm, density ρ̃ = 10 g/cm3,
and mass m = 1.13 × 10−12 g, the estimated collision time
is T = 1.35 × 10−9 s, while the corresponding ratio of the
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potential to kinetic energies and the parameters St, ωT , and
ω̃T are

Up

W
= 2AR

6εmV 2
0

= 0.5, St = 2.22,

ω1T = 4.7 × 10−3, ω̃1T = 0.3.

In order to estimate the probability of an aerosol particle
being captured by a fiber, one can use the limit of an
infinitely long fiber. In this limit we can use the results of the
computations of the restitution coefficient given by Eq. (36),
and assuming that the coefficient of restitution is close to unity,
the parameter λc is calculated from the minimal velocity of
impaction V = (2Up/m)1/2 to be equal to λc = 1.58 × 10−2.
According to Eq. (36), the corresponding restitution coefficient
is ec = 0.97.

For the capture of a particle by a fiber, neglecting friction,
the following condition for the particle velocity applies:

V0 <

(
2Up

m

)1/2 (
1 − e2

c

e2
c

)1/2 [
1 + b2

r2
0 e2

c

(
1 − e2

c

)]−1/2

,

where b is the shooting distance. At the head-on collision
of particles with R = 0.3 μm with a fiber, the velocity is
estimated as V0 < 3 cm/s. Thus, the collection of heavy
particles of a given size at common sampling velocities may
be noneffective. For particles having considerably smaller size
at V0 = 20 cm/s, the Stokes number is small, St � 1, and the
contact interaction of the particle and the fiber has a weak
effect on the filtration efficiency.

Similar computations for a particle with R = 1 μm
give T = 4.68 × 10−9s, Up/W = 0.035, St = 24.7, ω1T =
1.6 × 10−2, ω̃1T = 0.65, λc = 0.33. For deposition of the
particle on the fiber to occur, the velocity must be limited
to V0 < 5 cm/s. It should be noted that for larger particles
the limit for the velocity is higher since the parameter λc is
greater. In this case the restitution coefficient ec is smaller, and
the energy losses due to emission of the transverse waves are
greater.

We shall compare the obtained estimates for the critical
velocity of deposition with the results of computations on the
basis of the complete system of Eqs. (25)–(29), describing the
interaction between the aerosol particle and the fiber. Shown
in Figs. 4 and 5 are dependencies for the particle velocity
components Vx , Vy for the gap between the particle and the
fiber s and for the stress σ versus dimensionless time at the
particle-fiber collision. The initial position of particles was
chosen at large positive values of the x coordinates and at
dimensionless shooting distance y = b/(R + r0). The initial
particle velocity V0 was directed along the x axis toward
the fiber, which was placed in the origin. In Fig. 4 our
computational results are illustrated for two values of initial
velocity for a particle with a radius of 0.3 μm. In Fig. 5 the
results of similar computations for a particle with a radius of
1 μm are presented.

Figure 4(a) illustrates the particle velocity dynamics in the
region near a fiber: acceleration of a particle with an initial
velocity of 1 cm/s in the fiber direction due to the action
of the attractive van der Waals force before the moment of
collision, the rapid change of the velocity direction due to
the action of elastic forces at contact, and the same velocity

change until the second collision. The dependence of the gap
s versus time is illustrated in Fig. 4(b). The maximum value
of the gap decreases from collision to collision (only two are
shown) because of the energy losses upon contact. Particles
were eventually captured after many collisions. It should be
noted that the gap value becomes negative at the very moment
of the contact of the particle with the fiber. The corresponding
elastic stresses are shown in Fig. 4(c). In Figs. 4(d)−4(f),
similar curves are shown for a velocity of 5 cm/s for which
the particle returns to the stream after a single collision.

For particles of a larger size having a radius of 1 μm,
moving toward the fiber with a velocity of 3 cm/s, the
dynamics of the process is shown in Figs. 5(a)−5(c), where the
gap s gradually tends to zero. For a high velocity of 6 cm/s a
single collision occurs, and a particle returns to a stream. From
Fig. 4 it follows that a particle with a radius of 0.3 μm should
deposit on the fiber if the initial velocity is 1 cm/s, while at 5
cm/s the particle should miss the fiber after a single collision.
Thus, one can see that the critical velocity of deposition on the
fiber for heavy particles with a radius of 0.3 μm lies within
the interval 1 cm/s < V ∗< 5 cm/s, while for particles with
a radius of 1 μm the interval is 3 cm/s < V ∗< 6 cm/s. The
predictions for the velocity of the particle deposition on the
basis of Eq. (36) agree with the results of computations with
the full system of Eqs. (25)–(29).

The results of the computations for a particle with radius
1 μm and initial velocity 20 cm/s are given in Fig. 6. This is a
typical face flow velocity for sampling with analytical filters.
Figure 6(b) shows the time dependence of the gap s. From this
plot one can see that heavy particles do not deposit at the given
conditions. In Fig. 6, with plots similar to those in Figs. 4 and
5, the time dependencies are shown for the angular rotational
velocity of the particle ω0 [Fig. 6(d)] and for the fiber at the
point of contact ω [Fig. 6(e)], as well as for the translational
kinetic energy Wt = mV 2/2 and overall kinetic energy of the
particle during the process of collision [Fig. 6(c)].

We call attention to the fact that the angular velocity of
a fiber in the point of impact is an antisymmetric function
ω(t + t1) = −ω(t) with a period t1 equal to the time of flight
of elastic torsional waves over the whole length t1 = L/β̃c.
This is consistent with the analysis given in the Appendix A.
The computations were performed for 50 harmonics and for
the friction coefficient kt = 0.3.

It is also interesting to trace the deformation of the fiber
form after the collision. Different forms of a fiber with r0 =
1 μm at intervals of time are shown in Fig. 7(a) for the case
of the head-on collision with a particle with R = 1 μm and
initial velocity of 20 cm/s. It is seen that the perturbation
has no time to reach the end point of the fiber, and thus, the
approximation of the infinite fiber is valid. The dependence
of the location of the middle of a fiber versus time is shown
in Fig. 7(b). Arrows at the time axis correspond to the onset
and the end of the contact interaction. After the collision, the
fiber continues to deform until the perturbation reaches the
fixed ends of a fiber. The difference between the behavior of
deformation after the collision of a particle with an infinite
fiber and with an infinite plate is discussed in full detail in
Appendix A.

So far, all dissipative processes have been neglected.
Below, the range of validity of this assumption will be
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FIG. 4. (a, d) The velocity components, (b, e) the gap, and (c, f) the maximal stress vs time at the collision of a particle with radius
R = 0.3 μm with a fiber with radius r0 = 1 μm for two values of the face flow velocity (a−c) U0 = 1 cm/s and (d−f) U0 = 5 cm/s, with
dimensionless shooting parameter y = 0.5.

estimated. For high-velocity impacting particles, two regimes
may occur, depending on the nature of the material of
the interacting bodies: plastic deformation or the formation
of microcracks in brittle particles and fibers, with their
subsequent failure. The maximal stresses of compression at

the collision occur on the surface in the center of the contact
region [16,18]:

σmax = 2

π

E∗4/5

R3/5

(
15

16
mV 2

0

)1/5

. (37)
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FIG. 5. (a, d) The velocity components, (b, e) the gap, and (c, f) the maximal stress vs time at the collision of the particle with radius
R = 1 μm with the fiber with radius r0 = 1 μm for two values of the face flow velocity (a−c) U0 = 3 cm/s and (d−f) U0 = 6 cm/s, with
dimensionless shooting parameter (a, b, c) y = 0.5 and (d, e, f) y = 0.

These stresses do not exceed the failure threshold for brittle
materials σb at velocities lower than the critical value:

V0 <

(
π4

40

)1/2 (
E∗

ρ̃

)1/2 ( σb

E∗
)5/2

=
(

π4

40

)1/2 (
E

ρ̃

)1/2 (σb

E

)5/2
(

E

E∗

)2

. (38)

For glassy fibers for which E ≈ 4 × 1012 erg/cm3 and
σb/E ≈ 10−2, the estimation V0 < 30 cm/s for the critical
velocity is obtained, provided that the elastic moduli of the
fiber and the particle are of the same order. For plastic materials
the losses due to plastic deformation can be estimated as
in [14].

Another channel of the dissipative processes is connected to
hysteresis losses due to deformation of the impacting particle
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FIG. 6. (a) The particle velocity components, (b) the gap, (c) the translational and overall kinetic energy of the particle, (d, e) the angular
velocity of the particle and the fiber, and (f) the maximal stress vs time at the high-velocity impact of the particle on the fiber, with U0 = 20 cm/s
and dimensionless shooting parameter y = 0.5.

with van der Waals’ forces. According to the Johnson-Kendall-
Roberts theory [19], the force of interaction F and the relative
displacement δ are given in terms of the radius of the contact
zone a by

F = 4E∗

3R
a3 − 4E∗(πr̃)1/2a3/2, (39)

δ = a2

R
− (4πr̃a)1/2, (40)

where the radius r̃ is related to the surface tension γ of the
particle,

r̃ ≡ γ

E∗ .
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FIG. 7. (a) The form of the fiber varied due to interaction with
a fast particle at several subsequent values of time and (b) the time
dependence of the displacement of the fiber-particle contact point at
z = L/2. Arrows denote the onset and the end of the particle-fiber
contact interaction.

The surface tension γ can be expressed in terms of
Hamaker’s constant,

γ = A

12πε2
.

For the interval 0 < a < R(πr̃/4R)1/3 the function F (δ)
is two-valued. This leads to different interaction potentials
between the particle and the fiber at the compression and
rebound stages, which, in turn, leads to adhesion losses.

Hysteresis losses will be governed by the work done by the
force F (δ) over the region of two-valuedness:

Wa =
∫ ap

0
F (a)

dδ

da
da.

By evaluating this integral, we find the adhesion losses

Wa = 3.2E∗R3

(
πγ

4E∗R

)5/3

. (41)

The theory [19] is valid when parameter μ1, first introduced
in [20], is large enough,

μ1 =
(

γ 2R

E∗2ε3

)1/3

� 1. (42)

The particle deformation due to the action of dispersion
forces was first considered in [21]. Later computations can be
found in [22]. In these works, it was shown that for μ1 � 1
the losses due to hysteresis are small or absent. For the aerosol
particles under consideration here, the mentioned parameter is
equal to μ1 = 0.05 for R = 0.3μm, while for a particle with
R = 1μm one obtains μ1 = 0.075. Therefore, the hysteresis
losses of energy should be small. Thus, at typical operational
flow velocities smaller than 10 cm/s for heavy aerosol particles
with St � 1, the basic losses of energy upon collision of
particles with fibers are those due to the excitation of elastic
fiber vibrations. The dissipative losses can also be connected
to the friction exerted by a gas on a fiber and a particle at low
Stokes numbers.

IV. COMPUTATION OF THE FILTER COLLECTION
EFFICIENCY DUE TO THE INERTIA

OF PARTICLES WITH St ∼ 1

In this section we present the results of simulations for the
deposition of aerosol particles on fibers of a filter for moderate
gas flow velocities based on Eq. (36) for the coefficient of
restitution. In the gas filtration literature there exist a large
number of empirical formulas for predicting the efficiency of
filtration in the inertial regime at different conditions [23].
But there have been no computations performed from first
principles that considered both the movement of the particle
in the gas stream due to attractive forces and the rebound of
the particle from the fiber surface upon contact.

A fibrous filter is usually a highly porous thin layer of
material consisting of randomly arranged long fibers. The
actual flow field is difficult to predict, as the correlations
between fibers are not known. Therefore, the average flow
field is often used in the vicinity of fibers. For a single fiber
in a random fibrous medium and an averaging procedure with
respect to the coordinates and orientations of all other fibers,
a two-dimensional flow field will result. Different models
are used to represent the influence of the neighbor fibers on
this average flow field [1]. An example is the model of the
transverse flow past a periodic hexagonal lattice of parallel
fibers.

Further simplification was suggested in [24]. This model
describes well the dependence of the hydrodynamic resistance
of the hexagonal lattice versus packing density α at small flow
velocities. It is worth noting that plane flows are often used in
experiments for investigating the deposition of particles upon
a single fiber or a row of parallel fibers [1,4,23]. In addition to
the average flow field, there would be fluctuating velocities
caused by the neighboring fibers. For a low fiber packing
density α the average distance cut by the neighbor fibers on
the given fiber will be of the order of r0/α � r0, which is
easily seen if, for instance, the fibers in the nearest layers
form a square lattice in the plane of the filter. Hydrodynamic
perturbations initiated from the fiber intersections propagate
to a distance of the order of the fiber radius, as in the case
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of the flow past a sphere. At small packing densities α,
these perturbations would have a small effect on the particle
deposition since the fraction of these regions of perturbations
is of order α. Thus, the size of the fluctuating fields should be
of the order r0/α. At such large scales at St ∼ 1 the particle
inertia should be negligible. The particles are expected to move
following streamlines with constant concentration since the
gas flow is considered as incompressible. It may be that the
inhomogeneity of the flow along the fiber length is the main
effect of the long-wave velocity fluctuations on the filtration
efficiency. We will first investigate the deposition of particles
on a fiber in a plane transwerse flow, and then the influence of
the flow inhomogeneity along the fiber length is estimated.

The simulations were performed for the Stokes flow in
a fibrous filter, for which the nondimensional stream function
�(r,ϕ) and the corresponding components of the flow velocity
found by Kuwabara in the framework of the cell model [24]
were used:

�(r,ϕ) = 1

K1
sin(ϕ)

(
2 − α

4r
+α − 1

2
r+r ln r − α

4
r3

)
,

(43)

Ur = − ∂�

r∂ϕ
, Uϕ = ∂�

∂r
.

Here α is the packing density of fibers in the filter
(volume of fibers per unit volume of filter), and K1 =
−0.5 ln α − 0.75 + α − 0.25α2 is the hydrodynamic factor.
Our simulations were performed for α = 0.05. In Eq. (43)
the distances are normalized with r0 and velocities with
U0. The particle trajectories were found from the system of
nondimensional equations with van der Waals and particle
drag forces:

dVr

dt
= V 2

ϕ

r
− 1

St
(Vr − Ur ) + Fr

r0

mU 2
0

,

(44)
dVϕ

dt
= −VrVϕ

r
− 1

St
(Vϕ − Uϕ).

A method of computation of the van der Waals forces at
distances s � ε is given in Appendix C. The particles were
launched from the cell boundary at the radius r = α−1/2,
with an initial velocity equal to the gas flow velocity V = U.
The van der Waals force was defined as a piecewise function
(see Appendix C). Equations (44) were solved by the finite-
difference scheme of Runge-Kutta-Fehlberg of order 4–5 [25].

Examples of the trajectories are given in Fig. 8(a) for
particles with radius R = 0.3 μm and for low flow velocities.
They were computed with completely elastic particle-fiber
collisions. Even for perfectly elastic collisions, all particles
that touch the fiber will deposit on it. The losses of energy of a
particle are connected with the gas friction during its vibrative
motions near the fiber. Shaded areas in Figs. 8(a) and 8(b)
depict the regions on the fiber surface in which the particles,
after collision with the fiber, are eventually captured.

At Stokes numbers lower than critical, the collision of
the particle with the fiber results in particle deposition. At
Stokes numbers higher than the critical value [see Fig. 8(b)]
and at R/r0 < 1, there are two regions (zones) of deposi-
tion surrounding a region in which all rebounded particles

FIG. 8. Examples of simulated trajectories for particles with
radius R = 0.3 μm for the face flow velocities (a) U0 = 5 cm/s
and (b) U0 = 8 cm/s. The fiber packing density is α = 0.05, the fiber
radius is r0 = 1 μm, and the particle density is ρ̃ = 10 g/cm3.

eventually leave the fiber. In the first zone of deposition, in
the vicinity of the axis of symmetry, head-on collisions take
place, followed by rebounds with reduced velocity. The second
zone of deposition is found close to 90◦. Thus, in the upper
semiplane, there is not one, but three, limiting trajectories.
The fiber collection efficiency η is defined as the ratio of
the number of particles depositing on the fiber unit length in
a unit of time to the flux 2r0U0n0, where n0 is the particle
concentration in a stream. The fiber collection efficiency η is
an important quantity in the theory of filtration as it defines
the coefficient of penetration of particles P , which, in turn,
governs the efficiency of filtration. The particle penetration
P is equal to the ratio of the flux of particles that passed
through the filter to the inlet flux. It is given by the formula
P = exp(−2ηαH/πr0), where α is the filter packing density
and H is the filter thickness [1]. In the case of a single limiting
trajectory the fiber collection efficiency η is equal to the value
of the dimensionless stream function �1 at the initial point of
the limiting trajectory at the cell boundary. For the case when
the rebounded particles appear, the fiber collection efficiency
is found as �1 − �2 + �3, where the stream functions �i are
governed by the limiting trajectories, starting with those that
are the most distant from the stream symmetry plane.

The calculated dependence for η is given in Fig. 9 for
different coefficients of restitution versus the face flow velocity
at low Stokes numbers. In Fig. 9, curve A was plotted for the
case of full adhesion at ec = 0. A feature of curve A can
be easily explained. Neglecting attractive forces in the region
of low Stokes numbers, a particle follows a streamline and
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FIG. 9. Fiber collection efficiency vs Stokes number (velocity U0)
plotted for inertial particles with radius R = 0.3 μm and for a fiber
with radius r0 = 1 μm in a filter with packing density α = 0.05,
accounting for the rebound of particles for different coefficients
of restitution ec. Curve A, no rebound (ec = 0); B, ec = 1; C,
ec defined by Eq. (36); D, ec = 0.8. The dashed curves B′, C′,
and D′ correspond to simple approximations described in the text.
Dotted curves correspond to the fiber collection efficiency for ec = 1
averaged over the fiber length for nonhomogeneous flow varying
along the fiber length by the formula U (z) = U0[1 + ε1 sin(kz)] for
three values of perturbation ε1 (given on curves).

deposits only if the streamline is closer to the fiber than the
particle radius. With attractive forces and inertia, the particle
is pulled from the streamline toward the fiber, resulting in
an increase in the collection efficiency. The influence of the
particle inertia increases with stream velocity, and, in the limit
of high velocities, when St � 1, the particle moves almost
along a straight line due to inertia, and the fiber collection
efficiency reaches its limit, η = (R + r0)/r0.

Curve B corresponds to the case of full rebound (bounce
off) at the coefficient of restitution ec = 1. Also shown is
the dependence for the coefficient of restitution ec defined
by Eq. (36) (curve C). Curve D corresponds to ec = 0.8.
There is a rapid decrease in the fiber collection efficiency with
increasing face flow velocity (Stokes number). This behavior
is explained by particles that escape after two rebounds. Other
curve cusps may appear with the rise in the Stokes number due
to particles escaping fibers with a large number of rebounds.
The dashed curves B′, C′, and D′ are simple approximations of
the form η = η0 − a(St − St0)1/2, where a is the coefficient of
approximation and the subscript 0 corresponds to the critical
Stokes number, which is related to the cusp appearance. The
calculated fiber collection efficiencies are well described by
the square-root dependence at Stokes numbers slightly higher
than the critical value.

It is seen from Fig. 9 that there is a minimal critical velocity
or a minimal critical Stokes number, below which even an
elastic interaction of particles with a fiber surface does not lead
to a decrease in the filtration efficiency. The critical value of the

Stokes number is a function of all dimensionless parameters
defining the movement of aerosol particles:

St = f

(
A

mU 2
0

,
R

r0
,α,...

)
. (45)

When the velocity is greater than the minimal critical ve-
locity, the filtration efficiency is determined by the mechanism
of the particle energy loss at the collision and may become
much lower. The minimal critical value of St is depicted by an
arrow in Fig. 9.

The computations performed show the presence of cusps
on the η-U curves. However, no sharp cusps are observed in
experiments, which can be explained by the polydispersity
of aerosol particles and fibers, by a variable gas flow along
the fiber length, and by time fluctuations of the velocity. We
expect that averages over all of these parameters will result in
smoothed curves. As an illustration, in Fig. 9 the dotted curves
denote the dependencies of the fiber collection efficiency for
ec = 1, averaged over the fiber length with the assumption that
the velocity is varied along the fiber in accordance with the law
U (z) = U0[1 + ε1 sin(kz)]. The increased flow inhomogeneity
at higher ε1 values leads to less-inclined curves at the cusp
points.

We have theoretically investigated the interaction of solid
heavy particles with fine fibers when the basic inelastic losses
are due to excitation of long-wave elastic vibrations in the
fibers. We are not aware of any specific experiments with
heavy aerosol particles. The majority of experiments have
been conducted with polystyrene particles. Our results can be
formulated on the basis of Fig. 9. At small Stokes numbers St
the fiber collection efficiency should always follow curve A,
with ec = 0. There exists a critical velocity that, for elastic
collisions at ec = 1, governs the appearance of rebounded
particles that return to the stream. When the stream velocity is
greater than the critical value, the fiber collection efficiency
is affected by various inelastic processes. The greater the
inelastic losses during collision are and, correspondingly, the
smaller the coefficient of restitution ecis, the higher the Stokes
numbers will be that correspond to the onset of deviation of
the curve η(St) from curve A, as seen from curves C and D.

Finally, we compare the obtained results with recently
reported experimental data [23]. The comparison is only
qualitative since, for numerical agreement, one has to perform
computations for conditions of the given experiment, as the
inertial deposition is sensitive to the flow field, properties of
the particle and fiber materials, their size, and the condition of
their surface. First of all, it should be noted that in the cited
study the Stokes number was defined by the fiber diameter,
while we have defined it by its radius. Therefore, the results
differ twofold. We follow our definition. The experiment
was conducted with polystyrene particles with radii of 1.3
and 2.6 μm depositing upon a single fiber. In experiment, a
maximum in the fiber collection efficiency was seen at St ∼ 4
for 1.3 -μm particles (at U0 ∼ 120 cm/s) and at St ∼ 6 for
2.6-μm particles at a flow velocity of the order of 50 cm/s.
For large particles the maximum on the curve η(St) should be
higher. This is explained as follows: the particle trajectories
are the same at the same Stokes numbers while neglecting the
attractive forces, but particles with greater size are able to reach
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the fiber faster. Equation (36) shows that for the fibers used
in the experiment the shown radiation losses are negligible.
Here the losses can be estimated in a way similar to the case of
the interaction with the plane. Adhesion losses are estimated
by Eq. (41). The material properties are as given in [14].
The surface tensions of steel and polystyrene are γs = 1.62
J/m2 and γP = 0.03 J/m2; values of the modulus of elasticity
are given by Es = 190 GPa, Ep = 3 GPa. If Es � Ep, then
E∗ ∼ Ep. For estimations we assume that γ = γs . Inserting
these values into the formula for the energy dissipation due to
hysteresis [Eq. (41)] and expressing the restitution coefficient
ec in terms of the adhesion losses ec = (1 − 2Wa/mV 2

0 )1/2, we
obtain the following estimate for the coefficient of restitution:

ec =
(

1 − B
R7/3

r2
0 St2

)1/2

,

where the coefficient B is independent of the geometric
dimensions.

For particles with a radius of 1.3 μm at St ∼ 4 we obtain
ec = 0.95, while for particles with a radius of 2.6 μm at
St ∼ 6 the coefficient of restitution is ec = 0.89. If the given
estimates are not significantly changed by the losses of energy
due to plastic deformations, then the decrease in ec with
the particle radius increase explains the occurrence of the
maximum in the dependence of the fiber collection efficiency
at high Stokes numbers for particles with large radii.

V. INFLUENCE OF FILTER PACKING DENSITY ON
EFFICIENCY OF FILTRATION

In a sufficiently dense fibrous medium the rebounded
particles at high Stokes numbers may not attain the flow
velocity U0 during the time between the collisions. We assume
the fibrous medium to consist of a number of touching flat
layers, where every layer is formed by an entity of random,
independent, infinitely long straight fibers arranged in these
layers. Let us consider a circumference of radius R1 = R + r0

that belongs to one of the layers. Random fibers will cross this
circumference. The average length of segments l̄ that is cut
from random fibers by this circumference is equal to [26]

l̄ = π

2
(R + r0).

The total length of all of the fiber segments cut by the
circumference is l̄N , where N is an average number of fibers
crossing the considered circumference. Equating the ratio of
the volume of all of the fibers Nl̄πr2

0 , crossing the circum-
ference to the volume of the layer of a filter with the surface
area π (R + r0)2 and the thickness 2r0, to the packing density
α, we express the average number of fibers N in terms of α:

N = 4α(R + r0)

πr0
.

Since the fibers are independent, the probability of the
intersection of the considered circumference with n fibers is
governed by Poisson’s distribution,

P0(n) = Nn

n!
e−N .

Next, estimate an average length l̄1 of the flight of the
particle along the straight line perpendicular to the filter surface

before the collision with the fiber. For this purpose the average
number of fibers from l̄1/(2r0) layers, projected to a single
surface and intersecting the circumference with radius R + r0,
must be of order unity. We assume that the transverse cross
section of the particle is crossed by two fibers,

l̄1

2r0
N = l̄14α(R + r0)

2πr2
0

= 2,

from which the estimate for the length l̄1 is found:

l̄1 = πr2
0

α(R + r0)
.

Now estimate the length at which the initially motionless
particle attains the stream velocity U0. From the equation of
motion of the particle at low velocities we find the time of
acceleration t ∼ m/6πμR and the corresponding length of
acceleration l ∼ U0t = r0St. A particle will not have time to
accelerate to the stream velocity if l̄1 � l. This leads to the
following condition for the Stokes number:

π

α

r0

R + r0
� St. (46)

In this case, in order to estimate the filtration efficiency, one
has to know the particle velocity distribution. The computation
of the coefficient of penetration of particles through the filter P

was performed with the Monte Carlo method. A simple model
was proposed. The particles are moving between collisions
in the field of the constant hydrodynamic velocity U0. The
particle velocity is varied in time in accordance with

V(t) = U0 + (V1 − U0) exp

(
− U0t

r0St

)
. (47)

Having passed a random distance l1, which is uniformly

distributed within the interval 0 < l1 < 2π
α

r2
0

R+r0
, the particles

hit the fibers. As a result of the collision, the particle velocity
deviates with equal probability for an arbitrary angle with a
loss of part of the particle energy provided that the particle
velocity is greater than the threshold value, or deposition on
the fiber occurs.

The results of computations for the coefficient of the particle
penetration through the filter P versus the filter packing
density α are given in Fig. 10. The particle penetration P ,
as mentioned, is equal to the ratio of the flux of penetrated
particles to the flux before the filter. Here the product of the
thickness of the filter to the packing density is kept constant in
order to keep the overall length of fibers in the filter volume.
The following parameters were chosen: Hα = 2.5 × 10−3 cm,
U0 = 20 cm/s, R = 0.5 μm, r0 = 0.1 μm, m = 5.2 × 10−12

g, and St = 61.7. The computations were performed for
the two values of the coefficient of restitution ec = 0.9 and
ec = 0.5. The threshold velocity was chosen to be equal to
0.2 U0. The results of the simulations were averaged over 104

trajectories.
From Fig. 10 it is seen that the penetration curves fall

steeply with the packing density. This result is somewhat
unexpected for loose filters, but the very existence of this
effect is possible, particularly, for aerosol particles of heavy
metals. In the given example a very loose filter (remaining
very porous at a several-fold compression) was chosen. Thus,
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FIG. 10. Monte Carlo simulations for the coefficient of penetra-
tion of aerosol particles through the filter P vs the filter packing
density α for two values of the restitution coefficient.

an infinitely small increase in the flow velocity within this filter
should not affect its efficiency. Here the rise in the efficiency
is explained only by the fact that the rebounded particles have
no time to attain the velocity of the gas stream. Of course,
the magnitude of the effect is dependent on the prescribed
coefficient for the threshold velocity. For illustrative purposes,
this coefficient was small since this is the case for particles
with a high density of material. This effect complements the
list of characteristic features of fine filtration of heavy aerosols.
However, it should be noted that in the case of real filters with
dense packing, α > 0.1, further compression of a filter may
lead to an increase in efficiency mainly due to the sieve effect,
where the particle center goes between fibers with an interfiber
distance smaller than the particle radius in some regions of
the filter. The probability of the appearance of traps can be
estimated in terms of the Poisson distribution for the number
of fibers crossing the transverse cross section of the particle.
For particle trapping, it is required that at least three fibers from
a given or neighboring layers be within a radius of (R + r0).
From this it follows that the probability for the particle to
appear in the trap is of the order of P0(3) = N3

3! e−3N and,
hence, is proportional to α3 at small packing densities, α � 1.
Thus, one can infer that the presence of the considered traps
should have little effect on the dependence of the coefficient of
penetration of particles P (α) versus packing density at small
values of α.

The condition (46) may be fulfilled for heavy particles.
For example, Ref. [27] reports the experimental results with
the following parameters: R = 1.6 μm, r0 = 7.5 μm, U0 =
100 cm/s, α = 0.033, and H = 0.6 cm for particles with
density ρ̃ = 7.8 g/cm3. The corresponding Stokes number was
St = 32. The coefficient of penetration was P = 0.4, which
is one order greater than estimated with the formula P =
exp(−2ηαH/πr0) with fiber collection efficiency η ∼ 0.2,
defined by inertial mechanism of deposition without rebound.
In order to use the results obtained in this section, the stream
velocity U0 must be increased by a factor of 2.5, according to
Eq. (46).

VI. CONCLUSIONS

The excitation of sound vibrations in fine fibers of a filter
during the impaction of aerosol particles was studied. The
equations describing the dynamics of impact were derived
for an arbitrary shooting parameter. As shown, the losses
of energy of a particle due to excitation of elastic waves
may govern the efficiency of the particle deposition. It was
shown that for long fibers the coefficient of restitution is a
function of only parameter λc, which is defined by Eq. (32).
The restitution coefficient was shown to be a function of
the radial component of the particle velocity, the mass of a
particle, the fiber density, the modulus of elasticity, and the
geometric parameters of a fiber and a particle. The coefficient
of restitution was calculated, and its analytical approximation
was derived [see Eq. (36)].

The dependence of the filtration efficiency of the fibrous
filter versus the face flow velocity was investigated. The
existence of the critical face velocity was shown, below which
the losses of energy during collision have no influence on
the collection efficiency. For velocities higher than the critical
value the filtration efficiency is dependent on the mechanisms
of nonelastic losses of the particle energy. Its value can be
significantly lower than that estimated by the theory of the full
adhesion without accounting for the particle rebound effect.

At high flow velocities, rebounded particles appear. This
leads to the velocity distribution for the particles in the stream.
The particle velocity distribution and the fiber collection
efficiency will be dependent on the fiber packing density α.
As shown for a simple model, the filtration efficiency should
increase with the packing density α at the constant value of
the total fiber length per unit surface of the filter, αH = const,
and at high flow velocities.

The results obtained above illustrate the basic features of
fine filtration of gas containing submicron suspended particles
with a high density of a material. It follows from the presented
results that the penetration of such particles through highly
efficient fine-fibrous filters may occur at typical operational
flow velocities.
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APPENDIX A: DEFORMATION OF AN INFINITE FIBER AS
A RESULT OF INITIAL IMPACT

As a result of the collision of a particle with a fiber or a flat
plate, the regions near the contact area attain an initial velocity
and continue to deform after the collision. In this Appendix
we show that the dynamics of deformation of an infinitely
long one-dimensional fiber and that of a two-dimensional
unbounded plate upon obtaining the initial bounded velocity
distribution are different.

Consider the evolution of a fiber with the initial bounded
velocity distribution

ξ̇ (z,0) = V0e
− z2

a2 . (A1)
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Introducing the dimensionless variables (marked by
primes), z = az′, t = a2

βc
t ′, ξ = V0

a2

βc
ξ ′, the equations of

a fiber vibration together with initial conditions are
written in the form

∂2ξ ′

∂t ′2
= −∂4ξ ′

∂z′4 , (A2)

∂ξ ′(z,0)

∂t ′
= e−z′2

. (A3)

Primes hereafter will be omitted. One needs to find the
solution for the velocities of the fiber points at an arbitrary
time. Applying the Fourier transform, we obtain

ξ̇ (z,t) = π1/2
∫

dk

2π
cos

(
k2t

)
exp

(
−k2

4
+ ikz

)

= 1

2
π1/2

∫
dk

2π

[
exp

(
−k2

4
+ ikz + ik2t

)

+ exp

(
−k2

4
+ ikz − ik2t

) ]
. (A4)

Evaluating the Gaussian integrals gives the result

ξ̇ (z,t) = 1

4

[
1(

1
4 + it

)1/2 exp

(
− z2

1 + 4it

)
+ 1(

1
4 − it

)1/2

× exp

(
− z2

1 − 4it

) ]
= 1

2
exp

(
− z2

1 + 16t2

)

×
[
a1(t) cos

(
4tz2

1 + 16t2

)
+ia2(t) sin

(
4tz2

1 + 16t2

)]
,

(A5)

where

a1(t) = 1

(1 + 4it)1/2
+ 1

(1 − 4it)1/2
,

a2(t) = 1

(1 + 4it)1/2
− 1

(1 − 4it)1/2

Extracting the roots, we have

(1 ± 4it)1/2 = (1 + 16t2)1/4 exp

(
±i

1

2
arctan4t

)
,

cos

(
1

2
arctan4t

)
=

{
1

2

[
(1 + 16t2)1/2 + 1

]}1/2 1

(1 + 16t2)1/4
,

sin

(
1

2
arctan4t

)
=

{
1

2

[
(1 + 16t2)1/2 − 1

]}1/2 1

(1 + 16t2)1/4
.

Using these expressions, we define

ξ̇ (z,t) = exp
(− z2

1+16t2

)
21/2(1 + 16t2)1/2

{[
(1 + 16t2)1/2 + 1

]1/2
cos

(
4tz2

1 + 16t2

)
+ [

(1 + 16t2)1/2 − 1
]1/2

sin

(
4tz2

1 + 16t2

)}
. (A6)

For the displacements of the fiber points we obtain the following expression in dimensional form:

ξ (z,t) = V0
1

21/2

∫ t

0

dt ′(
1 + 16β2

c t
′2/a4

)1/2 f (z,t ′) exp

(
− z2/a2

1 + 16β2
c t

′2/a4

)
, (A7)

where

f (z,t ′) = [g(t ′) + 1]1/2 cos

(
4βct

′z2/a4

1 + 16β2
c t

′2/a4

)
+ [g(t ′) − 1]1/2 sin

(
4βct

′z2/a4

1 + 16β2
c t

′2/a4

)
,

g(t ′) = (
1 + 16β2

c t
′2/a4

)1/2
.
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The displacement of the central point is

ξ (0,t) = V0
1

21/2

∫ t

0
dt ′

[(
1 + 16β2

c t
′2/a4

)1/2 + 1
]1/2

(
1 + 16β2

c t
′2/a4

)1/2 .

(A8)

For long time intervals, t � a2/βc, the displacement of the
central point increases with time as

ξ (0,t) = V0
a

81/2β
1/2
c

t1/2 + const. (A9)

Similar computations may be performed for deformation
of the infinite plate. The equation for the bending of the plate
with thickness h situated in the xy plane is

ρh
∂2ξ

∂t2
= −D�2ξ, D = Eh3

12(1 − σ 2)
, � = ∂2

∂x2
+ ∂2

∂y2
.

(A10)

The dispersion equation for the plate vibrations is

ω2(k) = β2k4, k2 = k2
x + k2

y, β2 = D

ρh
.

Assume that the initial velocity distribution is given by
V (r) = V0e

−(r/a)2
. Similar to the problem with fibers, we

perform the Fourier transform with respect to the x and
y coordinates and find the distribution of the velocity and
displacement along the plate:

ξ̇ (r,t) = V0f (r,t), ξ (r,t) = V0

∫ t

0
dt ′f (r,t ′), (A11)

where

f (r,t) = a4

a4 + 16β2t2
exp

(
− r2a2

a4 + 16β2t2

)

×
[

cos

(
4βtr2

a4 + 16β2t2

)

+ 4βt

a2
sin

(
4βtr2

a4 + 16β2t2

)]
.

In the vicinity of the origin, the displacement is

ξ (r,t) ≈ V0
a2

4β

[
arctan

(
4βt

a2

)
− r24βt

a4 + 16β2t2

]
.

(A12)

At long times the displacement is constant,

ξ (r,t) = V0
πa2

8β
. (A13)

Comparing Eq. (A9) with Eq. (A13), we see that at long
times the deformation of the infinite plate at the region of
collision attains a constant value, while for an infinitely long
fiber it tends to infinity. This difference is explained by the
following: the energy of deformation of a plate is greater than
that of a fiber at the same displacements ξ and length scales
d. Following [16], the energy of elastic deformation of the
plate is of the order Wp ≈ Eh3

24(1−σ 2)
ξ 2

d2 , while that of the fiber

is Wf ≈ Eπr4
0

8
ξ 2

d3 . At sufficiently large values of d the energy

of deformation of the plate is greater than that of the fiber,
Wp � Wf .

We now consider the torsional vibrations. The dynamics of
the angle ϕ(z,t) of the torsional vibrations is described by the
standard wave equation,

ρI1
∂2ϕ

∂t2
= C

∂2ϕ

∂z2
, (A14)

in which the velocity of propagation of a perturbation is
u = (C/ρI1)1/2. Assuming a linear law of dispersion, it is not
difficult to account for the finite length of the fiber. The general
solution for the wave equation with zero initial condition is

ϕ(z,t) = f (z + ut) − f (z − ut). (A15)

The function f (z) is dependent on the initial angular
velocity ω(z,0) = ωn(z):

∂ϕ(z,0)

∂t
= 2u

df (z)

dz
= ωn(z).

The angular velocity is governed by the same equation
as the angle. At an arbitrary time and with initial conditions
ω(0,t) = ω(L,t) = 0, the angular velocity is equal to

ω(z,t) = 1

2

∑
n

[ωn(z−2nL − ut)−ωn(2L−z − 2nL − ut)

+ωn(z − 2nL + ut) − ωn(2L − z − 2nL + ut)],

(A16)

where the function ωn(z) is assumed to be equal to zero outside
the interval 0 < z < L. The function ω(z,t) is periodic, with
a period of 2t0 = 2L/u, and possesses the following property:
ω(z,t + t0) = −ω(L − z,t). If the initial distribution of the
angular velocity is symmetric with respect to the middle of
the fiber, ωn(z) = ωn(L − z), then the angular velocity in a t0
period will be reproduced with a different sign:

ω(z,t + t0) = −ω(z,t). (A17)

APPENDIX B: MULTIPLE COLLISIONS OF LARGE
PARTICLES WITH A FINE FIBER

During the time between contact interactions, which for
a fine fiber is ∼ 1/ω1, the highest harmonics make sev-
eral oscillations and obtain a random phase. Therefore, the
excitation of the highest harmonics in the process of the
contact interaction may be neglected. With this in mind, for
an approximate description of the multiple collisions, in the
expansion over modes ξ (z,t) we leave only the first harmonic
of the fiber vibrations, ξ (z,t) = ξ 1(t) sin(πz/L). Thus, the
following system of equations is obtained from Eqs. (2) and
(8) for z0 = L/2, which is similar to that used to describe the
two-particle dynamics:

m0
d2ξ 1

dt2
= −kξ 1 + F, m0 = 1

2
ρSl, k = π4EI

2L3
, (B1)

m
d2r
dt2

= −F, (B2)
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FIG. 11. Dimensionless coordinates of the particle (x,y), the fiber
(ξx,ξy), and the relative distance s∗ versus time in the process of
multiple collisions. All coordinates are brought to nondimensional
form by division with the radius of the fiber r0.

where F is the van der Waals force [see Eq. (C3)]. For elastic
contact interactions we find the following condition relating
initial and final velocities:

ξ̇
′
1 = ξ̇ 1 − 2[(ξ̇ 1 − u) · n]n,

ṙ′ = ṙ − 2[(ṙ − u) · n]n,

where n is the normal vector given by Eq. (12) and u represents
the velocity of the center of mass prior to collision,

u = m0ξ̇ 1 + mṙ
m0 + m

.

Figure 11 illustrates the time dynamics of multiple col-
lisions of a particle with radius R = 1 μm and mass m =
4.19 × 10−11 g, moving with velocity V0 = 200 cm/s, with the
fine fiber radius r0 = 0.1 μm, length L = 100 r0, mass m0 =
3.14 × 10−13 g, and dimensionless eigenfrequency ω1R/V0 =
(k/m0)1/2R/V0 = 17.4. All linear dimensions were scaled

FIG. 12. Sketch of the collision of a large particle having velocity
V0 with a fine fiber, where ξ is the fiber displacement from the
equilibrium position at the point of contact with a particle, R is
the particle position, and b is the shooting distance. The origin of the
coordinates is chosen to be at the axis of the nondeformed fiber.

with r0. As seen from the results of the calculations, at
ω1R/V0 � 1, after the collision, the fiber moves a small
distance from the particle, s∗ − R − r0 ≡ |ξ − r| − R − r0 �
R, where s∗ stands for the distance between the particle center
and the fiber axis. In this case the collision model can be further
simplified if we consider that the fiber is sliding at the particle
surface until complete detachment (see Fig. 12). If the van der
Waals forces are neglected, then the collision process in this
approximation is described by the action S = ∫

�dt with the
Lagrange function [28]

� = m

2
(ẋ2 + ẏ2) + m0

2
(ẋ cos ϕ + ẏ sin ϕ)2

+ m0

2
(R + r0)2ϕ̇2 − k

2
{[x − (R + r0) cos ϕ]2

+ [y − (R + r0) sin ϕ]2}. (B3)

Equalizing the variational derivative of the action to zero
with respect to x, y, and ϕ, we obtain the equations of
motion, while varying with respect to R yields the condition
for detachment. In this Appendix we will not spell out a
complete system of equations, focusing our attention only on
the interaction of a fiber with a massive particle moving with
constant velocity ẋ = −V0. Varying Eq. (B3) with respect to
ϕ, we obtain

m0(R + r0)2ϕ̈ = −m0

2
ẋ2 sin 2ϕ−k(R+r0)(x sin ϕ−y cos ϕ).

(B4)

Varying the Lagrange function with respect to R, the
condition for particle detachment from the fiber surface is
obtained:

m0(R + r0)ϕ̇2 + k[x cos ϕ + y sin ϕ − (R + r0)] > 0.

(B5)

The detachment condition is written in the following form
by accounting for the van der Waals forces:

m0(R + r0)ϕ̇2 + k[x cos ϕ + y sin ϕ − (R + r0)] >
AR

6ε2
.

(B6)

It is seen from Eq. (B4) that at sufficiently long times
the force acting on the fiber is governed by the term that is
dependent on the x coordinate. When the angle ϕ is increased,
the conditions given by Eq. (B5) or by Eq. (B6) are violated,
and thus, the particle is detached from the fiber. The given
analysis shows that, in the process of multiple collisions, a
fast, large particle may deflect a fiber to its radius and move
farther. In this case, the time of interaction is of the order of
the flight time, R/V0. The required energy of deformation is
given by

W = 1

2
EI

∫ (
∂2ξ

∂z2

)2

dz = EIξ 2
0

π4

4L3
.

A particle moves with a slight deflection from a straight
trajectory if

mV 2
0

2
� W.
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By letting ξ 2
0 = R2, the kinetic energy required for fiber

deformation is found from

mV 2
0

2
� EIR2 π4

4L3
.

This condition is compatible with that for the long-term
contact of a particle with a fiber, ω1R/V0 � 1, for sufficiently
large and heavy particles with m/m0 � 4(ω1R/V0)2.

APPENDIX C: VAN DER WAALS’ FORCES BETWEEN A
SPHERICAL PARTICLE AND A CYLINDER

For estimating the van der Waals interaction between two
bodies, let us use the method of summation of energies of
the interaction of single atoms in two bodies for the cases
of nonretarded U ∼ 1/r6 and retarded interaction U ∼ 1/r7,
where r is the interatomic distance. Here we consider only
the interaction of a ball and a half-space, which is valid if the
gap between a ball and a cylinder is smaller than the cylinder
radius. For an arbitrary point inside a ball located at a distance
H from the boundary surface, introducing a cylindrical system
of coordinates with its origin in this point and with the z axis
oriented normally to the boundary surface, we obtain

Uw(H ) ∼
∫ ∞

H

dz2dϕ2

∫ ∞

0
ρ2dρ2

1(
z2

2 + ρ2
2

)n/2

= 2π

n − 2

∫ ∞

H

dz2dϕ2
1

zn−2
2

= 2π

(n − 2)(n − 3)Hn−3
.

Expressing H for the chosen point in the spherical system
of coordinates in terms of the distance h between the center of
the ball and the surface as H = h − ρ1 cos θ1, we obtain

Uw ∼ 2π

(n − 2)(n − 3)

∫ R

0
ρ2

1dρ1 sin θ1dθ1dϕ1

× 1

(h − ρ1 cos θ1)n−3
= 4π2

(n − 2)(n − 3)(n − 4)

×
∫ R

0
ρ1dρ1

[
1

(h − ρ1)n−4
− 1

(h + ρ1)n−4

]
.

For the interaction force we derive the following
expressions:

Fw = −dUw

dh
= 4π2

(n − 2)(n − 3)

×
∫ R

0
ρ1dρ1

[
1

(h − ρ1)n−3
− 1

(h + ρ1)n−3

]

= 4π2

(n − 2)(n − 3)(n − 4)

{
R

(h − R)n−4
+ R

(h + R)n−4

− 1

(n − 5)

[
1

(h − R)n−5
− 1

(h + R)n−5

] }
, (C1)

where n = 6 and n = 7 for the nonretarded and retarded
interactions, respectively. Expressing the coefficient of pro-
portionality in terms of the Hamaker constant A and noting
that h = r − r0, we derive the nonretarded force

F6 = − 2A

3r0

(R/r0)3

[
(r − 1)2 − (R/r0)2

]2 .

Hereinafter r denotes the dimensionless ratio r/r0. Using
the notation Aret for the constant of the retarded van der Waals
interaction between macroscopic bodies, the force of the van
der Waals interaction with retardation is expressed as

F7 = −8Aret

15r2
0

(R/r0)3(r − 1)

[(r − 1)2 − (R/r0)2]3
.

For an arbitrary fiber radius the force of the nonretarded
interaction was derived in [29]:

F6 = − A

24r0

(R/r0)3

p3/2s2r5/2
[(3 + t2)E(p−1) − stK(p−1)],

(C2)

where p = 1 + s/2, t = 1 + s, s = [(r − 1)2 − (R/r0)2]/(2r),
E and K are complete elliptic integrals, r = 1 + x + R/r0,
and x is the dimensionless gap between the particle and
the cylinder. For small gaps, x � min(R/r0,1), and Eq. (C2)
reduces to

F6 = − AR

6x2r2
0

(
r0

R + r0

)1/2

,

which coincides with Eq. (3) used in the text for x � ε/r0.
The force of the retarded ball-cylinder interaction is expressed
in terms of the cumbersome one-dimensional integral [30],
which is not given here.

In a wide range of distances the force can be approximated
by the following piecewise function:

F (r) =
{

1 + R + ε

r0
� r � r67,F6; r > r67,F7

}
. (C3)

Here the radius r67 roughly distinguishes the distance range
into unretarded and fully retarded regions and is estimated
from the following condition: F6 = F7. To exclude the contact
singularity, the obtained force is cutoff at the gap ε = 4 Å,
where the forces of repulsion begin to act.
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