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Simulation of an ac electro-osmotic pump with step microelectrodes

Byoung Jae Kim,1,2 Seung-Hyun Lee,3 Soghra Rezazadeh,1 and Hyung Jin Sung1,*

1Department of Mechanical Engineering, KAIST, Daejeon 305-701, Korea
2Thermal-Hydraulics Safety Research Division, KAERI, Daejeon 305-353, Korea
3Nano-Mechanical Systems Research Division, KIMM, Daejeon 305-343, Korea

(Received 8 February 2011; revised manuscript received 28 March 2011; published 3 May 2011)

Pumps with step microelectrodes subjected to an ac voltage are known to have faster pumping rates than those
with planar asymmetric microelectrodes. The driving force for pumping in these systems is ac electro-osmosis.
This paper aims to understand the flow behaviors of pumps with step microelectrodes by using a realistic model
applicable to high external voltages. This model takes the steric effect due to the finite sizes of ions into account
and copes with the exponential sensitivity of the counterion concentration to voltage. The effects on the pumping
flow rate of varying the pump parameters were investigated. The geometrical parameters were optimized, and
the effects of varying the ac frequency and amplitude were examined. The electrical potential of the fluid and
the electrical charge at the electrode surface were solved simultaneously, and the Stokes equation was used to
describe the fluid flow.
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I. INTRODUCTION

Over the last two decades, a variety of mechanical,
chemical, or electrical methods for the transport of small
amounts of liquid in microchannels has been proposed, with
the aim of extending micropump applications to microfluidic
devices [1]. The selection criteria for a micropump depend
on the pumping mechanism that is suitable to the given
application. Of these mechanisms, electrical approaches are
attractive because of their easy realization, the absence of
moving parts, and their compatibility with electrical devices.
dc electro-osmosis is one such approach that is a well-known
and simple phenomenon. In general, however, it requires
high voltages (∼kV) to move fluids. At such high voltages,
electrodes are subject to degradation, and boiling can occur.
Instead of using dc voltages, electro-osmosis with ac voltages
has recently received significant attention because of the
remarkably low working voltages (∼V) required to move
liquids in microchannels.

Early ac electro-osmotic pumps mostly adopted planar
asymmetric microelectrode arrays. Ramos et al. [2] carried out
a numerical study of electro-osmosis with planar asymmetric
microelectrodes by using a linear capacitor model for the
electrical double layer. Since that study, the linear model has
been used as a standard tool for gaining qualitative insight
into fluid flow [3]. The linear model is physically valid up to,
at most, a few millivolts. However, ac electro-osmotic pumps
practically require voltages of several volts. The linear model
is not able to predict flow reversals that are experimentally
observed at high frequencies and high voltages [4,5] and are
not able to show the dependence of the electrical conductivity
on the pumping flow rate. Moreover, the linear model is
known to predict much higher fluid velocities than are found in
experiments. Attempts have been made to develop models that
overcome these limitations, in particular, that can describe
the electrical double layers under high voltages [6–8]. One
important consideration in these attempts is the effect of finite
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ion sizes, that is, the steric effect. Storey et al. [9] applied
two steric effect models to pumps with planar asymmetric
electrodes in which flow reversal was successfully predicted.

Meanwhile, an array with step microelectrodes was pro-
posed that enhances the pumping flow rate [10]. The advantage
of the step electrodes is that their flow is faster and more
uniform. Urbanski et al. [11] performed a numerical study
of these flow patterns using the linear model in which the
effects of varying the step height were investigated. Recently,
Huang et al. [12] experimentally demonstrated that the step
electrodes could be an ultrafast and high-pressure pump, which
is capable of transporting biological particles, such as DNA.
Burch and Bazant [13] altered the boundary conditions of the
step geometry; as a result, the pumping velocity was about
twice as fast as the step electrode over the wide range of
frequencies. The studies above relating to the step geometry
utilized simulation results with the linear model for the double
layer.

This paper aims for a more realistic simulation of pumps
with step electrodes. In contrast to the previous studies,
a nonlinear model was used that accounts for finite ion
sizes; this modifies the classical Poisson-Nernst-Planck model.
Simulations were performed with the aim of investigating the
effects on the pumping flow rate of varying the geometrical
parameters and the ac voltage. The electrical potential of the
fluid and the electrical charge at the electrode surface were
first solved simultaneously. The time-averaged slip velocity at
the electrode surface was then calculated from the potential
gradient and the charge. The fluid flow was then obtained
by solving the Stokes equation with the time-averaged slip
velocity.

II. SIMULATION METHODS

A. Simulation conditions

Figure 1 shows a schematic of the micro-electro-osmotic
pump with step microelectrodes. A number of microelectrodes
is placed periodically on the channel bottom, and two
microelectrodes constitute one pair. When an ac voltage is
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FIG. 1. Schematic of a micropump with step electrodes.

supplied to each pair, a unidirectional flow is formed due to
the electro-osmotic force on the fluid. The electrode height and
the gap distance between the electrodes are denoted h and G,
respectively. The widths of the electrodes are W1 and W2. An
aqueous 0.001-mol/l KCl solution was used as the working
fluid. At room temperature, the electrical conductivity of this
solution is σ = 48.9×−3 S/m, the electrical permittivity is ε =
6.943×10−10 F/m, and the viscosity is η = 0.001 kg−1 m−2 s2.

The characteristic parameters for nondimensional analysis
are Lc = G (length), tc = GC0σ (time), Vc = kBT /ze
(potential), qc = C0Vc (charge), uc = εV 2

c /ηG (fluid velocity),
and Qc = ucLc (flow rate), respectively. The gap distance
is set to the characteristic length. When the gap distance
decreases, the electrical field strength increases so that the
pumping flow rate increases continuously. The gap distance
is G = 5 μm, and the dimensionless height is H ∗ = H/Lc=
H/G = 10. The asterisk denotes a dimensionless number. The
channel height is much greater than the electrode height such
that the simulations would not be affected by the channel
height. The electrical potential drop and the accumulated
charge in the electrical double layer can be described with
a capacitor model. C0 = ε/λD is the capacitance of the
electrical double layer. Here, λD is the Debye length, which
is approximately 10 nm for a c0 = 0.001-mol/l solution.
The characteristic potential at room temperature (25 ◦C) is
approximately 0.025 V. T, kB, e, and z are the absolute
temperature, the Boltzmann constant, the ion charge, and the
ion valence, respectively. The valence of the KCl solution is
z = 1.

B. Governing equations and numerical methods

Hereafter, unless otherwise stated, the parameters are
dimensionless and are based on the characteristic parameters,
and the asterisks are omitted. Most of the net charge is present
inside the electrical double layer, which is thin compared to the
system length. The potential and the charge at the plane where
the electrical double layer ends and the bulk region starts are
given as boundary conditions to the bulk region simulation.
The region inside the electrical double layer is not a matter of
concern. Hence, only the bulk region was simulated without
any detailed consideration of the region inside the electrical
double layer. This requirement means that it is important to

use an appropriate model of the thin electrical double layer
to ensure as accurate boundary conditions as possible. This
approach has been widely used to avoid complicated numerical
simulations [2,3,9–11,13,14],

The electrical charge is assumed to be nearly zero in the
bulk region,

∇2ϕ = 0, (1)

where ϕ is the electrical potential of the electrolyte. Storey
et al. [9] successfully demonstrated that flow reversal can be
predicted in pumps with planar asymmetric microelectrodes,
by taking the ion crowding effect due to finite ion sizes into
account. In that study, a simple model [15] and a more accurate
model [16] were found to give similar results. Therefore,
the simple model [15] was used owing to simplicity in the
present paper. The original Poisson-Nernst-Planck model was
modified to account for the steric effects, leading to the
following relation between the potential drop (ψ) and the
electrical charge (q),

ψ = −2sgn(q)sinh−1

[√(
1

2υ∗
(
e[(1/2)υq2] − 1

))]
, (2)

υ = 2a3cbulk =
(

a

l0

)3

, (3)

where a, cbulk, and l0 are the ion size, the solution concen-
tration, and the mean distance between ions, respectively.
The dimensionless parameter υ can be determined by fitting
numerical simulations to experimental results. In the present
paper, υ = 0.01 was chosen following the previous result for
planar asymmetric electrodes [9]. Note that, in the case of
infinitesimally small ions (υ → 0 ), Eq. (2) becomes the linear
model, in which (ψ) is in proportion to q.

As for ψ and q, they are defined only at the electrode
surface,

ϕ = Vext − ψ, (4)

dq

dt
= ∂ϕ

∂n
, (5)

Vext = V0sin(
t), (6)

where Vext and n denote the external voltage and the unit vector
normal to the electrode surface, respectively. An insulation
condition is applied to the channel wall,

∂ϕ

∂n
= 0. (7)

Periodic conditions are imposed between the inlet and the
outlet.

After solving the electrical equations, Eqs. (1)–(7), the slip
velocity of the fluid at the electrode surface is computed as

uslip = ψ
∂ϕ

∂s
, (8)
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where s is the unit vector tangential to the surface. The fluid
flow is then obtained by solving the Stokes equation for low
Reynolds numbers,

0 = −∇p + 1

Re
∇2u, (9)

where p, u, and Re are the pressure, the velocity vector, and
the Reynolds number, respectively.

Due to the absence of an inertia term in the Stokes equation,
the fluid velocity field changes at once in response to the slip
velocity. Moreover, due to the linearity of the Stokes equation,
the fluid velocity changes relative to the slip velocity. Con-
sequently, the time-averaged fluid velocity field is equivalent
to the fluid velocity field induced by the time-averaged slip
velocity. Therefore, the time-averaged fluid velocity field can
be obtained without having to solve for the unsteady fluid
flow. The time-averaged slip velocity was calculated over
two periods after a transient behavior disappears. As for the
electrical simulation, periodic conditions were set between the
inlet and the outlet. Since a discontinuity problem arose at
the electrode edges, a finer mesh was applied to the edges.

III. RESULTS AND DISCUSSION

The present model should be able to predict the experi-
mental behavior of a pump as accurately as possible. Storey
et al. [9] demonstrated that the results of this model are in
good agreement with experimental observations for planar
asymmetric electrodes. Thus, a test of the present simulation
method was performed for the pump with planar asymmetric
electrodes. The time-space-averaged slip velocity over the
electrodes is plotted in Fig. 2. The dimensionless parameter
for the ion size is υ = 0.01, and the voltage amplitude is
V0 = 100. Figure 2 shows that there is a maximum at 
 =
0.7 and a minimum at 
 = 3.0. The present data are in fairly
good agreement with the reference, which validates the present
numerical method.

There are many possible combinations of the geometrical
parameters, so we limited our study to cases in which
W = W1 = W2. One of the main goals of the present paper
is to determine the geometrically optimized condition for

FIG. 2. Validationof the present numerical method.

FIG. 3. Variations of the pumping flow rate with the electrode
height (h) and the ac amplitude (V0).

high pumping flow rates. Therefore, simulations started with

 = 1 since the maximum pumping flow rate is expected to
occur near 
 = 1 for ac electrokinetic micropumps [2,3,11].
Figure 3 shows the pumping flow rates for V0 = 10 (0.25 V)
and V0 = 100 (2.5 V), while W is fixed at 1. The maximum
flow rates occur at h/W = 0.3 and h/W = 0.4, respectively,
in these two cases. Low voltages (V0 < 10) fall into the linear
regime. The steric effects on the electrical double layer are
present for high voltages. Figure 3 shows that the pumping
flow rate is maximized at h/W = 0.3–0.4 when the voltage
amplitude is higher than moderate values (V0 � 10). When the
electrode height is reduced, the two electrodes become planar
and symmetric, leading to symmetric flow. As expected, the
pumping flow rate decreases as h/W decreases, as shown in
Fig. 3.

Figure 4 shows the variation of the pumping flow rate
with the electrode width W. Here, V0 is fixed at 10. It is
evident that, as the electrode width increases, the pumping
flow rate decreases; this result is attributed to the increases
in the electrical field strength with decreases in the electrode
width. In all three cases, the maximum flow rate arises at h/W

FIG. 4. Variations of the pumping flow rate with the electrode
height (h) and the width (W).
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FIG. 5. Variations of the pumping flow rate with the ac amplitude
(V0) and the frequency (
).

= 0.4, which is consistent with the results in Fig. 3. Thus, the
pumping flow rate is maximized at h/W = 0.3 or 0.4. This
result was also obtained in the previous study with a linear
model [11]. The optimal step height is not sensitive to the
electrode size or the ac voltage amplitude.

Figure 5 shows the dependences of the amplitude and
the frequency on the pumping flow rate. The geometrical
dimensions of the electrode are h/W = 0.4 and W = 1,
which were selected because h/W = 0.4 yields a nearly
maximum flow rate. As shown, the optimal frequency is in
the range of 
 = 0.7–1.0, and the maximum pumping flow
rate increases with increasing voltage amplitude. Figure 6
enlarges the high frequency region in Fig. 5. In Fig. 6, it
is found that the pumping flow rate is considerably low for

 � 10 and V0 < 100. For 
 � 10 and V0 � 100, flow
reversal (backward pumping) is observed on the contrary, but
the magnitude is not so high. According to Refs. [11,12], two
peak frequencies appear at high voltages. However, such a
double-peaked frequency response is not observed throughout
simulations. As mentioned in Ref. [6], although the steric effect

FIG. 6. Variations of the pumping flow rate with the ac amplitude
(V0) and the frequency (
).

cannot avoid the salt adsorption at very high voltages, an upper
bound on the applied voltage exists such that the circuit model
is valid. This will be discussed in the last part of this section.

Figures 5 and 6 can be summed up in the following two
points. The first is that the pumping flow rate for 
 = 0.7–
1.0 increases with increasing voltage amplitude. For a pump
with planar asymmetric electrodes, even when 
 is close to
unity, the pumping flow rate decreases with increasing voltage
amplitude if the amplitude is higher than a certain value [9].
In order to clarify this behavior of the step electrodes, the slip
velocity profile at the electrode surface and the flow structure
were examined. Figure 7 shows the fluid velocity fields and
the time-averaged slip velocity profiles at 
 = 1 for V0 = 10
and V0 = 100, respectively. The velocity fields are displayed
only for y = 0–3, and the vectors are scaled. Note that the
two velocity fields have a similar pattern, owing to the similar
shapes of the two slip velocity profiles. In Fig. 7(a), the positive
slip velocities at the higher electrode surface (x = 0.5–1.5, x =
3.5–4.5) make a significant contribution to positive pumping.
On the other hand, the negative slip velocities at the lower
electrode surface (x = 1.5–2.5, x = 4.5–5.5) do not affect
negative pumping because of flow blocking by the vertical
electrodes. Hence, as the applied voltage increases, the positive
slip velocity induces higher forward pumping, but the negative
slip velocity does not have a significant effect on backward

FIG. 7. Time-averaged slip velocity and flow velocity field for
forward pumping: (a) 
 = 1 and V0 = 10, (b) 
 = 1 and V0 = 100.
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FIG. 8. Time-averaged slip velocity and flow velocity field for
backward pumping (
 = 20 and V0 = 200).

pumping. As a result, the pumping flow rate increases with the
amplitude of the applied voltage.

The other point is that backward pumping occurs for high
frequencies (
 > 10) and high amplitudes (V0 = 100,200),
although its magnitude is not so high. The fluid velocity field
and the slip velocity profile are shown for 
 = 20 and V0 = 200
in Fig. 8. The fluid velocity field is shown only in the range of
y = 0–3. Note that strong negative slip velocities occur at the
edges of the electrodes (x = 2.5,5.5) and that the positive slip
velocities are relatively small. As a result, the strong negative
slip velocities induce backward pumping despite the presence
of the vertical surface. The previous study [11] with a linear
model showed that flow reversal occurs in the cases of low
step electrodes, which is to be expected since the electrode
becomes planar as the step height is reduced. As shown in
Fig. 6, the flow reversal comes to a standstill as the frequency
is increased further, which is physically correct.

Figures 9 and 10 show the variations of the time-averaged
slip velocity profiles with the frequency. The voltage amplitude
is V0 = 200, and the frequencies are above unity. The arrows

FIG. 9. (Color online) Variation of the time-averaged slip velocity
profile with the frequency (
 = 1,2,4,6,8).

FIG. 10. (Color online) Variation of the time-averaged slip
velocity profile with the frequency (
 = 10,20,40,60,100).

indicate the direction of increasing frequency. As mentioned
above, for low frequencies 
� 1, the shapes of the slip velocity
profiles are similar (see Fig. 7 for an example). However, as can
be seen in Figs. 9 and 10, the shapes are no longer similar for
high frequencies, and negative slip velocities arise at the upper
right surface (x = 1.0–1.5) for 
 � 4. The slip velocity tends to
occur mostly at the electrode edges as the frequency increases,
which is why the pumping slows when the frequency is very
high. This means that negative slip velocities tend to occur
mostly at the electrode edges at higher frequencies, causing
the pumping to slow at very high frequencies.

Simulations were performed with the linear model for
comparison. As mentioned in Sec.II B , unless the steric effect
is considered, ψ is proportional to q; Eq. (2) then simpli-
fies to ψ = −2sgn(q)sinh−1(q/2) as υ → 0. The governing
equations and boundary conditions are the same as those in
the nonlinear analysis, except for Eq. (2). Figure 11 shows
the pumping flow rate normalized by the square of the ac
amplitude. It is evident that the pumping flow rate is exactly
proportional to the square of the ac amplitude, and that the
optimal frequency is independent of the ac amplitude. These

FIG. 11. Results of the linear model for the electrode double layer.
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FIG. 12. Simulation results for the step geometry of Burch and
Bazant [13].

behaviors are due to the complete linearity of the system.
Different behaviors appear at high frequencies in Figs. 5,
6, and 11: Beyond 
 = 1, the pumping flow rates decrease
more rapidly for the nonlinear cases (Fig. 5) than for the
linear cases (Fig. 11). For the linear cases, backward pumping
occurs whenever the frequency is higher than 
 � 20, and
backward pumping still persists even for a very high frequency,

 = 100. In a physical sense, fluid cannot respond to such a
high frequency, and the electrical double layer does not have
enough time to form. Accordingly, the present nonlinear model
simulates flow behaviors more realistically.

The steric effect model has been applied to the step
electrodes in the present paper. This approach could be applied
to a pump with the step geometry whose side vertical wall is
not polarized but is an insulating surface. This pump is known
to attain the pumping flow rate twice as fast as the pump with
entirely polarized step electrodes. The results by the linear and
nonlinear models are plotted in Fig. 12. The step geometry is
the same as the geometry in Burch and Bazant [13]. The linear
model shows high flow rates beyond 
 = 1. The maximum
magnitudes for the three cases are similar to one another,
however, the optimal frequency shifts to a lower frequency
at a moderate voltage V0 = 40. Such behavior can be found in
Fig. 5.

Meanwhile, Huang et al. [12] realized an ultrafast and
high-pressure pump with step electrodes, by placing a large
number of electrode pairs on the bottom wall. We compared
the experiment with the present simulation. In the experiment
[12], the channel width is not much greater than the channel
height. In the simulation, however, the effect of the side
walls of the channel is neglected. A back pressure exists
across the pumping part due to the hydraulic resistance
on the nonpumping part. The simulation does not consider
the hydraulic resistance on the nonpumping part. Therefore,
periodic boundary conditions are imposed between the inlet
and the outlet. Figure 13 shows a comparison between the
experiment and the simulation. Since the conductivity of
de-ionized water in the experiment was not explicitly given
in Huang et al. [12], the frequency in the simulation is scaled
such that the peak frequency for the steric effect model is
close to the experimental value. The simulation velocities are

FIG. 13. Comparison of the present simulation with the experi-
ment [12].

the average velocities at the outlet. The applied voltage V0 is
60 (1.5 V) at which two peak frequencies apparently appear
in the experiment. The ion-crowding effect model as well as
the linear model overpredict the velocities. The differences
between the experiment and the two models are not very large
in the magnitude, within 1 order. As mentioned in Ref. [8], the
overprediction in velocity may be attributed to the absence of
the viscoelectric effect that the liquid viscosity increases with
increasing concentration in the double layer. This viscoelectric
effect should be modeled in combination with the steric effect.
The differences between the experiment and the simulation
can be reduced by considering the ratio of the diffuse double
layer impedance to the total double layer impedance. The
presence of the stern layer reduces the voltage drop across the
diffuse layer, accordingly, decreasing the fluid velocity [2,11].
In general, the optimal frequency is overestimated when the
linear model is used [2,11]. However, the peak frequency for
the ion-crowding effect is about half of the peak frequency
for the linear model, as can be seen in Fig. 13. This behavior
is also observed at moderate voltages in Figs. 5, 11, and 12.
The double-peaked frequency response is not observed in the
simulation. The steric effect model does not suffice for a strong
nonlinear regime beyond a moderate voltage.

Killic et al. [6,7] discussed the condition in which the
circuit models break down at large voltages. For the standard
Poisson-Boltzmann equations, the salt adsorption increases
exponentially with the applied voltage. As a result, the circuit
models break down even at low voltages due to a depletion of
ions in the bulk. However, as mentioned in Killic et al. [6],
the steric effect greatly reduces the capacity to pack ions into
the double layer due to the finite sizes of ions. This is one of the
important advantages of the steric effect model. However, this
model still has an upper bound on the applied voltage in which
this circuit model is valid. The circuit model is theoretically
valid when a crude estimation is satisfied as follows:

w

c0

√
2ω

D
= w

2c0λD

√
8ωλ2

D

D
= w

2c0λD

√
8ωtcλD

G
� 1.

(10)
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Here, the parameters in Eq. (10) have dimensions. The salt
adsorption w is calculated using Eq. (36) in Killic et al. [6],
and D is the ion diffusivity. The dimensionless salt adsorption
w/(2c0λD) must be less than 7.9, for example, for 
 =
ωtc = 1, G = 5 μm and λD = 10 nm, υ = 0.01. This value
corresponds to the upper voltage V0 ≈ 8 (0.2 V). However,
when the stern layer is considered, the upper bound on the
applied voltage becomes larger than 0.2 V. Although the
steric effect model is more realistic than the linear model,
a more accurate understanding is needed, which is related to
full modified Poisson-Nernst-Planck equation rather than the
circuit model and the thin Debye layer approximation [6].

IV. CONCLUSIONS

Numerical simulations of a pump with step electrodes have
been performed, with the aim of investigating the effects on
the pumping flow rate of varying the geometrical parameters
and the ac voltage. To this end, a more realistic model that
accounts for the finite sizes of ions (the steric effect) was
used. The pumping flow rate is maximized at h/W = 0.3
or 0.4, and this maximum is not sensitive to the electrode
size or the ac voltage amplitude. The pumping flow rate

increases with voltage amplitude when 
 = 0.7–1.0 since
the shape of the slip velocity profile then remains largely
independent of the voltage amplitude. However, the optimal
frequency varies between 
 = 0.7–1.0 depending on the
voltage amplitude. For high frequencies (
 > 10) and high
amplitudes (V0 = 100,200), backward pumping is observed
due to strong negative slip velocities at the electrode edges. As

 is increased further, however, backward pumping comes to
a standstill. These results were achieved by using a nonlinear
model for the electrical double layer. The linear model predicts
that the optimal frequency will be independent of the ac voltage
amplitude and that backward pumping will persist even at very
high frequencies. Although this model is more realistic than the
linear model, it was not able to predict two peak frequencies
that appear at large voltages. This might be attributed to a
strong nonlinear regime at high voltages where the circuit
model is not valid.
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[2] A. Ramos, A. González, A. Castellanos, N. G. Green, and
H. Morgan, Phys. Rev. E 67, 056302 (2003).

[3] L. H. Olesen, H. Bruus, and A. Ajdari, Phys. Rev. E 73, 056313
(2006).

[4] V. Studer, A. Pepin, Y. Chen, and A. Ajdari, Analyst (Cambridge,
UK) 129, 944 (2004).

[5] M. M. Gregersen, L. H. Olesen, A. Brask, M. F. Hansen, and
H. Bruus, Phys. Rev. E 76, 056305 (2007).

[6] M. S. Kilic, M. Z. Bazant, and A. Ajdari, Phys. Rev. E 75,
021502 (2007).

[7] M. S. Kilic, M. Z. Bazant, and A. Ajdari, Phys. Rev. E 75,
021503 (2007).

[8] M. Z. Bazant, M. S. Kilic, B. D. Storey, and A. Ajdari, New J.
Phys. 11, 075016 (2009).

[9] B. D. Storey, L. R. Edwards, M. S. Kilic, and M. Z. Bazant,
Phys. Rev. E 77, 036317 (2008).

[10] M. Z. Bazant and Y. Ben, Lab Chip 6, 1455
(2006).

[11] J. P. Urbanski, J. A. Levitan, D. N. Burch, T. Thorsen, and
M. Z. Bazant, J. Colloid Interface Sci. 309, 332
(2007).

[12] C.-C. Huang, M. Z. Bazant, and T. Thorsen, Lab Chip 10, 80
(2010).

[13] D. Burch and M. Z. Bazant, Phys. Rev. E 77, 055303
(2008).

[14] B. J. Kim, S. Y. Yoon, H. J. Sung, and C. G. Smith, J. Appl.
Phys. 102, 074513 (2007).

[15] J. J. Bikerman, Philos. Mag. 33, 384 (1942).
[16] N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51, 635

(1969).

056302-7

http://dx.doi.org/10.1007/s10404-008-0266-8
http://dx.doi.org/10.1007/s10404-008-0266-8
http://dx.doi.org/10.1103/PhysRevE.67.056302
http://dx.doi.org/10.1103/PhysRevE.73.056313
http://dx.doi.org/10.1103/PhysRevE.73.056313
http://dx.doi.org/10.1039/b408382m
http://dx.doi.org/10.1039/b408382m
http://dx.doi.org/10.1103/PhysRevE.76.056305
http://dx.doi.org/10.1103/PhysRevE.75.021502
http://dx.doi.org/10.1103/PhysRevE.75.021502
http://dx.doi.org/10.1103/PhysRevE.75.021503
http://dx.doi.org/10.1103/PhysRevE.75.021503
http://dx.doi.org/10.1088/1367-2630/11/7/075016
http://dx.doi.org/10.1088/1367-2630/11/7/075016
http://dx.doi.org/10.1103/PhysRevE.77.036317
http://dx.doi.org/10.1039/b608092h
http://dx.doi.org/10.1039/b608092h
http://dx.doi.org/10.1016/j.jcis.2007.01.095
http://dx.doi.org/10.1016/j.jcis.2007.01.095
http://dx.doi.org/10.1039/b915979g
http://dx.doi.org/10.1039/b915979g
http://dx.doi.org/10.1103/PhysRevE.77.055303
http://dx.doi.org/10.1103/PhysRevE.77.055303
http://dx.doi.org/10.1063/1.2794375
http://dx.doi.org/10.1063/1.2794375
http://dx.doi.org/10.1063/1.1672048
http://dx.doi.org/10.1063/1.1672048

