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Separation of deformable particles in deterministic lateral displacement devices
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Using numerical simulations, we study the separation of deformable bodies, such as capsules, vesicles, and
cells, in deterministic lateral displacement devices, also known as bump arrays. These arrays comprise regular
rows of obstacles such as micropillars whose arrangements are shifted between adjacent rows by a fixed amount.
We show that, in addition to the zigzag and laterally displaced trajectories that have been observed experimentally,
there exists a third type of trajectory which we call dispersive, characterized by seemingly random bumpings off
the micropillars. These dispersive trajectories are observed only for large and rigid particles whose diameters
are approximately more than half the gap size between micropillars and whose stiffness exceeds approximately
500 MPa. We then map out the regions in phase space, spanned by the row shift, row separation, particle diameter,
and particle deformability, in which the different types of trajectories are expected. We also show that, in this
phase space, it is possible to transition from zigzag to dispersive trajectories, bypassing lateral displacement.
Experimentally, this is undesirable because it limits the ability of the device to sort particles according to size.
Finally, we discuss how our numerical simulations may be of use in device prototyping and optimization.
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I. INTRODUCTION

Deterministic lateral displacement devices, or bump arrays
as they are commonly called, are microfluidic devices used to
separate particles according to size [1]. They comprise rows
of micropillars arranged such that each row of micropillars
is shifted laterally from the previous row. A sketch of the
arrangement of the micropillars in such a device is shown in
Fig. 1. Fluid and particles immersed in the fluid are flowed
through this array. Because of the low operating Reynolds
number, reported in typical experiments [1] to be around
10−3, the fluid flow is laminar. Particles will therefore follow
streamlines as they migrate through the array. If the particles
are small, beyond a certain critical diameter to be determined,
then they “fit” within the streamlines and will zigzag cyclically
through the gaps between micropillars without “bumping” into
the shifted downstream micropillars. However, if the particles
are larger than the critical diameter, then they do not fit within
the streamlines and will be bumped by the shifted downstream
micropillars laterally into the adjacent streamlines. Conse-
quently, the movement of large particles through this array
is one of lateral displacement, bumping off the micropillars. If
a mixture of particles of varying sizes is being flowed through
this array, they will be separated and sorted according to size,
with the larger particles experiencing lateral displacement and
the small particles experiencing no lateral displacement. This
principle forms the basis of using the microfluidic device as
a sorting device to separate particles according to size. In
practice, it is possible to fractionate particles into a wide range
of sizes by placing arrays of different amounts of lateral shifts
in series. Successful applications of these devices include the
fractionation of whole blood components into platelets, red
cells, and white cells [2], enrichment of large cells for tissue
engineering [3], determination of blood cell size [4], lysing,
labeling, and washing of cells [5], etc.
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In this article, we describe the use of numerical simulations
to study the fluid dynamics of this separation process in
more detail. In particular, we focus on the trajectories of
deformable particles as they pass through the micropillar array.
There have been some theoretical studies of deterministic
lateral displacement for rigid particles [6,7], but theoretical
studies for deformable particles is not an easy subject to
treat theoretically. This is because of the complexity involved
in the deformation of particles caused by shearing torques
and hydrostatic pressure gradients. Here, we instead rely on
numerical simulations to understand these particle-fluid and
particle-pillar interactions and how they modify the separation
characteristics of the array.

Referring to Fig. 1, the key parameters governing the flow
of particles through the array are as follows:

(1) The lateral shift between adjacent rows of micropillars
d, which we can express dimensionlessly as ε ≡ d/λ, where
λ is the center-to-center spacing between the micropillars.

(2) The center-to-center distance between adjacent rows
of micropillars l, which we can express dimensionlessly as
β ≡ l/λ.

(3) The gap size between two adjacent micropillars G,
which we can express dimensionlessly as η ≡ G/φ, where
φ is the diameter of the micropillars.

(4) The diameter of the particles D, which we can express
dimensionlessly as δ ≡ D/G.

(5) The deformability of the particles, characterized by
their stiffness k, which we can express dimensionlessly as
γ ≡ (p0/L)/(k/x2), where p0 is the pressure differential
applied over the length L of the device, and x is a characteristic
length scale chosen here to be 20 μm, a characteristic particle
diameter. Thus, γ = 0 corresponds to rigid particles and
increasing γ corresponds to increasing deformability. Low
values of γ correspond to rigid particles, while increasing
γ corresponds to increasing deformability. For example,
polystyrene beads with a stiffness of 3 GPa will have γ =
3.79 × 10−12, while cells with a characteristic stiffness of
1 kPa will have γ = 1.14 × 10−5.
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FIG. 1. Sketch of the arrangement of the micropillar array in
deterministic lateral displacement devices. The micropillars (whose
cross-sectional area is shown here as black filled circles) have
diameters φ, and are arranged such that the center-to-center distance
between two micropillars in a row is λ and the center-to-center
distance between two rows of micropillars is l. The gap between
two micropillars in a row is G ≡ λ − φ, and the lateral shift between
two rows is d . Fluid is flown through the array at speed V from left to
right, determined by a pressure differential of magnitude p0. Particles
of diameter D and stiffness k are flown through the array. They may
be deformed by the flow field as they flow. Some possible trajectories
are shown by the series of gray dots. The angular displacement of the
particle is denoted by α.

In addition, we assume that our particles are spherical
elastic capsules, i.e., the particles are comprised of a Hookean
membrane of stiffness k enclosing fluid that has the same
properties as the extracellular fluid. Other constitutive models
for membranes, such as the Helfrich or Skalak models [8,9],
can be used instead. Also, nonspherical shapes (elliptical,
biconcave, etc.) can be used instead. We also assume that the
micropillars are rigid and have circular cross sections, although
other shapes can be used instead. In fact, there have been recent
studies to show that performance is improved when triangular
posts are used instead [10].

Finally, we note that in our simulations, we will be
neglecting particle diffusion, whose effect on separation in
these arrays has been studied theoretically [11]. We are
interested in the separation of cells and vesicles whose smallest
characteristic size is around 1 μm. As discussed in Ref. [2],
in typical operating velocities of 10−3 m/s, the Péclet number
is around 103. Hence, advection dominates diffusion and we
can safely neglect particle diffusion and broadening of the
displacements as the particles move through the array. Hence,
the separation process is deterministic. A consequence of this
is that, the faster the flow rate, the less broadening due to
diffusion, and the performance of the array increases.

In this study, we do not vary the Reynolds number because
we expect it to be very close to zero and therefore the flow to
be Stokesian. In the experiments, the Reynolds number was
estimated to be around 10−3 [1]. We found in our simulations
that the Reynolds number is around 7 × 10−4.

The remaining of this article is organized as follows. In
Sec. II, we describe the numerical methods used to simulate
the fluid flow and deformable particles. In Sec. III, we discuss
the results obtained from our simulations and compare them
to experimental observations. Finally, in Sec. IV, we present
our conclusions.

II. METHODS

Our simulations rely on the immersed boundary method
[12]. We have described our numerical implementation of the
method elsewhere and will not repeat the details here [13].
In this article, we confine our simulations to two dimensions.
In typical experiments [6], the height H of the micropillars is
25μm whereas the diameter D of the particles used varies from
2.3 to 22 μm. Therefore, our two-dimensional simulations will
only be valid in those cases when H � D. Nevertheless, in
those cases when H < D, we may still expect our simulations
to be qualitatively correct.

We define a two-dimensional Cartesian fluid domain 
 that
is of length L and width W . In this domain, fluid of viscosity μ

and density ρ flows pass an array of immobilized micropillars.
A deformable particle is immersed and moves around the fluid.
The fluid velocity �u(�x,t) and pressure p(�x,t) everywhere in the
domain are obtained from solving the incompressible Navier-
Stokes equation,

ρ

(
∂ �u
∂t

+ (�u · �∇)�u
)

= −�∇p + μ �u + �F, (1)

and the continuity equation,

�∇ · �u = 0. (2)

The inertial terms in Eq. (1) can be neglected because of the
low Reynolds number (reported in typical experiments [1] to
be around 10−3) but we have kept them in our simulations for
completeness. The body force �F arises from the deformation
of the membrane of the moving particle,

�F (�x,t) =
∫

�f (s,t)δ(�x − �X(s,t)) ds, (3)

where s is the curvilinear coordinate on the membrane at
each material point, �X(s,t) the position at time t in Cartesian
coordinates of the material point whose label is s, �f (s,t)
the force due to the deformation of the moving membrane
at material point s, and δ(�x − �X(s,t)) the two-dimensional
Dirac delta function. The membrane material points are then
advected using

d �X(s,t)

dt
=

∫



�u(�x,t)δ(�x − �X(s,t)) d �x. (4)

In our implementation, the elastic membrane of the particle
is represented by a set of N control points �Xi(t) with i =
1, . . . ,N . The elastic forces generating on the membrane are
derived from spring forces of the form

�f ( �Xi,t) = −k(‖ �Xi+1 − �Xi‖ − s0)
�Xi − �Xi+1

‖ �Xi − �Xi+1‖
, (5)

where k is the membrane stiffness and s0 the resting length.
The micropillars are nondeformable and their positions

are fixed. Singular forces are applied at the rigid boundaries
to impose the no-slip conditions. The singular forces are
computed implicitly by solving a small system of equations at
each time step [13]. The main advantage of this method is that
it imposes the no-slip boundary condition exactly and avoids
the need for small time step to maintain stability.

We use a second-order finite difference scheme and make
use of the projection method on a marker-and-cell (MAC)
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FIG. 2. Plots of the centers of mass of particles migrating through the array. (a) An example of a zigzag trajectory where (ε = 0.25,
β = 1, η = 1, δ = 0.2, γ = 2.066 × 10−10). (b) An example of a laterally displaced trajectory where (ε = 0.25, β = 1, η = 1, δ = 0.55,
γ = 2.066 × 10−10). (c) An example of a dispersive trajectory where (ε = 0.33, β = 1, η = 1, δ = 0.95, γ = 2.066 × 10−10). Streamline plots
at various locations are also plotted for all three types of trajectories. The background color codes are for velocity magnitude, with light colors
denoting high magnitudes and dark colors denoting low magnitudes.

grid to solve for Eqs. (1) and (2). In the two-dimensional
Cartesian domain (0 � x � L,0 � y � W ), the top (y = W )
and bottom (y = 0) boundaries are periodic. The fluid flows
from left (x = 0) to right (x = L). At the left boundary, the
boundary conditions used are ∂ �u/∂x|x=0 = �0 and p|x=0 = p0.
In this article, we use a value of p0 = 5 kPa, which gives a
pressure gradient in our simulations comparable to that of the
microdevices used in experiments [1]. At the right boundary,
∂ �u/∂x|x=L = �0 and p|x=L = 0.

III. RESULTS

Using our simulations, we first demonstrate that we can re-
produce the two types of trajectories observed experimentally,
namely, zigzag and lateral displacement. These different types
of trajectories are shown in Figs. 2(a) and 2(b), where we plot
the center of mass of the particles at different time points as
they migrate through the array. In Fig. 2(a), a zigzag trajectory
is shown. The parameters used are ε = 0.25, β = 1, η = 1,
δ = 0.2, and γ = 2.066 × 10−10. The value of ε = 0.25 means
that the arrangement of micropillars is repeated every 1/ε = 4
rows. Therefore, we can divide the flow through the gap
between two adjacent pillars in the same row into 1/ε = 4
flow streams approximately. If a particle is small enough to
fit into one of these streams, i.e., if δ < ε = 0.25, then it
can flow pass the 1/ε = 4 rows without bumping into any of
the micropillars. Consequently, the particle will move around
the micropillars and exhibit the so-called zigzag mode. We
expect the critical diameter δc below which zigzag trajectories
are observed to be approximately ε. We say approximately
because the motion of the particles through the fluid in turn
distorts the streamlines and so, in practice, the streamlines
change with time. Nevertheless, for small δ, i.e., for small
particles, this change is not significant. This is evident from the
streamline plots in the bottom of panel (a), which show that the
streamlines are indeed not significantly perturbed. Therefore,
one can in principle solve for the steady-state streamlines in
the given geometry in the absence of particles and expect these
streamlines to very closely predict the path of particles of

small δ. (In these streamline plots, the magnitude of the
velocity field is also shown, where light colors denote high
speeds and dark colors denote low speeds.)

In contrast, if the particle diameter is larger than the
threshold δc ∼ ε, then the particle does not fit into the flow
stream and will be bumped out of the flow stream that it is in by
the shifted downstream micropillar, and be laterally displaced
to the next adjacent flow stream. Therefore, the trajectory of
such large particles comprises a sequence of lateral bumps. An
example of such a lateral displacement trajectory is shown in
Fig. 2(b). The parameters used are ε = 0.25, β = 1, δ = 0.55,
and γ = 2.066 × 10−10. In this case, the motion of the particle
significantly modifies the streamlines, an example of which
is shown in the streamline plot in the bottom of Fig. 2(b).
The particle is now large enough to span several streamlines.
Owing to the row staggering which displaces the subsequent
rows of micropillars upward, most of the streamlines spanned
by the particle will be displaced upward rather than downward,
leading to the particle to travel in a laterally displaced mode
upward.

Both the zigzag and laterally displaced trajectories have
been well characterized and studied. Our two-dimensional
simulations can reproduce these trajectories. However, in
addition to these two types of trajectories, we have also
observed a third type of trajectory that comprises mixtures of
what look like the former two, i.e., part of the trajectory is of
the zigzag type and part of it is of the laterally displaced type.
An example is shown in Fig. 2(c). The parameters used are
ε = 0.33, β = 1, η = 1, δ = 0.95, and γ = 2.066 × 10−10.
This type of trajectory is only seen for large values of δ > 0.5,
i.e., the particles are close to “plugging” the interpillar gaps.
There is seemingly no pattern as to where the transition from
zigzag to lateral displacement, or vice versa, will take place.
As a result, particles (of the same size) that are clustered at the
inlet tend to become more dispersed at the outlet. Therefore,
we call this type of trajectory “dispersive.” We will describe
this dispersion in more detail later. In the streamline plots of
Fig. 2(c), we show, for example, two scenarios of plugging,
one of which results in the particle moving upward (laterally
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FIG. 3. Dispersion of (a) zigzag, (b) laterally displaced, and (c) dispersive trajectories. The parameters used are as in Fig. 2.

displaced) and the other in the particle moving downward.
The latter happens when the plugging action modifies the fluid
flow significantly enough that the streamlines bend downward.
This can be attributed to a severe plugging action which causes
most of the flow to go around the particle and the two pillars on
either side rather than pushing the particle through the pillar.
Because of the inherent unpredictability of this process, the
trajectory of such a particle will comprise a seemingly random
sequence of upward and downward turns.

To more clearly show the distinctions between these three
types of trajectory, we seed particles of the same δ and γ in
the same array, i.e., same ε, but at different initial locations
at the inlet port and observe their positions at the outlet
port. We do this by repeating the simulations for 11 different
initial positions for particles distributed uniformly along the
interpillar gap, and then tracing their centers of mass to the
outlet port. The results are shown in Fig. 3. We see in Fig. 3(a)
that, for zigzag trajectories, the “span”of these centers of mass
remain relatively constant throughout the array. However, for
the laterally displaced trajectories in Fig. 3(b), the bumpings
against the micropillars result in a collapse of the different
initial positions into a single output position, suggesting a
“sorted” behavior. Thus, regardless of the initial position along
a gap, particles of the same size will be displaced to the same
location at the outlet. Finally, the dispersive trajectories in
Fig. 3(c) show that the random leftward and rightward motions
result in very dispersed output positions, hence the name
“dispersive.” The “span” of these output positions is very
much greater than the span of the input positions. In other
words, the dispersive trajectories depend sensitively on their
initial conditions. In the future, we would like to quantitatively

characterize this sensitivity with Lyapunov exponents and
show how this sensitivity, which really is the consequence
of the particles exhibiting diffusion of a non-molecular origin,
depends on the parameters governing this apparent diffusion.

To further quantify the separation behavior as a function
of ε, β, η, δ, and γ , we calculate the angular displacement of
the trajectories α. To calculate α, we first note the locations
where the particle zigzags around micropillars. If we denote the
coordinates of the positions of two such consecutive zigzags
as (x1,y1) and (x2,y2), then

α = tan−1 y2 − y1

x2 − x1
. (6)

(If the particle travels through the array without zigzagging,
then we assign α = tan−1 ε.) In Fig. 4(a), we plot α as a
function of the particle size δ for different values of ε at
fixed particle deformability γ . We see that for small ε, α

takes only one of two values with a sharp transition between
them. Of these two values, the smaller value of α ≈ 0.1
corresponds to zigzag trajectories. The zigzag and wrapping of
the trajectories around the micropillars result in a small angle
of displacement. On the other hand, the higher of the two values
of α corresponds to the laterally displaced trajectories. In
addition, this high plateau value of α increases as ε increases,
until a certain threshold around ε ≈ 0.33 when the value of
α begins to fluctuate and is no longer a plateau. This region
of fluctuating α is associated with the dispersive trajectories,
which allow for a wide range of outlet angles for a given
inlet position. We also note that dispersive trajectories are
observed not only when particle diameters are comparable
to the gap size (δ > 0.5), but also when the row shifts ε are
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FIG. 4. (Color online) (a) Angular displacement of trajectories α vs dimensionless particle diameter δ for different values of dimensionless
lateral row shift in arrangement of micropillars ε at fixed dimensionless particle stiffness γ = 2.066 × 10−10. (b) Angular displacement α vs
dimensionless particle diameter δ for different values of dimensionless particle stiffness γ at fixed dimensionless lateral row shift ε = 0.33.
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FIG. 5. (Color online) (a) Phase diagram for occurrence of zigzag (ZZ), laterally displaced (LD), or dispersive (DP) trajectories in (δ,ε)
space. Recall that δ is the dimensionless particle diameter and ε is the dimensionless row shift. Large circles (red) denote critical values of δ at
ε = 0.20 and 0.25 at which ZZ to LD transitions are observed. Large squares (blue) denote critical values of δ at ε = 0.33 and 0.40 at which
ZZ to DP transitions are observed. In addition, data points from the experiments of Ref. [6] are also plotted: small dark gray circles denote
ZZ trajectories, while small light gray circles denote LD trajectories. (b) Phase diagram for occurrence of ZZ, LD, or DP trajectories in (δ,γ )
space. The cross (green) denotes critical value of δ at γ = 8.264 × 10−10 at which the LD to DP transition is observed. Recall that γ is the
dimensionless particle stiffness.

sufficiently large. The reason that small row shifts do not admit
dispersive trajectories is that particles tend to glance off the
tip of downstream pillars, resulting in minor deflection in their
paths. At increasing row shifts, particles increasingly impact
the middle of downstream pillars, resulting sometimes in major
deflections that cause dispersive trajectories.

From these results, we can sketch a “phase diagram” in
(δ,ε) space that shows, for a particular value of (δ,ε), whether
the resulting trajectories are zigzag, laterally displaced, or
dispersive. This phase diagram is sketched in Fig. 5(a). A
similar phase diagram for rigid particles, obtained experi-
mentally, was available in Ref. [6]. We have included the
experimental data points from their phase diagram in Fig. 5(a).
We note the discrepancy in our data compared to those from
the experiments of Ref. [6], namely that our line separating the
region between zigzag trajectories from laterally displaced and
dispersive trajectories is shifted leftwards and upward. We sug-
gest that this discrepancy is due to our simulations being two
dimensional, which does not account for flow above and below
the particles. Therefore, we expect the shear forces acting
on the particles to be underestimated in our two-dimensional
simulations. In the experiments, the particles will experience
higher shear forces. This will in turn modify the flow field
surrounding the particles and the particles’ trajectories through
the array. For example, in our two-dimensional simulations,
a particle large enough to plug the gap between adjacent
micropillars will cause the fluid to flow around the particle
and the micropillars on either side. The particle may remain
stationary for a long time, after which a small perturbation
will cause it to be bumped off the micropillars, resulting in
either a laterally displaced or dispersive trajectory. However,
in a three-dimensional scenario, the particle plugging the gap
will still permit fluid to flow above and below it. Therefore,
the particle may eventually still be able to move through the
gap due to the additional shear forces. Therefore, for a given
value of (δ,ε), the two-dimensional simulations may show

lateral displacement or dispersion but the three-dimensional
experiments may still show zigzagging.

Interestingly, we also observed that for large enough ε, it
is possible to transition from zigzag to dispersive trajectories,
bypassing lateral displacement. Because dispersive trajectories
do not allow the clean separation of particles, they are to
be avoided if the application of such devices is for particle
separation. Therefore, this observation that there exists regions
of “design space” with no lateral displacement has a practical
impact on the design of such devices — there exists an upper
bound on ε necessary for separation, and this upper bound
varies with particle size δ and particle stiffness γ .

In practice, these devices have been used to, for example,
fractionate whole blood into its components — platelets, red
cells, and white cells. Other applications also typically deal
with cells. Cells are deformable, but there are no studies
on how deformability affects the trajectories of particles as
they move through the array. To answer this question, we
first calculate the angular displacement α for different particle
deformability γ at fixed ε. Low values of γ correspond to
rigid particles, while increasing γ corresponds to increasing
deformability. For example, polystyrene beads with a stiffness
of 3 GPa will have γ = 3.79 × 10−12, while cells with a
characteristic stiffness of 1 kPa will have γ = 1.14 × 10−5. In
Fig. 4(b), we show how the angular displacement α changes
with γ ranging from γ = 0 to γ = 10−9. At low γ , we see
that α takes only one of two values with a sharp transition
between them, corresponding to zigzag and laterally displaced
trajectories. As γ is increased, the plateau starts to disappear,
to be replaced by fluctuating values, suggesting the onset of
dispersive trajectories. From these results, we again sketch
a phase diagram in (δ,γ ) space in Fig. 5(b). We see that,
for the particular value of ε = 0.33 used here, the dispersive
phase is only observed when δ > 0.5 approximately and
γ < 8.264 × 10−10 (corresponding to a stiffness greater than
500 MPa) approximately. Since cells typically have stiffness
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FIG. 6. (Color online) (a) Angular displacement of trajectories α vs dimensionless particle diameter δ for different values of the row
separation β = l/λ at fixed ε = 0.25, η = 1, and γ = 2.066 × 10−10. (b) Phase diagram for occurrence of zigzag (ZZ), laterally displaced
(LD), or dispersive (DP) trajectories in (δ,β) space.

much less than this threshold value, we therefore do not expect
them to exhibit dispersive trajectories. On the other hand, for
stiff particles such as polystyrene beads, dispersive trajectories
do occur. In fact, we observed again that, for sufficiently
large γ (i.e., more deformable or compliant particles), it is
possible to transition from zigzag to dispersive trajectories,
bypassing lateral displacement. This also places an upper
bound on γ in terms of the usefulness of separating stiff or rigid
particles.

We also observed in Fig. 4 that, for the zigzag trajectories,
the angular displacement α ranges approximately from 0.05
to 0.1 and is not exactly zero. This suggests that the zigzag
trajectories have a net sorting behavior (albeit a very small
one). When the particles are small, i.e., when δ is small
and exhibiting zigzag trajectories, this net sorting behavior
reflects the anisotropy of the fluid streamlines with respect
to the micropillar array. Therefore, if the separation β

between adjacent rows is increased, then the anisotropy of the
streamlines is decreased, and α in the zigzag phase should drop
to zero. However, for large particles (large δ) or, in general,

particles exhibiting laterally displaced trajectories, then there
is the possibility that increasing β can result in the particle
exhibiting dispersive trajectories instead. In Fig. 6(a), we plot
α as a function of particle diameter δ as the row separation
β is increased from 1 to 1.3. We see that indeed increasing β

results in α approaching zero in the zigzag phase (at small δ).
Also, increasing β results in the transition from the laterally
displaced phase to the dispersive phase occurring at a much
larger δ. The corresponding phase diagram is sketched in
Fig. 6(b).

Finally, there is one more parameter to consider, namely, the
gap size G between adjacent micropillars in the same row, to
see how it affects the trajectories. By varying the dimensionless
η = G/φ while keeping all other parameters constant, we see
in Fig. 7(a) that increasing η results in a shift toward larger
particles to follow the laterally displaced trajectories. We note
that the amount of angular displacement α corresponding to
the zigzag and laterally displaced trajectories are not changed
because the lateral shift ε is not changed. The corresponding
phase diagram in (δ,η) space is sketched in Fig. 7(b).
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FIG. 7. (Color online) (a) Angular displacement of trajectories α vs dimensionless particle diameter δ for different values of the gap size
η = G/φ at fixed ε = 0.25, β = 1, and γ = 2.066 × 10−10. (b) Phase diagram for occurrence of zigzag (ZZ) and laterally displaced (LD)
trajectories in (δ,η) space.
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IV. CONCLUSION

We have used numerical simulations to study the separation
of deformable particles in deterministic lateral displacement
devices. In particular, we have shown that, in addition
to the zigzag and laterally displaced trajectories observed
in experiments, the consideration of particle deformability
introduces an additional type of trajectory which we call
dispersive. We then sketch the regions in phase space, spanned
by the row shift, particle diameter, and particle stiffness, in
which the different types of trajectories are expected. We have
shown that dispersive trajectories are only observed for large
(whose diameter is at least half the interpillar gap distance)

and rigid particles (whose stiffness is greater than 500 MPa).
We have shown that, in this phase space, there are transi-
tions from zigzag to dispersive trajectories, bypassing lateral
displacement. This is undesirable experimentally because it
limits the ability of the device to separate particles according to
size.

In the future, we plan to extend our numerical simulations
to studying the feasibility of separating polymers rather than
particles in such devices [14].
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