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Stochastic bifurcations in a bistable Duffing–Van der Pol oscillator with colored noise
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This paper aims to investigate Gaussian colored-noise-induced stochastic bifurcations and the dynamical
influence of correlation time and noise intensity in a bistable Duffing–Van der Pol oscillator. By using the
stochastic averaging method, theoretically, one can obtain the stationary probability density function of amplitude
for the Duffing–Van der Pol oscillator and can reveal interesting dynamics under the influence of Gaussian colored
noise. Stochastic bifurcations are discussed through a qualitative change of the stationary probability distribution,
which indicates that system parameters, noise intensity, and noise correlation time, respectively, can be treated
as bifurcation parameters. They also imply that the effects of multiplicative noise are rather different from
that of additive noise. The results of direct numerical simulation verify the effectiveness of the theoretical
analysis. Moreover, the largest Lyapunov exponent calculations indicate that P and D bifurcations have no direct
connection.
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I. INTRODUCTION

Various physical, chemical, and biological processes can be
modeled as nonlinear dynamical systems in which oscillatory
motions are influenced by internal or external noise [1–3]. The
investigation of the influence of random forces on dynamical
behaviors, especially bifurcation phenomena, is one of the
intensively developing research subjects [4–14]. However,
the theory of stochastic bifurcations is still in its infancy
[15]. There are few rigorous general theorems and criteria to
detect stochastic bifurcations, which are often only verified by
computer simulations or for some particular models. In fact, it
is much harder to deal with stochastic bifurcation problems
than deterministic bifurcation problems. The definition of
deterministic bifurcation is based on the sudden change of
topological properties of the phase portraits, while stochastic
bifurcations may be characterized with a qualitative change of
the stationary probability distribution, e.g., a transition from
unimodal to bimodal distribution. At present, there are mainly
two definitions for stochastic bifurcations. One is based on the
sudden change of shape of the stationary probability density
function—the so-called phenomenological (P) bifurcation;
and the other is based on the sudden change of sign of
the largest Lyapunov exponent—the so-called dynamical (D)
bifurcation [15]. D bifurcation is a dynamical concept, which
is similar in nature to deterministic bifurcations, while P
bifurcation is a static concept. Unfortunately, these two
definitions do not agree well, and this means that a new
definition of stochastic bifurcation may be explored.

As we know, random noise may induce a shift of the
bifurcations with respect to different control parameter values
compared to their deterministic counterparts. New types of
dynamics can be found in the presence of random excitations,
generally referred to as the noise-induced effects. The Gaus-
sian white noise in most theoretical studies is employed as
the random driving force due to its mathematical simplicity,
while realistic models of physical systems require considering
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colored noise. There has been a growing interest in the
theoretical study of nonlinear dynamical systems subject to
colored noise with a finite correlation time scale [16,17].
It has been realized that colored noise gives rise to new
intriguing effects such as the reentrant phenomenon in a noise-
induced transition [18] and a resonant activation in bistable
systems [19].

The Duffing–Van der Pol oscillator is a prototypical system
in modeling certain physical phenomena, and its simple
nonlinear structure has given rise to thorough studies of
its dynamical behaviors [20,21]. The Gaussian white noise
was reported to create a purely noise-induced D bifurcation
with a single attractor in the Duffing–Van der Pol system
[12]. Stochastic bifurcation recently has been discussed for a
self-sustained bistable Duffing–Van der Pol oscillator subject
to additive Gaussian white noise in Ref. [13]. It is desirable to
understand stochastic bifurcations in the bistable Duffing–Van
der Pol oscillator driven by Gaussian colored noise.

In this paper, we explore the effects of additive and
multiplicative Gaussian colored noises on a bistable Duffing–
Van der Pol oscillator. Furthermore, one can find the relation
of stochastic bifurcation and noise correlation time on the
dynamical properties. Based on the stochastic averaging
method to separate fast and slow variables of the oscillator,
the bifurcation analysis will be presented, taking the system
parameters and statistical characteristics of noise (e.g., noise
intensity and noise correlation time) as bifurcation parameters.
Two types of qualitative changes are observed, and bifurcation
diagrams of the system in different parameter planes are
presented. We find that the effects of multiplicative noise and
that of additive noise are quite different (or not directly related).

This paper is organized as follows. In Sec. II, the stochastic
averaging method theoretically is carried out to obtain the
stationary probability density function of amplitude for the
noisy Duffing–Van der Pol oscillator. Then, the stochastic P
bifurcations are discussed in Sec. III. Here, we analyze the
influence of the noise correlation time and noise intensity on
stochastic P bifurcations in two cases of additive noise and
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FIG. 1. (Color online) Two attractors of system Eq. (1) for D =
0 when ε = −0.11 and β1 = β2 = 1.0.

multiplicative noises. Finally, Sec. IV is devoted to concluding
remarks and discussions.

II. STATIONARY PROBABILITY DISTRIBUTION OF A
BISTABLE OSCILLATOR WITH GAUSSIAN

COLORED NOISE

In this section, we consider a bistable Duffing–Van der Pol
oscillator with colored Gaussian noise,

ẍ −(ε + β1x
2 − β2x

4)ẋ + x + β0x
3 = η(t) + xξ (t), βi � 0,

(1)

where ε, β0, β1, and β2 are real parameters (β0is a small
parameter), while η(t) and ξ (t) are Gaussian colored noises
with zero mean and correlation,

〈η(t)η(s)〉 = D1

τ1
exp

[
−|t − s|

τ1

]
,

〈ξ (t)ξ (s)〉 = D2

τ2
exp

[
−|t − s|

τ2

]
,

〈η(t)ξ (s)〉 = 0.

(2)

Here τ1,τ2 and D1,D2 denote the correlation time and
intensity of the colored noises η(t) andξ (t), respectively.

In the deterministic case (D1 = D2 = 0), when − β1

8β2
<

ε < 0, the system in Eq. (1) is characterized with a bistable
behavior: Two attractors are in the phase plane: a stable focus
at the origin and a stable limit cycle, as Fig. 1 shows. Thus,
the bistability region is restricted to a saddle-node bifurcation
of cycles at ε = −β1/8β2 and a subcritical Andronov-Hopf
bifurcation at ε = 0. Furthermore, the parameter β0 defines the
anisochronicity of oscillations: For β0 = 0, the nonisochronic-
ity of the system in Eq. (1) is quite small.

When D1 �= 0 and/or D2 �= 0, we assume that the noise
intensity is small and introduce a change of variables,

x(t) = a cos θ, x(t) = −a sin θ, θ = t + ϕ. (3)

Substituting Eq. (3) into Eq. (1), we can obtain⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ȧ = a sin2 θ (ε + β1a
2 cos2 θ − β2a

4 cos4 θ )
+β0a

3 cos3 θ sin θ − sin θη(t) − a sin θ cos θξ (t)

ϕ̇ = sin θ cos θ (ε + β1a
2 cos2 θ − β2a

4 cos4 θ )

+β0a
2 cos4 θ − cos θ

a
η(t) − cos2 θξ (t)

(4)

By applying the stochastic averaging method [22,23], we
can obtain the following pair of stochastic equations for
amplitude a(t) and phase ϕ(t):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

da =
[

εa
2 + β1a

3

8 − β2a
5

16 + 3D2a

8
(

1+4τ 2
2

) + D1

2a

(
1+τ 2

1

)]
dt

+
√

D1

1+τ 2
1

+ D2a2

4
(

1+4τ 2
2

)dW1(t),

dϕ =
(

3β0a
2

8 − D2τ2

2
(

1+4τ 2
2

))
dt

+
√

D1(
1+τ 2

1

)
a2

+ 2D2τ
2
2

1+4τ 2
2

+ 3D2

4
(

1+4τ 2
2

)dW2(t),

(5)

where W1(t) and W2(t) represent independent normalized
Wiener processes. Clearly, da does not depend on ϕ, thus,
we can develop a probability density for a, rather than a joint
density for a and ϕ.

The probability density function p(a,t |a0,t0 ) for amplitude
is governed by the Fokker-Planck-Kolmogorov equation,

∂p

∂t
=

[(
εa

2
+ β1a

3

8
− β2a

5

16
+ 3D2a

8
(
1 + 4τ 2

2

) + D1

2a
(
1 + τ 2

1

)
)

p

]

+1

2

(
D1(

1 + τ 2
1

) + D2a
2

4
(
1 + 4τ 2

2

)
)

∂2p

∂a2
. (6)

By letting ∂P (a,t)
∂t

= 0, according to Zhu [22], the stationary
solution of Eq. (6) is

p (a) = N

B (a)
exp

[
2
∫

A (a)

B (a)
da

]
, (7)

where

A(a) =
(

εa

2
+ β1a

3

8
− β2a

5

16
+ 3D2a

8(1 + 4τ 2
2 )

+ D1

2a(1 + τ 2
1 )

)
,

B(a) =
(

D1

(1+τ 2
1 )

+ D2a
2

4(1 + 4τ 2
2 )

)
, (8)

where N is a normalization constant.

III. STOCHASTIC BIFURCATIONS

This section is devoted to discussing stochastic bifurcations
through qualitative changes of the stationary probability
density p(a). The exact probability densities are presented
in the case of additive noise and the case of combined
multiplicative noise and additive noise, respectively. The
number and the extrema of the stationary densities have been
carefully examined.
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A. The case of additive colored noise

We first consider system (1) with only additive colored
noise with D2 = 0,D1 �= 0. By Eqs. (7) and (8), we get

p (a) = N
(
1 + τ 2

1

)
a exp

[
1 + τ 2

1

48D1
(24εa2 + 3β1a

4 − β2a
6)

]
,

(9)

where N is a normalization constant.
In the limit τ1 → 0, the colored noise η(t) tends to a white

noise, and this case was discussed in Ref. [13]. From Eq. (9),
we find that the shape of amplitude in Eq. (5) does not depend
on phase ϕ and system parameter β0.

Moreover, by letting ∂p(a)
∂a

= 0, the extrema of the distribu-
tion Eq. (9) become the roots of

a6
m − 2

β1

β2
a4

m − 8ε

β2
a2

m − 8D1

β2
(
1 + τ 2

1

) = 0, (10)

where am is the amplitude corresponding to the extremum of
distribution Eq. (9) and m is the index number of the extremum.
The number of real roots of Eq. (10) is either 1 or 3 for different
parameters, which represents the unimodal distribution and
the bimodal distribution of the amplitude, respectively. This
effect means that a type of stochastic bifurcation will take
place. It is necessary to note that the transitions between the
unimodal and the bimodal stationary probability densities are
also referred to as the noise-induced transitions, and stochastic
bifurcation discussed here is closely connected to the noise-
induced transition [24].

In the parameter plane of D1 and τ1, Fig. 2(a) displays the
bifurcation graph of system (5) from the analysis of Eq. (10)
with parameters ε = −0.14 and β1 = β2 = 1.0. The stationary
amplitude distribution is bimodal in the tinted region and
unimodal in the colorless region. The lines l1 and l2 represent
the appearance and disappearance of one of the maxima of
p(a) that bounds the region corresponding to stochastic P
bifurcation. By increasing τ1, the bimodality region will shift

to larger values of D1 and will become wider. The numerical
solutions of the oscillator Eq. (1) could be obtained by an
order-2 stochastic Runge-Kutta algorithm [25] with initial
conditions t0 = 0,x(0) = 0.2, and ẋ(0) = 0.1 by taking the
parameter β0 = 0.1 and the time step 
t = 0.01 in numerical
calculations. As a(t) =

√
x(t)2 + ẋ(t)2, then the stationary

probability density function p(a) can be obtained by the Monte
Carlo simulation method with the simulation data length N =
107. With parameters τ1 = 0.5,ε = −0.14, and β1 = β2 =
1.0, we demonstrate the figure of stationary probability density
for amplitude versus different noise intensity D1 in Fig. 2(b).
One can observe that the amplitude distribution has only one
maximum situated in the vicinity of zero when the noise
intensity is small. As D1 ≈ 0.0182 [see point A in Fig. 2(a)],
a transition from a unimodal to a bimodal distribution occurs,
and for D1 ≈ 0.03 [point B in Fig. 2(a)], the second stochastic
bifurcation will appear. The amplitude distribution becomes
unimodal again, but its maximum is shifted toward larger
amplitude values, as curve 3 in Fig. 2(b) depicts.

Additionally, by fixing D1 = 0.05 and β1 = β2 = 1.0,
we consider the influence of noise correlation time on the
stochastic P bifurcation. The bifurcation diagram of system (5)
in the parameter plane (ε,τ1) is given in Fig. 3(a). According
to the previous similar discussions concerning Fig. 2(a), the
stationary amplitude distribution is bimodal in the tinted region
and unimodal in the gap region. Lines l3 and l4 are boundaries
of the tinted region, which mean stochastic P bifurcations. By
decreasing the value of ε, the bimodal region shifts to smaller
values of τ1 and becomes narrow. If ε is decreased further
(e.g., for ε < ε1 ≈ −0.155), then the bimodality region does
not exist anymore, and the P bifurcation cannot be observed for
any correlation time. For the fixed noise intensity D1 = 0.05
and parameter ε = −0.11, Fig. 3(b) shows the stationary
probability density of amplitude with different values of
correlation timeτ1. In this case, there are two attractors in the
deterministic system, see Fig. 1. For the short correlation time
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FIG. 2. (Color online) Stochastic P bifurcations in the Duffing–Van der Pol oscillator [Eqs. (1) and (5)]. (a) Bifurcation diagram of
system (5) in the parameter plane (D1,τ1) for ε = −0.14 and β1 = β2 = 1.0. Points A and B are intersection points of the horizontal dashed
line τ1 = 0.5 and l1,l2, respectively. (b) Stationary probability density of amplitude for τ1 = 0.5,ε = −0.14, and β1 = β2 = 1.0 and different
values of noise intensity. The solid lines denote the algebraic calculations using Eq. (9), whereas, the normalization constant N is defined
numerically. The circles represent the numerical solutions for the oscillator Eq. (1).
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FIG. 3. (Color online) Stochastic P bifurcations in the Duffing–Van der Pol oscillator [Eqs. (1) and (5)] for D1 = 0.05 and β1 = β2 = 1.0.

(a) Bifurcation diagram of system (5) in the parameter plane (ε,τ1). Point C is the intersection point of the vertical dashed line ε = −0.11 and
l4. (b) Stationary probability density of amplitude for ε = −0.11andD1 = 0.05 and different values of correlation time. The solid lines and
circles have the same meaning as in Fig. 2(b).

[below point C in Fig. 3(a)], the amplitude distribution has only
one peak, as curve 1 in Fig. 3(b) shows, and for τc ≈ 1.72, a
transition from a unimodal to a bimodal distribution occurs,
which can be found in curve 2 of Fig. 3(b). Additionally, it
should be worth noticing that the stationary probability density
p(a) remains bimodal as τ1 increases (τ1 > τc). However, the
value of the peak, which corresponds to a larger amplitude,
becomes very small if the correlation time is large (e.g., for
τ1 > 6.0), as curve 3 in Fig. 3(b) shows. The phase trajectory
visits the regions close to the origin more and more frequently,
and the nonlinearity of the system becomes weak.

B. The case of multiplicative and additive colored noises

With D1 = 0 and D2 �= 0, the random noisy oscillator will
be reduced to a Duffing–Van der Pol system excited by the

multiplicative noise, and the stationary probability density
function due to Eq. (7) for amplitude can be obtained as

p (a) = Na1+ε/L exp

(
4β1a

2 − β2a
4

32L

)
, (11)

where L = D2

4(1+4τ 2
2 ) and N is a normalization constant.

By letting p(a) = 0, the extrema of the distribution Eq. (11)
are the roots of

a4
m − 2β1

β2
a2

m − 8 (L + ε)

β2
= 0. (12)

The real positive root of Eq. (12) is

√
β1
β2

+
√

β2
1

β2
2
+ 8(L+ε)

β2

for ε > −L, and then the probability density function in
Eq. (11) has a maximum [curve 2 in Fig. 4(a)]. With ε � −L,
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FIG. 4. (Color online) Stochastic P bifurcations in the Duffing–Van der Pol oscillator excited by multiplicative noise forε = −0.01. (a)
Stationary probability density for τ2 = 0.5 and β1 = β2 = 0.1 and different D2’s. (b) Bifurcation diagram of system (5) in the parameter plane
(τ2,D2). Line l5 is the boundary of regions I and II.
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there are two real positive roots of Eq. (12), whose shape
is similar to a crater, and the probability density p(a) has
a minimum and a maximum, respectively, as curve 1 in
Fig. 4(a) shows. Thus, a transition from a craterlike density
to a unimodal density is observed, which can be defined
as a type of P bifurcation, and this is completely different
from the case of additive noise. It should be noticed that
Eq. (11) is a singular integral, which is singular at a = 0
for ε < −L. However, on the basis of the convergence
criterion of the singular integral, we can find that Eq. (11)
is integrable in the condition of ε > −2L. For ε = −0.01,
the bifurcation diagram of system (5) in the parameter
plane (τ2,D2) is given in Fig. 4(b), where, in region II,
the stationary amplitude is a craterlike distribution, and region I
represents the unimodal distribution. Line l5 denoted the
boundary of regions I and II corresponding to stochastic P
bifurcations.

If D1 �= 0 and D2 �= 0, system (1) will be driven by a
combination of multiplicative and additive colored noises.

According to Eqs. (7) and (8), we have

p (a) = Na
(
K + La2)Q

×exp[(4β1La2 + 2β2Ka2 − β2La4)/32L2],

(13)

where K = D1

1+τ 2
1
,L = D2

4(1+4τ 2
2 ) , and Q = (8εL2 − 2β1KL

−β2K
2)/16L3.

Similarly, by letting p(ȧ) = 0, the extrema of distribution
Eq. (13) are the roots of the equation,

a6
m − ha4

m − ma2
m − n = 0, (14)

with h = 2β1

β2
, m = 16QL3+8L3+2β1KL+β2K

2

β2L2 , and n = 8K
β2

.
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FIG. 6. (Color online) The largest Lyapunov exponent λ1 in the (D1,τ1) plane of the additive noise case for ε = −0.14 and β1 = β2 = 1.0,

refer to Fig. 2(a). (a) The largest Lyapunov exponent of the original system Eq. (1). (b) The largest Lyapunov exponent of the averaged system
Eq. (5).
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By taking ε= − 0.01,β1 = β2 = 0.1,D1 = 0.01,D2 = 0.01,

τ1 = 5.0, and τ2 = 1.0, the roots of Eq. (14) are 0.215, 0.67,
and 1.23, which represent the corresponding amplitude of
maximum, minimum, and maximum of the stationary prob-
ability density in Eq. (13), respectively, as curve 1 in Fig. 5(a)
shows. Curve 2 in Fig. 5(a) is unimodal for D2 = 0.1, and
other parameters are the same as curve 1. Thus, there will
be a stochastic P bifurcation when the multiplicative noise
intensity D2 increases from 0.01 to 0.1. To fix ε = −0.01,β1 =
β2 = 0.05,D1 = 0.005,D2 = 0.06,andτ1 = 2.0, the station-
ary amplitude distribution in Eq. (13) with different τ2’s is
shown in Fig. 5(b), where p(a) is unimodal for τ2 = 0.5; see
curve 1 in Fig. 5(b). As τ2 increases to 1.0, the stationary
probability density function becomes bimodal; it changes to
unimodal if τ2 = 1.5, as shown in Fig. 5(b), curves 2 and 3.
In other words, two stochastic P bifurcations take place when
multiplicative noise correlation time τ2 increases. Therefore,
the type of stochastic P bifurcations induced by multiplicative
noise will vary when the system is excited by additive noise
as well. For instance, a transition between craterlike density
and unimodal density will be changed to a transition between
unimodal density and bimodal density. Moreover, according
to the number of the real roots of Eq. (14), bifurcation
diagrams in different planes can be obtained, but we omit them
here.

It is worthy to note that the average model Eq. (5) does
not completely reflect the properties of the original system for
large values of noise intensity and correlation time. However,
it can be found that the analytical solutions agree well with the
numerical results from the figures we presented in this paper.
Additionally, the bifurcation diagrams are related not only to
the average model, but also to the original system and do not
depend on the parameter of anisochronicity β0 � 0. Here, we
point out that one can find appropriate parameter ranges for ε,
β1, β2, D1, D2, τ1, and τ2 from expressions of the stationary
probability density p(a) [see Eqs. (9), (11), and (13)].

Now, we apply the numerical algorithm in Refs. [26,27]
to numerically calculate the largest Lyapunov exponent of
the initial system Eq. (1) and the average system Eq. (5)
for the additive noise case with ε = −0.14andβ1 = β2 =

1.0, which are shown in Fig. 6. The figures show the top
Lyapunov exponent λ1 remains negative for any (D1,τ1) ∈
(0 ∼ 0.05,0 ∼ 4.0), so the stochastic bifurcation cannot be
found based on the sudden change of sign of the largest
Lyapunov exponent. Additionally, P bifurcation is nearly
independent of β0, while for D bifurcation, this parameter is
crucial, i.e., P bifurcation is not necessarily accompanied by D
bifurcation.

IV. CONCLUDING REMARKS

In this paper, we have presented results about stochastic
bifurcations in a self-sustained bistable Duffing–Van der Pol
oscillator with additive and/or colored noise. By applying a
method of stochastic averaging based on a perturbation tech-
nique, we obtained the stationary probability density function
of amplitude for the noisy oscillator. Two types of qualitative
change were found, namely, a transition from unimodal density
to bimodal density and a transition from craterlike density
to unimodal density. The stochastic bifurcations based on
the qualitative change of stationary measures were observed
by discussing the extrema of the distribution. Bifurcation
diagrams of the system in various parameter planes were
obtained, and from which we pointed out that not only system
parameters and noise intensity can be treated as the bifurcation
parameter, but also change of noise correlation time could
induce stochastic bifurcations. Besides, the investigations
showed that the effects of multiplicative noise were different
from that of additive noise. In addition, the D bifurcation
via the change of the largest Lyapunov exponent appeared
not to agree well with the results of P bifurcation, and we
remarked that there was no direct connection between these
two stochastic bifurcations.
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