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Exploding dissipative solitons: The analog of the Ruelle-Takens route for spatially localized solutions
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We investigate the route to exploding dissipative solitons in the complex cubic-quintic Ginzburg-Landau
equation, as the bifurcation parameter, the distance from linear onset, is increased. We find for a large class of
initial conditions the sequence: stationary localized solutions, oscillatory localized solutions with one frequency,
oscillatory localized solutions with two frequencies, and exploding localized solutions. The transition between
localized solutions with one and with two frequencies, respectively, is analyzed in detail. It is found to correspond
to a forward Hopf bifurcation for these localized solutions as the bifurcation parameter is increased. In addition,
we make use of power spectra to characterize all time-dependent states. On the basis of all information available,
we conclude that the sequence oscillatory localized solutions with one frequency, oscillatory localized solutions
with two frequencies, and exploding dissipative solitons can be interpreted as the analog of the Ruelle-Takens-
Newhouse route to chaos for spatially localized solutions.

DOI: 10.1103/PhysRevE.83.056214 PACS number(s): 82.40.Bj, 42.65.Sf, 47.20.Ky, 05.70.Ln

I. INTRODUCTION AND MOTIVATION

Dynamical behavior exhibiting both spatial and temporal
disorder is referred to as spatiotemporal chaos [1]. Although
much is known about low-dimensional chaos, the knowledge
about disordered extended systems consisting of a large num-
ber of degrees of freedom and showing chaotic but localized
structures is much smaller. In low-dimensional systems three
main routes to chaos are well established: period doubling,
quasiperiodic or Ruelle-Takens, and intermittency. Following
the theoretical work of Ruelle, Takens, and Newhouse [2,3]
it had been shown experimentally for Rayleigh-Bénard con-
vection that by increasing the Rayleigh number beyond the
appearance of a second frequency chaos sets in [4]. Another
example of conversion of quasiperiodic motion into chaotic
motion has been found for the Taylor-Couette instability [4].
More recently it has been shown in a combined experimental
and numerical study that electroconvection in a thin, sheared
film can lead to a transition to localized chaotic convection
following the Ruelle-Takens route [5]. In this article we show
the analog of the Ruelle-Takens route for spatially localized
solutions in a prototype equation, namely the cubic-quintic
complex Ginzburg-Landau (CGL) equation. In particular this
equation models a passively mode-locked laser operating in a
regime in which it produces dissipative exploding solitons [6].
The CGL equation has been derived in different contexts such
as binary fluid mixtures, nematic liquid crystals, or chemical
reactions since it describes the dynamics of a system at
the onset of an oscillatory instability. When coexistence is
observed as is the case in binary fluid mixtures (convective
state surrounded by conductive state) cubic-quintic CGL
equations serve to qualitatively describe localized convective
regions and their interactions both in the absence and in the
presence of noise [7–9]. The cubic-quintic CGL equation, a
dispersive-dissipative system, has stable localized solutions in-
cluding pulses and holes due to its complex coefficients (which
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render the equation nonvariational) and quintic nonlinearities.
Pulses and holes are either stationary, breathing, chaotic,
or moving [10–25]. In the anomalous dispersion regime
exploding dissipative solitons have been obtained [6,26–29]
and it has been shown that the transition to exploding solitons
arises after the appearance of oscillatory localized solutions
with two frequencies, as the control parameter (distance from
linear onset) is increased [29].

II. THE MODEL

In this article we study the cubic-quintic complex Ginzburg-
Landau equation in one spatial dimension. In optics this
equation takes the form

iψz + D

2
ψtt + |ψ |2ψ + ν|ψ |4ψ

= iδψ + iε|ψ |2ψ + iβψtt + iμ|ψ |4ψ. (1)

Modeling passively mode-locked lasers Eq. (1) describes the
dynamics of the envelope of the electrical field (ψ) in a
medium with group velocity dispersion D, linear gain-loss
(δ), cubic and quintic nonlinear gain and absorption (ε and μ,
respectively), saturation of the nonlinear refractive index (ν),
and spectral filtering (β) [6]. Exchanging space and time in the
model above (z ↔ t and t ↔ x) we obtain the cubic-quintic
complex Ginzburg-Landau equation for the envelope of the
linear unstable modes at the onset of a subcritical oscillatory
instability

∂tA = μA + (βr + iβi)|A|2A + (γr + iγi)|A|4A
+ (Dr + iDi)∂xxA. (2)

Along this article we study Eq. (2) for the complex
field A(x,t) assuming βr > 0 and γr < 0 to have a weakly
inverted bifurcation. Our simulations have been carried out in
the anomalous dispersion regime (Di > 0) and all parameters
have been kept fixed except for μ, which represents the
distance from linear onset: βr = 1, βi = 0.8, γr = −0.1,
γi = −0.6, Dr = 0.125, Di = 0.5. Table I in [29] can be

056214-11539-3755/2011/83(5)/056214(6) © 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.056214


DESCALZI, CARTES, CISTERNAS, AND BRAND PHYSICAL REVIEW E 83, 056214 (2011)

10 20 30 40

2

Re A

x

1

3

4

-1

-2

-3

-4

FIG. 1. (Color online) Typical examples of the two classes of
initial conditions used: in phase initial conditions (ICP) are shown as
a solid line and initial conditions in antiphase (ICA) are shown as a
dashed line.

used to compare the coefficients used in Eq. (1) with those in
Eq. (2).

In general, results for the above equation depend on the
initial conditions, the boundary conditions, and, for anomalous
dispersion, weakly on the numerical method used. In this work
we used explicit fourth-order Runge-Kutta finite differencing
and a time-splitting pseudospectral scheme as independent
numerical methods. In both cases we used a grid spacing dx =
0.08, a time step dt = 0.005, and N = 625 so that we get a
box size L = 50. We note that increasing the accuracy and
changing the numerical method the phase diagram might be
shifted slightly, but the observed types of behavior are robust.
For example, for the pseudospectral method we have for μc

the value μc = −0.2316. In the following asymptotic time
regime means T ≈ 2 × 106 equivalent to 4 × 108 iterations.
Nonmoving localized objects are essentially not sensitive to
boundary conditions when the box size is large compared to
the width of the localized state. In our simulations we have
implemented periodic boundary conditions. Initial conditions
play an important role in the selection of the outcome when
coexistence of solutions is expected. In the present work we
use two classes of initial conditions: ICP (initial conditions in
phase) and ICA (initial conditions in antiphase) (Fig. 1). The
former is obtained by using ImA(x) = 0 and localized ReA(x)
positive (or negative) and the latter by choosing ImA(x) = 0
and ReA(x) with a positive and a negative part [23].

III. RESULTS

In Fig. 2 we have plotted the behavior we obtain as a
function of the control parameter μ. Collapse in Fig. 2 refers
to a collapse of all initial data to the zero state and ST refers
to the modulus to stationary, that is nonbreathing, localized
solutions. To complement our previous paper [29] we focus
here on the detailed characterization of two features of the
diagram presented in Fig. 2: (a) the transitions of states with
one frequency (f1) to states with two frequencies (f1,f2) for
both, the asymmetric branch (not in phase) and the symmetric
branch (in phase), and (b) the transition to explosions via
analysis of the power spectra of the various states.

In Fig. 3 we show snapshots of the modulus R(x) of the
states with one frequency f1 in the asymptotic time regime

I

II μ

ST f1 f1 f2

Symmetric branch

Asymmetric branch

Collapse

SS

Explosions

μc

FIG. 2. Phase diagram: the various types of localized states are
shown as a function of the bifurcation parameter μ. The other
parameters investigated are: βr = 1, βi = 0.8, γr = −0.1, γi = −0.6,
Dr = 0.125, Di = 0.5, dx = 0.08, and dt = 0.005. As μ is increased
one obtains first stationary pulses (ST), followed by oscillating
symmetric pulses with one frequency (f1) and by a transition to
symmetric pulses with two frequencies (f1,f2) at μc. Denoting by
ε the distance from μc: ε = μ − μc, exploding solitons arise stably
when μ is increased further beyond ε = 1.90 × 10−2 until the linear
threshold is reached. Reducing the bifurcation parameter μ below
ε = 1.90 × 10−2, exploding solitons are replaced first by asymmetric
pulses, that are not in phase, with two frequencies (f1,f2), and at
ε = 0 a continuous transition to asymmetric pulses (not in phase) with
one frequency arises before jumping back to the stationary branch at
ε = −2.60 × 10−2.

for the symmetric, in phase case (a), which can be reached
from ICP, as well as for the asymmetric, not in phase branch
(b), which can be reached from ICA. In this connection we
emphasize that it is important to start with rather precisely
symmetric ICPs to obtain the symmetric branch. The notation
“in phase” and “not in phase” becomes quite intuitive when
inspecting the spatial behavior of the modulus in the wings.

As the bifurcation parameter μ is increased, a transition
to a state with two frequencies takes place, which we will
now discuss in some detail. In Fig. 4 we show x–t plots in
the asymptotic time regime for the two generic cases of states
with two frequencies, namely type A and type B. In addition to
these generic cases, there are two additional states belonging
to the class of states with two frequencies (f1,f2), namely
the symmetric state with two frequencies oscillating in phase,
which has been discussed already in our previous paper ( [29],
Fig. 4) and the asymmetrically oscillating state, which marks
precisely the crossover between states of type A and states
of type B. In the latter case the oscillations are staggered at
constant time interval left-right-left-right, while for states A
and B these time intervals are not equal in duration. All the
states described in this paragraph can be reached jumping from
a state with one frequency (f1) or starting with ICP or ICA in
the range where two frequencies are expected.

Next we clarify the nature of the transition between
the states with one frequency (f1) and the states with two
frequencies (f1,f2). To obtain a quantitative characterization
we use the ingredients summarized in Fig. 5 for the symmetric
branch. Figure 5(a) shows a snapshot of the state on the
symmetric branch in the asymptotic time regime. It includes
the location xm for which we have analyzed the time series
in detail. Figure 5(b) shows the time series for the in-phase
state f1 with one frequency ω1 and Fig. 5(c) shows the time
series associated with the in-phase state with two frequencies
(f1,f2) with two vastly different frequencies ω1 and ω2. In
Fig. 5(c) we have denoted by Am the peak to peak amplitude
of the modulations due to the second frequency ω2. xm has
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FIG. 3. Snapshot of the the modulus R(x) of the two types of
oscillatory states with one frequency (f1) for ε = −3.0 × 10−3: (a)
symmetric, in phase and (b) asymmetric and not in phase. All other
parameters are as in Fig. 2.
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FIG. 4. (Color online) x–t plots for the two generic states
(type A and type B) with two frequencies (f1,f2) for ε = 1.70 × 10−2

for a box size L = 50 and a time scale T = 140 (corresponding
to 2.8 × 104 iterations) in the asymptotic time regime. All other
parameters are as in Fig. 2.
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FIG. 5. (Color online) Snapshot and time series for the symmetric
branch. (a) Snapshot indicating the location xm = 30 for which the
time series are shown. (b) Time series for the in-phase state f1 with
one frequency (ω1) and ε = −10−4. (c) Time series for the in-phase
state with two frequencies f1,f2 (with ω1,ω2) and ε = 1.6 × 10−3.
All other parameters are as in Fig. 2. Note the vastly different time
scale on the abscissa.

been selected to lie in the wings of the states with one or two
frequencies, where the time series shown in Figs. 5(b) and
5(c) reveal large effects. Qualitatively there is no change for
the time series [shown in Figs. 5(b) and 5(c)] or the power
spectra (shown in Fig. 7) for other choices of the location
xm. This is brought out clearly in Fig. 8, where the analog
of the power spectra shown in Fig. 7 for the states with one
and two frequencies is presented for three different locations,
namely for xm = 30 (•), for xm = 33 (dashed line), and for
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FIG. 6. The modulation amplitude Am associated with the second
frequency is plotted for the symmetric branch (◦) as well as for the
asymmetric branch (�). The solid line is a fit to the data of the form
Am = Am0

√
ε with Am0 = 2.60. This plot demonstrates that all our

data are compatible with a secondary Hopf bifurcation characterized
by the second frequency ω2.

xm = 36 (�). Thus while the amplitudes of the peaks in the
power spectra change, their location remains the same.

In Fig. 6 we have plotted for both the symmetric branch (�)
and the asymmetric branch (◦) the modulation amplitude Am

introduced above as a function of ε. The solid line represents
a fit to all data points (the symmetric and the asymmetric
branch are fitted simultaneously). Since we find A2

m ∼ ε, we
conclude that the transition from the one frequency state f1 to
the two frequency state f1,f2 is a forward Hopf bifurcation.
This conclusion is also consistent with all our numerical results
showing absolutely no indication of any hysteresis effect
associated with this transition.

To analyze the transition to explosions and their complex
spatiotemporal behavior, we have investigated the power
spectrum for the explosive dissipative soliton state as well
as for the two preceding oscillatory states at lower values
of the bifurcation parameter μ. In Figs. 7 and 8 we have
plotted the corresponding results. For the one frequency
state f1 we conclude immediately from the power spectrum
that we have indeed only one frequency ω1 along with its
harmonics. Increasing the bifurcation parameter we crossover
to the two frequency state f1,f2 analyzed above. From the
power spectrum shown in Fig. 7(b) we conclude (as already
from the corresponding x–t plots) that the two frequencies
ω1 and ω2 are vastly different. To demonstrate the presence
of higher harmonics for the second, much lower frequency,
we show as an inset in Fig. 7(b) the low-frequency behavior
on a logarithmic scale revealing the presence of a second
harmonic also for the second frequency. Analyzing the data
quantitatively, we find for the ratio between the two frequencies
ω1/ω2 ≈ 89.8. As the bifurcation parameter μ is increased
further and reaches the domain of explosive solitons, we
obtain the power spectrum shown in Fig. 7(c). Figure 7(c)
closely resembles results for low-dimensional chaotic systems
such as ordinary differential equations and maps. As a rather
characteristic feature one gets broad band low-frequency noise.
In addition, we see the remnant of the peak for the large
frequency ω1.
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FIG. 7. The power spectrum is plotted as a function of ε for
xm = 30. (a) ε = −10−4, only one frequency ω1 and its harmonics are
present in the power spectrum. (b) ε = 1.6 × 10−3, two frequencies
ω1 and ω2 and their harmonics are present in the power spectrum.
The inset shows the higher harmonics of ω2, the ratio ω1/ω2 takes
the value ω1/ω2 ≈ 89.8. (c) For ε = 1.86 × 10−2 the power spectrum
shows features characteristic of chaos including its characteristic low-
frequency behavior. Inspection of (c) shows the remnant of the peak
for frequency ω1. All other parameters are as for Fig. 2.

IV. SIMILARITIES/ANALOGIES TO THE
RUELLE-TAKENS-NEWHOUSE SCENARIO

Thus we obtain for the localized states, which are stable
solutions of a partial differential equation with dissipation and
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FIG. 8. (Color online) The power spectrum is plotted for the states
with one and with two frequencies as a function of the location xm:
xm = 30 (•), xm = 33 (dashed line), and xm = 36 (�). (a) ε = −10−4,
only one frequency ω1 and its harmonics are present in the power
spectrum. (b) ε = 1.6 × 10−3, two frequencies ω1 and ω2 and their
harmonics are present in the power spectrum. We note that the scale
on the ordinate is logarithmic in this figure in contrast to Fig. 7. All
other parameters are as for Fig. 2.

dispersion, the following route: one frequency, two frequen-
cies, and then chaotic behavior as the bifurcation parameter
μ is increased. This indicates that we have in a spatially
extended system for localized states a rather close analog of
the Ruelle-Takens-Newhouse scenario for the route to chaotic
behavior [2,3] (cf., e.g., Refs. [30,31] for further details of
the Ruelle-Takens-Newhouse scenario), here in the sense of
spatiotemporally disordered behavior in terms of exploding
solitons. Here the state with two frequencies is the analog of
the two torus in the low-dimensional system, which breaks
down giving rise to the spatiotemporal behavior characteristic
of explosive dissipative solitons. We did not observe a third
frequency, a situation which is one of the generic cases
according to Ref. [3]. We also note that in the present system
one does not expect any universal scaling behavior of the nature
found for maps near the transition from a two torus to chaotic
behavior, since the ratio of the two frequencies revealed by our
system is far away from the golden mean.

We note that the physical picture for the spatial aspects
of the transition from the state with one frequency to the
explosive dissipative soliton via the state with two frequencies
has been described in detail in [29]. Coming from the state

with one frequency, for the state with two frequencies
the amplitude of the wings increases. Further increasing the
bifurcation parameter, the maximum amplitude in the wings
overcomes a certain threshold value, which allows a second
peak to grow, which then interacts in turn with the main
peak leading to a further growth and the fusion with the main
peak before the whole object collapses due to its inherent
instability [29].

V. CONCLUSIONS AND PERSPECTIVE

In this paper we have analyzed the bifurcation sequence
from stationary localized solutions to spatially localized
exploding dissipative solitons for a large class of initial
conditions as a function of the bifurcation parameter for
the complex cubic-quintic Ginzburg-Landau equation in the
regime of anomalous linear dispersion. This equation is a
prototype envelope equation arising for weakly subcritical
transitions to traveling and standing waves. Two main results
emerge from our study.

First we have shown that the bifurcation from localized
oscillatory states with one frequency to localized oscillatory
states with two frequencies is a forward Hopf bifurcation with-
out any hysteresis. Analyzing the whole sequence from station-
ary localized states to exploding dissipative solitons by various
techniques including power spectra for all time-dependent
states, we find the analog of the Ruelle-Takens-Newhouse
route to chaos for spatially localized solutions in a spatially ex-
tended system characterized by a prototype envelope equation:
the cubic-quintic complex Ginzburg-Landau equation.

Naturally the question of the connection of the results
presented here to experimentally accessible systems arises.
While exploding dissipative solitons have been observed
experimentally in a nonlinear optical system [6], the analog of
the bifurcation parameter has not been varied systematically
in these experiments to investigate the sequence of transitions
studied here. Nevertheless, clearly a nonlinear optical system
of the type studied by Cundiff et al. [6] is a prime candidate to
check the predictions made here.

We also note, as already discussed above briefly, that
the analog of the Ruelle-Takens-Newhouse scenario for
spatially localized states has been observed experimentally in
sheared electroconvection recently [5]. However, this system
showed strongly subcritical behavior. In addition, it would
be worthwhile to check to what extent the spatially localized
chaotic states reported in Ref. [5] are similar in nature to
exploding dissipative solitons [6,26–29] or whether they are
more closely related to the chaotic localized states found
for the complex cubic-quintic Ginzburg-Landau equation in
the regime of normal linear dispersion [19,32,33]. It would
also be very interesting to investigate whether the parameters
for sheared electroconvection could be tuned in such a way
to render the basic transition weakly subcritical instead of
strongly hysteretic.
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