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Pattern formation in oscillatory complex networks consisting of excitable nodes
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Oscillatory dynamics of complex networks has recently attracted great attention. In this paper we study
pattern formation in oscillatory complex networks consisting of excitable nodes. We find that there exist a few
center nodes and small skeletons for most oscillations. Complicated and seemingly random oscillatory patterns
can be viewed as well-organized target waves propagating from center nodes along the shortest paths, and the
shortest loops passing through both the center nodes and their driver nodes play the role of oscillation sources.
Analyzing simple skeletons we are able to understand and predict various essential properties of the oscillations
and effectively modulate the oscillations. These methods and results will give insights into pattern formation in
complex networks and provide suggestive ideas for studying and controlling oscillations in neural networks.
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I. INTRODUCTION

Many social and natural systems have been well described
by complex networks [1–4]. Complex networks with excitable
local dynamics have attracted particularly great attention
for their wide applications, such as epidemic spreads [5,6],
chemical reactions [7], biological tissues [8,9], among which
neural networks are typical examples [8–11]. Complexity of
network structures and excitability of local dynamics are two
major characteristics of neural networks [12,13]. Oscillations
in these networks determine rich and important physiological
functions [14,15], such as visual perception [16], olfaction
[17], cognitive processes [18], and sleep and arousal [19].
Therefore, oscillations in neural networks and other excitable
networks have been studied extensively.

Problems of pattern formation in these excitable systems
call for further investigation, because early works on pattern
formation focused on patterns in regular media [20–22].
It is natural to ask what pattern formation looks like in
complex networks, and whether there are some common
rules in different types of networks. Very recently, Turing
patterns in large random networks have been discussed by
Hiroya Nakao et al. [23]. In the present paper we study
another type of pattern, self-sustained oscillatory patterns
in complex networks consisting of excitable nodes, which
are important in physics, chemistry, and biology. Since each
excitable node cannot oscillate individually [24], there must
exist some delicate structures supporting the self-sustained
oscillations [10,11,25,26]. So far, some concepts, such as
recurrent excitation [10,25,27,28] and central pattern genera-
tors [29–31], have been proposed to describe these structures.
However, if networks consist of large numbers of nodes and
random interactions, it is difficult to detect these structures
[11,26]. In previous papers [32,33], we proposed a method of
dominant phase advanced driving (DPAD) to study the phase
relationship between different nodes based on oscillatory data.
Oscillation sources for self-sustained oscillations are identified
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successfully. However, the topological effects on the dynamics
are not fully understood.

The interplay between the topological connectivity and
the network dynamics has become one of the central topics
under investigation [34–36]. The present paper is to explore
the mechanism of pattern formation in oscillatory excitable
networks and unveil the topological dependence of the oscilla-
tions. This paper is organized as follows. Section II introduces
the excitable networks of the Bär model. Simulation results are
provided in Sec. III, where center nodes and target waves are
identified. In Sec. IV, the skeletons of different oscillations
are displayed to unveil the topological effects on network
dynamics. In Sec. V results in previous sections are extended
to networks with different sizes and degrees. Section VI gives
extensions to excitable scale-free networks. Networks with the
Fitzhugh-Nagumo model as local dynamics are also discussed.
The conclusions are given in Sec. VII.

II. MODEL OF NETWORKS

We consider complex networks consisting of N excitable
nodes. The network dynamics is described as follows:
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)
+ Duwi,
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The Bär model is adopted as local dynamics [37], where
parameters {a,b,ε} are properly set so that each node possesses
excitable local dynamics. The adjacency matrix Mij is defined
by Mij = 1 if node i is connected with node j and Mij = 0
otherwise. Coupling wi represents the total interaction on
a given node i from all its neighbor nodes. This form of
coupling is used to ensure that any excited node can excite
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FIG. 1. (Color online) (a) Homogeneous random network studied. N = 200, k = 3. The network dynamics is described by Eq. (1) with
parameters a = 0.84, b = 0.07, ε = 0.04, Du = 0.4, K = 0.8. All these parameters are used in Figs. 1–5. (b) Periodic time evolution of
< u(t) >= 1/N

∑N

i=1 ui(t) for three different random initial conditions. These three oscillations are denoted as oscillations A, B, and C,
respectively. (c) Snapshot of oscillation A at a certain time. The phase distribution among different nodes seems random. In the following
figures, all snapshots are displayed with local variable u plotted without further remarks, and the arrowed links in all figures represent the
dynamical driving relationship. (d) and (e) Snapshots of oscillations B and C, respectively. (f) Suppression of oscillations A, B, and C by
removing square nodes 70, 6, and (29, 65) at t = 1005, respectively. The time of node removal is denoted by the vertical dashed line.

its rest neighbor nodes with proper values of Du and K . Other
forms of coupling, which have similar effects, are also feasible,
such as diffusive coupling. This type of interaction has been
widely used in neural models [9,10,25] and other excitable
networks [5,38,39]. During the simulations, different types of
networks are generated, and the connections between different
nodes are bidirectional and symmetric. For simplicity, we
study, first, homogeneous random networks with an identical
degree k; i.e., each node interacts with an equal number of
k nodes randomly chosen. Meanwhile, we assume that all
nodes have identical parameters so that any heterogeneity in
network patterns is not due to the topological inhomogeneity

but results from the self-organization in nonlinear dynamics.
In the present paper we focus on the self-sustained periodic
oscillations.

III. CENTER NODES AND TARGET WAVES

The homogeneous random network studied is displayed
in Fig. 1(a). With the parameters given, the system has a
large probability (about 95%) to approach periodic oscillations
from random initial conditions. Moreover, different initial
conditions approach different oscillations in most cases.
For instance, we observed 961 different oscillations within
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1000 tests, and the other samples reached the rest state.
The evolution of average signals < u(t) >= 1/N

∑N
i=1 ui(t)

for three different oscillations A, B, and C is displayed in
Fig. 1(b). These three oscillations have different periods (TA =
5.99, TB = 8.37, TC = 7.00 with TA,B,C being periods of
oscillations A, B, and C, respectively). In Figs. 1(c)–1(e) spatial
snapshots of oscillations A, B, and C are plotted, respectively.
All these patterns have seemingly random phase distributions,
in which the structures supporting the oscillations are deeply
hidden.

We start our analysis from local dynamics of excitable
networks. Because each node is an excitable system [24,37],
the individual node will stay at the rest state forever without
perturbation. Since there is no external pacemaker in the
network, there must be some loops to support the self-
sustained oscillations, where nodes can be repeatedly excited
in sequence. Therefore, it is natural to conclude that the
topological loop structure of complex networks is crucial for
the network oscillations [25,26,32,33]. However, in complex
networks there are extremely large numbers of loop sets [for
the network in Fig. 1(a) with N = 200 nodes and M = 300
interactions, there are 2101 − 1 loop sets [40]]. A crucial
question is which loop set plays the essential role for a
given oscillation. Because nodes in the network are excited in
sequence, all waves propagate forward along the shortest paths
[9,25,26]. The loops dominating the oscillations must obey this
“shortest path” rule, which means the source loops should be
as short as possible. Furthermore, due to the existence of the
refractory period, these loops must also be sufficiently large to
maintain the recurrent excitation. Here the problem remained
is how to reveal these shortest loops.

We study the above loop problem by making perturbation
to each oscillation and observe the system’s response. A
few nodes randomly chosen are removed from the network
at each test. (Here removing a node means discarding all
interactions of this node.) In most cases the oscillation is
robust. However, we find to our surprise that the oscillation
is crucially sensitive to some specific nodes. These specific
nodes for a given oscillation are defined as key nodes, among
which a minimum number of nodes can be removed to suppress
the oscillation. In Figs. 1(c)–1(e) different key nodes for
oscillations A, B, and C are displayed with large squares,
respectively. Both oscillations A and B can be suppressed by
just removing one key node, as shown in Fig. 1(f). However,
we can never suppress oscillation C by removing any single
node. There are two pairs of key nodes displayed in Fig. 1(e).
In order to terminate oscillation C [see also Fig. 1(f)], we
have to remove two key nodes simultaneously, one from
the pair (29,65) and the other from the pair (97,168). The
diverse behavior displayed in Figs. 1(c)–1(e) indicates that
even though the parameter distributions and the node degrees
are homogeneous in the network, the dynamical patterns
have delicate and heterogeneous self-organized structures
where different nodes play significantly different roles in the
oscillations.

We find further that all key nodes for these oscillations
appear in directly interacted pairs. In each pair one node drives
the other, i.e., 141 → 70, 172 → 6, and 65 → 29, 168 → 97.
(The bidirectional link between nodes i and j is denoted by an

TABLE I. Number of center nodes for different oscillations in
Homogeneous Random Networks (HRNs). Parameters (a, b, ε, Du)
are set the same as in Fig. 1, except constant K (K = 0.8 for HRNs
with N = 100, 200 and K = 1.8 for other networks). One thousand
different networks are investigated with random initial conditions for
the statistics in each column.

N 100 200 200 1000 2500 SF200a

k 3 3 5 7 8 < k >= 4

Periodic oscillations 785 955 675 549 328 172
One-center 290 98 191 457 298 156
Two-center 244 172 170 85 30 15
Three-center 144 199 97 7 0 1
Four-center 52 189 73 0 0 0
Othersb 55 297 144 0 0 0

aScale-free networks with average degree< κ >= 4.
bPeriodic oscillations with more than four centers.

arrowed link i → j , if the interaction from node i is favorable
for exciting node j from the rest state.) Considering the crucial
influence of key nodes on the oscillations, we suggest that the
function of the driven nodes is to excite the whole network,
while the function of the driving ones is to keep their partners
oscillating. Thus these driven nodes (70 for A, 6 for B, 29 and
97 for C) are regarded as center nodes for the oscillations, while
the driving ones are regarded as the drivers of the center nodes.
An oscillation with n centers is called an n-center oscillation.
Both oscillations A and B are one-center oscillations, while
oscillation C is a two-center oscillation.

The existence of key nodes and center nodes is general
for periodic oscillations in excitable complex networks. We
investigated Eq. (1) with random initial conditions for dif-
ferent networks and sampled stable periodic oscillations. The
transient time for each oscillation depends on the network
size N . When the network size increases, the transient will be
prolonged. Moreover, the transient time is also effected by the
type of the pattern. Generally speaking, the more center nodes
the pattern has, the longer the transient needs to be. When
the oscillation reached stability, center nodes were identified.
Numbers of center nodes for most oscillations are listed in
Table I. For other oscillations remained, we did not make
a further search, because identifying more than four center
nodes is very computationally consuming. Anyway, we find
that most oscillations have self-organized structures with an
extremely small number of center nodes. Thus the features of
oscillations A, B, and C can be identified as the typical behavior
of self-sustained oscillations in excitable complex networks.

Because of the significant effects of center nodes on oscil-
lations, we expected that the source loops of the oscillations
must be around the center nodes. Further study confirmed
the expectation. We identified that there are just some well-
organized loop structures around the center nodes to maintain
the self-sustained oscillations. Two principles are proposed for
pattern formation in a given network oscillation.

(1) Waves propagate forward from center nodes to the whole
network along the shortest paths.

(2) The shortest loops, which pass through both the center
nodes and their driver nodes, play the role of oscillation sources
and dominate the oscillation behavior.

056204-3



LIAO, XIA, QIAN, ZHANG, HU, AND MI PHYSICAL REVIEW E 83, 056204 (2011)

FIG. 2. (Color online) (a) Snapshot is the same as in Fig. 1(c) for oscillation A, with each node placed around center node 70 according
to the distance from the center. The purple (dark) lines show the shortest paths from center node 70 to the other nodes, while the gray (light)
lines mean all the other interactions between different nodes. Perfect target waves are observed propagating from center node 70. The bold
arrow denotes the driving from node 141 to center node 70. (b) Snapshot is the same as in Fig. 1(d) for oscillation B. The target center is node
6, while its driver is node 172. (c) Snapshot is the same as in Fig. 1(e) for oscillation C, with nodes placed around two centers 29 and 97.
Two-center target pattern is identified. (d) Creation of oscillations A, B, and C by initially stimulating a few center nodes [node 70 for A, node
6 for B, nodes (29, 65) for C]. Average signals < u(t) > for different oscillations are displayed. Stimulations are performed at t = 5 denoted
by the vertical dashed line.

With these two principles we can clearly reveal oscillation
sources, illustrate wave propagation paths, and unveil the
topological effects on the oscillations.

Based on the first principle, we can demonstrate the
oscillatory pattern for each oscillation according to a simple
placing rule as follows. At first, place each center node at
a certain position. Second, if there is only one center node,
locate all the other nodes around this center according to the
distances (shortest paths) from it. However, if there are two
synchronous centers, two clusters of nodes will exist, each
around a center. The other nodes should select the cluster with
the “nearest” center node before the rearrangement. During
the cluster selection if a node has the same distance from
both centers, it can be included to either cluster. This simple
placing rule transforms all random patterns into well-behaved
target waves. A similar operation can be applied to oscillations
with more centers. Snapshots of oscillation A, B, and C in
a new order are displayed in Figs. 2(a)–2(c), respectively,
which are exactly the same as those in Figs. 1(c)–1(e).
In these figures surprisingly well-ordered target waves are
observed, one-center target waves for oscillations A and B, and
two-center target waves for oscillation C, which are in sharp
contrast with the random phase distributions in Figs. 1(c)–1(e).
All nodes are driven by waves emitting from center nodes, and
the importance of the center nodes is demonstrated clearly.
The recurrent excitation of the center nodes via the driving key

nodes is the reason why the center nodes can keep oscillating
to excite the whole network. It is instructive to observe these
self-sustained target waves in oscillatory random networks and
demonstrate how these waves self-organize. On the basis of
these target patterns, different oscillation sensitivities observed
in Fig. 1 can be understood. First, due to the one-center target
structure of Figs. 2(a) and 2(b), we can definitely terminate
the oscillation by removing a center node (70 for A, 6 for B),
since the center node is the only wave source. The oscillation
can also be suppressed by removing the driving node (141
for A, 172 for B) because the driving node is the only driver
of the center node, without which the center can no longer
oscillate sustainedly. Second, since oscillation C has a structure
of two-center target waves, removing any single key node
cannot destroy the oscillation sources completely. Both target
centers (or their drivers) should be removed simultaneously
to suppress this two-center oscillation. Similarly, in order to
terminate an oscillation with n centers, n centers (drivers)
should be removed simultaneously.

In Fig. 1(f) effective suppression of given oscillations is
displayed. However, how to create a given oscillation with
high efficiency is still not clear. Excitable networks, such as
that in Fig. 1(a), have a huge number of attractors, each of
which has a small basin of attraction. If we try to reach a
given oscillation by random initial conditions we may need
thousands or even millions of tests that are computationally
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FIG. 3. (Color online) (a)–(c) Skeletons of oscillations A, B, and C, respectively. (a) Skeleton of oscillation A consisting of all loops passing
through key nodes (70, 141) with length L � 10. (b) Skeleton of oscillation B consisting of all loops passing through key nodes (6,172) with
length L � 11. (c) Skeleton of oscillation C consisting of all loops passing through the key node pair (29,65) or the other pair (97,168) with
L � 10. (d) Skeleton of oscillation A1 with node 128 removed from oscillation A. (e) Skeleton of oscillation B1 with node 88 removed from
oscillation B. (f) Oscillation periods versus the driving shortest loops identified. The white squares in the solid curve represent numerical results
for one-dimensional loops, which have the same parameters as those in Fig. 1. TA, TB , TA1 , TB1 (red (dark) circles) denote periods of oscillations
A and B and their modulated oscillations A1 and B1. All circles are located around the squares.

consuming and practically unreasonable. However, when the
center nodes and their drivers are identified, we can recover a
given oscillation with high efficiency by manipulating only a
very few nodes. To create oscillation A (B) from the all-rest
state we only need to initially stimulate single center node 70
(6) while the interaction from the center node to its driving key
node 141 (172) is blocked during the initial excitation period of
the center node. We find that the excitation activities propagate
away from the center node and then come back via the driving
key node to reexcite the center node. Then the system evolves
autonomously to target pattern A (B) via the self-organized
excitation propagation in the network. Generally speaking,
we can recover any given n-center target pattern by initially
stimulating n centers with the interactions from these centers
to their drivers blocked during the initial excitation periods of
center nodes. In the following paper, this excitation procedure
is briefly called n-center node excitation, without additional
remarks on the interaction modulations. In Fig. 2(d) we
present the evolution generated by one-node-excitation with
the solid (dashed) curve, which recovers oscillation A (B)
asymptotically. In order to recover oscillation C, both center
nodes 29 and 97 should be excited simultaneously. The
creation of oscillation C is shown by the dotted curve in
Fig. 2(d).

IV. SKELETONS AND OSCILLATION CONTROL

Based on principle 2, we can construct a skeleton and
reveal the oscillation source for each oscillation by analyzing
the network topology. The skeleton of a given oscillation
means a subnetwork consisting of some short topological
loops passing through both the center nodes and their drivers.
Topological effects on a network oscillation can be well
unveiled based on the skeleton. In Figs. 3(a)–3(c) skeletons

of oscillations A, B, and C are displayed, respectively. In
Fig. 3(a) we display all topological loops with length L �
10, passing through the pair of key nodes (70, 141). In
Fig. 3(b) the skeleton of oscillation B is plotted, consisting
of loops with length L � 11 passing through the key node pair
(6,172). An interesting difference between Figs. 3(a) and 3(b)
is that the shortest loop in Fig. 3(a) [Lmin(A) = 5] is much
smaller than that in Fig. 3(b) [Lmin(B) = 9]. In Fig. 3(c) we
show the skeleton of oscillation C consisting of loops with
length L � 10, passing through the pair of nodes (29, 65)
or (97, 168). The skeleton supporting oscillation C consists
of two clusters with Lmin(C) = 7. Furthermore, for each
oscillation under investigation the shortest loops displayed in
the skeleton always have a successive driving relationship.
In Figs. 3(a)– 3(c), these successive driving shortest loops
are indicated by arrows. These driving loops, supporting
self-sustained oscillations of the center nodes, are regarded
as the oscillation generators. The phenomenon in Fig. 1(b)
that oscillations A, B, and C have different periods (TA =
5.99, TB = 8.37, TC = 7.00) can be understood from these
oscillation generators. It has been known that a pulse can
circulate along a one-dimensional (1D) loop consisting of
excitable nodes. The period of the oscillation increases as the
loop’s length increases [41]. Since the shortest loop in each
skeleton dominates the oscillation, we have the conclusion
TB > TC > TA for Lmin(B) > Lmin(C) > Lmin(A). That is the
reason why different oscillations may have different periods.

The structures of skeletons in Figs. 3(a)–3(c) are greatly
simplified in contrast with the original complex network in
Fig. 1(a). They contain a much fewer number of nodes and
reduce the original high-dimensional complex structure to
various sets of 1D loops. It is important to find these small
skeletons, which indicate many essential features of the net-
work oscillations. We can efficiently modulate the oscillations
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just by analyzing these simple skeletons. In the following
discussion the oscillation period is taken as a measurable
quantity to demonstrate the oscillation modulations.

First, we modify oscillation A by removing node 128.
This operation changes oscillation A to oscillation A1. Based
on Fig. 3(a) we can predict the network evolution after the
modulation. First, although the shortest five-node loop is
destroyed, there are still some other loops containing center 70
and its driver 141. The oscillation will be maintained. Second,
the new shortest loop among the remaining loops will emerge
as a dynamical loop, which guarantees the recurrent excitation
of center 70 and maintains the network oscillation. Because
the length of the new shortest loop (70 → 24 → 185 →
116 → 194 → 98 → 52 → 141 → 70) is 8, we expect that
the modified oscillation A1 must have a larger period. Our
predictions are confirmed. The skeleton of oscillation A1 is
shown in Fig. 3(d), where the right loop (marked by the
arrowed loop) actually emerges as the oscillation generator.
And the period of oscillation A1 is indeed larger than that of
oscillation A (TA1 = 7.77 > TA = 5.99). Similar operations
are applied to oscillation B. Oscillation B1 is obtained by
removing single node 88 from oscillation B. Analyzing the
skeleton in Fig. 3(b) we expect that this operation must
prolong the original period TB to TB1 (TB1 > TB), for the new
shortest loop has a length L = 10. In Fig. 3(e) the skeleton
of oscillation B1 is displayed as expected. Then we find
TB1 = 9.14 > TB = 8.37. In Fig. 3(f) periods of 1D oscillatory
loops with different sizes are displayed with white squares
in the solid curve. Periods of network oscillations A, B, A1,
and B1 are also displayed with red (dark) circles. Both sets of
periods coincide well. It demonstrates that simplified skeletons
indicate essential features of complicated patterns, and the
shortest loops, which pass through both the center nodes and
their drivers, indeed dominate the dynamics of the network
oscillations.

The modulation diversity can be much richer for oscillations
with more centers. Different modulations are applied to
oscillation C. In the subsequent paragraphs, responses of
oscillation C to the removal of different nodes, (1) node 97,
(2) node 29, and (3) nodes 129 and 99, will be studied. We find
that all simulations of the network oscillations fully coincide
with predictions from the simple skeleton in Fig. 3(c).

(1) If center node 97 is removed, the network oscillation
must change, i.e., from oscillation C to C1. Analyzing the
skeleton of oscillation C, the right subskeleton must be
destroyed by removing its center 97, while the left subskeleton
is remained intact to support oscillation C1. Since only left
target center 29 works, the original two-center target pattern
must be transformed to a one-center target pattern, and the
nodes in the original right cluster must move to the left
cluster. The left cluster will grow from the boundary with
nodes migrating from the destroyed cluster. We present the
target pattern of oscillation C1 in Fig. 4(a) by simulation and
find a pattern the same as we predicted. In Fig. 4(b) we plot
the skeleton of oscillation C1, which is nothing but the left
subskeleton in Fig. 3(c). (2) If center node 29 is removed from
oscillation C, the left subskeleton in Fig. 3(c) is destroyed.
The resulting oscillation is denoted by C2. We expect that
node 97 will work as the only center, and the shortest loop
in right subskeleton will work as the oscillation generator. In

Figs. 4(c) and 4(d) we observe that all predictions are fully
confirmed. (3) If two nodes are removed simultaneously, node
129 from the left cluster and node 99 from the right one,
oscillation C3 is generated. We predict from Fig. 3(c) that
the two-center target pattern should be maintained (since the
functions of two centers are preserved), and the skeleton of C3

can be deduced from Fig. 3(c) with the shortest loops in both
clusters destroyed. Then we stimulate oscillation C3 and plot
a snapshot by arranging the nodes in order. Two-center target
waves are verified in Fig. 4(e). The skeleton of oscillation C3

is displayed in Fig. 4(f). Both Figs. 4(e) and 4(f) fully confirm
the above predictions.

Meanwhile, the above operations have adjusted the oscil-
lation periods. In case 1 since the oscillation generator of
C1 remains the same as that of oscillation C, the resulting
period TC1 should remain approximately the same as TC . For
oscillation C2 in case 2, the new oscillation generator (the
arrowed shortest loop) in Fig. 4(d) has length 8, and then period
TC2 should increase to about 7.66 by comparison with 1D loop
data in Fig. 4(g). Since loop nodes 129 and 99 are removed in
case 3, oscillation C3 has the shortest source loops of length 9
[arrowed loops in the left cluster in Fig. 4(f)]. Thus period TC3

should be close to 8.42 [see Fig. 4(g)], which is considerably
larger than TC . In Fig. 4(g) numerical results of the modulated
networks are compared with those of 1D loops. Both sets of
data agree well with each other. It is amazing that by removing
node 97 we dramatically change the oscillation pattern while
keeping the period almost unchanged. In contrast, by removing
two nodes (129, 99) we keep the two-center target pattern while
largely slowing down the oscillation. All these seemingly
strange responses can be well explained with the skeleton in
Fig. 3(c).

So far, we discussed oscillations A, B, and C in the given
network Fig. 1(a) in detail. However, oscillation patterns in a
complex network are much more abundant. The choice of key
nodes and related source loops depends on initial conditions,
because the basins of attraction of different attractors may
be very complicated in nonlinear dynamic systems. For a
homogeneous random network all nodes are topologically
equivalent, and each node may play a role of a center node
or the driver of the center node. The only condition is that
the shortest loops passing through both the center node and
its driver must be large enough to guarantee the recurrent
excitation.

V. COMPLEX NETWORKS WITH DIFFERENT
SIZES AND DEGREES

Till now we have focused on Eq. (1) with N = 200 and
k = 3. All characteristics observed in this particular case can
be extended to networks with different sizes and degrees. Here
we study another example of Eq. (1) with N = 400 and k = 4.
The network structure is displayed in Fig. 5(a). With a certain
initial condition we observe an oscillation � with a snapshot
shown in Fig. 5(b). This oscillatory pattern has seven key
nodes, which are displayed with squares in Fig. 5(b). Four
centers (4, 57, 176, 260) are identified. Removing four key
nodes simultaneously from four different sets, i.e., one node
from each set, we can suppress this oscillation. This process
is displayed by the solid curve in Fig. 5(c). Different from
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FIG. 4. (Color online) (a) Snapshot of oscillation C1 with center node 97 removed from oscillation C [see Fig. 2(c)]. Triangles denote the
nodes migrating between different clusters after the modulation. (b) Skeleton of oscillation C1. (c) Snapshot of oscillation C2 with center node
29 removed from oscillation C. (d) Skeleton of oscillation C2. (e) Snapshot of oscillation C3 with two nodes (129, 99) removed from oscillation
C simultaneously. (f) Skeleton of oscillation C3. (g) Periods TC and TCi

, i = 1, 2, 3 (red (dark) circles) versus the lengths of the shortest loops
in the skeletons. All data of TCi

can be approximately predicted by the results of 1D loops (white squares in the solid curve).

oscillations A, B, and C, in Fig. 5(b) only three sets of key
nodes appear in pairs [such as (57, 339), (176, 13), (260, 382)],
while key node 4 appears without any partner. The reason is
the following. Since each node has a degree k = 4, a center
node may have a single dynamical driver (such as 339 → 57,
13 → 176, 382 → 260) or multiple drivers [such as node 4 in
Fig. 5(d), having two drivers 244 and 360]. If a center node has
only one driver, the driver node also becomes a key node for
controlling the center node. However, when the center node
has multiple drivers, removing one of these drivers cannot
terminate the function of the center. Thus this center node
does not have a partner node for the oscillation suppression.
Similar to Fig. 2(d) we can generate an oscillatory pattern in
Fig. 5(d) from the all-rest state by initially stimulating the four
centers (4, 57, 176, 260) with interactions from these centers
to their drivers blocked during the initial excitation periods of

the center nodes. Time evolution of this oscillation generation
is shown in Fig. 5(c) with the dotted curve.

In Fig. 5(d) we show exactly the same snapshot as that in
Fig. 5(b) with all nodes rearranged in four clusters according to
their distances from different centers, i.e., each node chooses
the cluster with the “nearest” center node, and then it is
placed in the selected cluster according to the distance from
the center. Different sizes of four clusters result from the
asynchronous excitation of different centers. If an oscillatory
pattern has multiple centers, each center emits excitation waves
and controls a cluster of nodes. A node will belong to the ith
cluster if the excitation wave from the ith center reaches this
node first in comparison with the other centers. Therefore,
if all centers have synchronous excitation any given node is
controlled by the nearest center, as we did in Fig. 2(c). If
multiple centers are not synchronous, i.e., they are excited
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FIG. 5. (Color online) (a) Homogeneous random network with N = 400, k = 4. The other parameters are the same as those in Fig. 1. (b)
Snapshot of oscillation � generated randomly. Four sets of key nodes are displayed with squares. (c) Suppression and creation of oscillation
�. Removing simultaneously four center nodes (4, 57, 176, 260) can suppress the oscillation as shown by the solid curve. Oscillation � can
also be generated by initially stimulating four center nodes (4, 57, 176, 260), as shown by the dotted curve. Different operation times are
denoted by the vertical dashed lines. (d) Snapshot is the same as (b) for oscillation �, with nodes are rearranged in order. (e)–(g) Snapshots of
oscillations after different modulations to oscillation �. Triangles mean the nodes migrating between different clusters after the modulations.
(e) Snapshot of three-center oscillation with center 176 removed from oscillation �. (f) Snapshot of two-center oscillation with two centers
(57, 176) removed from oscillation �. (g) Snapshot of one-center oscillation with three centers (4, 57, 260) removed from oscillation �.

at different times, the measurement of the distance should be
modified by counting the excitation time differences of various
centers. In the case of oscillation �, four centers are excited
at slightly different times. Specifically, in each round node
176 is excited first, nodes 57 and 4 have a single-step delay
(one-step here means T/n, with T being the oscillation period

and n being the number of nodes in a single wavelength),
while node 260 has a two-step delay. Then the “nearest” center
means the center node with the shortest distance among (d1,
d2 + 1, d3 + 1, d4 + 2), with (d1, d2, d3, d4) being the actual
topological distances from centers (176,57,4,260) to the given
node. This method of distance measurement is applied to
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all the patterns where more than one center exist. With this
arrangement we find that the seemly random phase distribution
in Fig. 5(b) is actually a well-behaved four-center target wave
pattern. All the modulations to oscillation C shown in Fig. 4
can be applied to oscillation � in Fig. 5(b). For instance, by
removing center 176 we can transform the original four-center
target waves to three-center waves with centers 4, 57, and
260. All nodes migrating between different clusters after the
modulations are also displayed by triangles in Fig. 5(e). In
Figs. 5(f) and 5(g) we removed two center nodes (57, 176) and
three center nodes (4,57,260), respectively. Two-center and
one-center target patterns are found, where all the remaining
centers emit target waves. All these modulation results show
the generality of the two principles.

VI. EXTENSIONS

In the previous discussions we considered only homoge-
neous random networks where all nodes have the same degree.
Both principles 1 and 2 can be extended to Erdös-Rényi (ER)

networks and scale-free (SF) networks, which are inhomo-
geneous in topological structures. Results in these networks
are similar. It has been known that functional networks of the
human brain exhibit scale-free properties [8,42]. In Fig. 6(a)
we present an example of a SF network with N = 200,
< k >= 4. The size of each node i is proportional to the nature
logarithm of its degree ki . For this network we perform 1000
tests from different random initial conditions and find 142
self-sustained periodic oscillations. Among these oscillatory
patterns we identify 128 oscillations with a single center, 13
oscillations with two centers, and one oscillation with three
centers. The statistics for different networks is also listed in
Table I. These results confirm that the existence of a small
number of center nodes is also popular in inhomogeneous
networks. In Figs. 6(b) and 6(c) we present two snapshots of
different oscillations (one-center oscillation SF-A and two-
center oscillation SF-B) from different initial conditions. The
phase distributions seem complicated and random. However,
some key nodes and center nodes for the oscillations are
also identified (one pair of key nodes for oscillation SF-A

FIG. 6. (Color online) (a) SF network with N = 200, < k >= 4. The degree distribution obeys a power-law distribution with an exponent
γ = −3. The size of each node i is proportional to ln(ki). Parameters are set as follows: a = 0.84, b = 0.07, ε = 0.04, Du = 1.0, K = 1.8.
(b) Snapshot of oscillation SF-A with a single pair of key nodes denoted by squares. (c) Snapshot of oscillation SF-B with two pairs of key
nodes identified. (d) Suppression of oscillations SF-A and SF-B by removing their center nodes [18 for SF-A and nodes (21, 30) for SF-B].
(e) Creation of oscillations SF-A and SF-B by initially stimulating the center nodes. (f) Snapshot is the same as (b) for oscillation SF-A, with
nodes placed in order. One-center target waves are displayed. (g) Snapshot is the same as (c) for oscillation SF-B with nodes placed in order.
Because two center nodes 21 and 30 are almost synchronous, nodes are arranged in the same way as in Fig. 2(c). Two-center target waves are
observed. (h) Skeleton of oscillation SF-A, with all the shortest loops with length L = 7 displayed.

056204-9



LIAO, XIA, QIAN, ZHANG, HU, AND MI PHYSICAL REVIEW E 83, 056204 (2011)

and two pairs for oscillation SF-B). The given oscillations
can be suppressed [Fig. 6(d)] and created [Fig. 6(e)] by
simply modulating the center nodes. In Figs. 6(f) and 6(g)
we plot exactly the same snapshots as those in Figs. 6(b)
and 6(c), respectively. With the placing rule, the random
phase distributions of oscillations SF-A and SF-B can be
rearranged to well-behaved one-center target waves [Fig. 6(f)]
and two-center target waves [Fig. 6(g)], respectively. The
skeleton of oscillation SF-A is shown in Fig. 6(h), based
on which we can make oscillation modulations as we did in
Fig. 4.

The only difference is that due to the high heterogeneity,
there are many short loops passing through the pair of key
nodes. In the skeleton shown in Fig. 6(h), only the shortest
loops with L = 7 are demonstrated. Destroying any of the
shortest loop will not significantly change the period of the
oscillation, for the remaining shortest loops still have a length
L = 7.

So far our investigation has been performed in networks
with the Bär model as local dynamics. Actually, the principles
can be also applied to other excitable systems. Here we study
the Fitzhugh-Nagumo (FHN) model [24], which has been
used for describing the dynamics of neural cells. Complex
networks of FHN nodes with diffusive couplings are described
as follows:

dui

dt
= 1

ε

(
ui − u3

i

3
− vi

)
+ Du

N∑
j=1

Mij (uj − ui) ,

dvi

dt
= ε(ui + β − γ vi), i = 1,2,...,N. (2)

In Fig. 7 we show a homogeneous random network under
investigation with N = 200, k = 3. In Figs. 7(b)–7(h) we do
the same as in Figs. 6(b)–6(h), respectively, with model Eq.
(2) and network Fig. 7(a) considered. Apart from the skeleton
[Fig. 7(h)] of the one-center oscillation, the skeleton of the
two-center oscillation is also demonstrated in Fig. 7(i). Two

FIG. 7. (Color online) (a) Homogeneous random network considered with N = 200, k = 3. Network dynamics is described by Eq. (2).
Parameters are set as follows: γ = 0.5, β = 0.7, ε = 0.2, and Du = 0.1. (b) Snapshot of oscillation FHN-A with a single pair of key nodes.
(c) Snapshot of oscillation FHN-B with two pairs of key nodes. (d) Suppression of oscillations FHN-A and FHN-B by removing center nodes
[55 for FHN-A and nodes (6, 41) for FHN-B]. (e) Creation of oscillations FHN-A and FHN-B by initially stimulating the centers nodes. (f)
Snapshot is the same as (b) for oscillation FHN-A, with nodes placed in order. One-center target waves are displayed. (g) Snapshot is the same
as (c) for oscillation FHN-B with nodes rearranged as in Fig. 2(c). Two-center target waves are observed. (h) Skeleton of oscillation FHN-A
with loops passing through the pair of key nodes (55, 130) with length L � 9. (i) Skeleton of oscillation FHN-B. Two clusters of loops with
L � 10 are displayed.
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clusters of loops are displayed. We find that all conclusions
derived from Figs. 2–6 are also applicable to Fig. 7, though
the local dynamics and the coupling form are considerably
different from those in Eq. (1). Moreover, the conclusions do
not depend on the specific parameters given in Eqs. (1) and (2).
When connective nodes are excited in sequence, principles 1
and 2 are applicable.

VII. CONCLUSIONS

In this paper we have studied pattern formation in oscil-
latory complex networks consisting of excitable nodes. Well-
organized structures, including center nodes and skeletons, are
revealed for seemingly random patterns. Two simple principles
are proposed: Well-behaved target waves are demonstrated
propagating from center nodes along the shortest paths; the
shortest loops, which pass through both the center nodes and
their drivers, dominate the network oscillations. The existence
of target waves with certain centers in random networks
may provide prospective insights into pattern formation in
complex networks. Moreover, the discovery of skeletons will
improve the understanding of crucial topological effects on
the network dynamics. Based on the mechanism revealed,
we are able to suppress, create, and modulate the oscillatory
patterns by manipulating a few nodes. All the modulations

can be predicted by analyzing the skeletons. Our surprising
and useful findings are applicable to homogeneous random
networks with different sizes and degrees, inhomogeneous
networks, and networks with different excitable models, such
as the FHN model.

In the present paper we considered periodic self-sustained
oscillations in excitable complex networks. The extensions to
nonperiodic and even chaotic oscillations will be our future
work. The ideas and methods in the present work are expected
to be applicable to wild fields where oscillatory behavior of
excitable complex networks is involved, especially for neural
systems. Though at present we do not consider some specific
processes of neural systems, we do hope that our results may
have a useful impact on the investigation of complicated neural
functions, since oscillatory behavior, excitable dynamics, and
complexity of interactions are crucially important for the
functions of neural systems.
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