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Intrinsic stickiness and chaos in open integrable billiards: Tiny border effects
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Rounding border effects at the escape point of open integrable billiards are analyzed via the escape-time
statistics and emission angles. The model is the rectangular billiard and the shape of the escape point is assumed
to have a semicircular form. Stickiness, chaos, and self-similar structures for the escape times and emission angles
are generated inside “backgammon” like stripes of initial conditions. These stripes are born at the boundary
between two different emission angles but with the same escape times and when rounding effects increase they
start to overlap generating a very rich dynamics. Tiny rounded borders (around 0.1% from the whole billiard size)
are shown to be sufficient to generate the sticky motion with power-law decay γesc = 1.27, while borders larger
than 10% are enough to produce escape times related to the chaotic motion. Escape exponents in the interval
1 < γesc < 2 are generated due to marginal unstable periodic orbits trapping alternately (in time) regular and
chaotic trajectories.
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I. INTRODUCTION

Experiments usually measure a signal (light, atoms, par-
ticles, current, etc.) which comes out from the system of
interest. If the open channel (the escape point or hole)
of the physical device, where the signal comes out, has a
relevant size and shape, the signal may include information
from inside the physical device and from the open channel
itself. The shape and size of the open channel depends on
experimental interests but also on how the device is built. For
the dynamics in mesoscopic systems and nanostructures, for
example, the shape and the size of the small open channel can
present irregularities or defects which may induce undesirable
changes in the out-coming signal. Such sometimes intrinsic
irregularities affect the dynamics of particles which collide
with them.

From the theoretical point of view it is very difficult to
describe, in general, the dynamics of colliding particles with
irregular boundaries. Therefore in recent years more and more
attention has been given to the description of particles confined
inside boundaries (or billiards) which present some specific
edges, softness, etc. To mention some examples we have
the edge roughness in quantum dots [1], unusual boundary
conditions in two-dimensional billiards [2,3], soft billiards
[4–6], effects of soft walls [7] and edge collisions [8] of
interacting particles in a 1D billiard, rounding edge [9,10] and
edge corrections [11] in a resonator, deformation of dielectric
cavities [12], and edge diffractions and the corresponding
semiclassical quantization [13,14], among others.

Differently from the above works, which focus on the
boundaries of systems, here we analyze the effect of irregulari-
ties from the open channel itself. What is the effect of (rounded)
open channels on the out-coming signal? To mention some
examples, rounded open channels are common in experiments
with semiconductor devices [15,16] and quantum cavities [17],
where the open channels have a shape very similar to those
shown in Fig. 1, which is the model used here (types I and II).
In the above-mentioned experiments the dimension of the
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open channel (not its width, but the radius of the rounded
border) related to the whole device is around 0.1% for type II
borders (the smallest case) and around 30% for type I borders
(the largest case). Since experiments measure a signal which
comes out from the system of interest, how is it affected
by such rounded borders? Is it possible that tiny rounded
borders transform an integrable dynamics into a chaotic one?
What is their influence on the dynamics in open nanodevices,
conduction fluctuations in semiconductors [15,18], particle
transport in nanostructures, cold atoms in open optical billiards
[19], etc.? Recent works in this direction have analyzed the
effect of the width [20–23] and the location [20,22,24,25]
of the open channel on the escape rates of particles in open
billiards. Besides that, from the theoretical point of view the
description of open billiards is very challenging [26].

Using the example of a billiard model we show here that
the shape or structure of the open channel induces stickiness
[27–29] and a self-similar and chaotic output signal, even if the
dynamics inside the billiard is originally regular. We consider
that the device borders (or extremities), which delimit the holes
in realistic open systems, are not single points, but have their
own shape. In this work results are shown for the escape-time
statistics and the emission angles θf in the open rectangular
billiard shown in Fig. 1. While self-similar structures are
clearly visible in the escape times (ETs) and escape angles,
the sticky motion is observed by the power-law decay of the
ET statistic. Although it is possible to detect and quantify
sticky motion via the distribution of finite-time Lyapunov
exponents [7,8,30–33], for the purpose of the present work it
is more adequate to use the ET statistics. The fractal behavior
of the ET dynamics was also shown recently in Bose-Einstein
condensates [34] and trapped ultracold atoms [35] and in a
vase-shaped cavity [36] and generic chaotic cavities [37], just
to mention some examples.

The paper is organized as follows. Section II presents the
model, defines the ETs used to detect the sticky behavior, and
shows related numerical results. Sections III and IV show the
rich dynamics generated by the rounded border: long-lived
states and self-similar structures for the ETs and emission
angles. In Sec. V we present our final remarks.
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FIG. 1. (Color online) The rectangular billiard, with dimension
L × D, showing the open channels (borders) of type I (with radius R)
and type II (radius r ≈ R/20) considered here. The escape point lies
exactly in the middle of the billiard. Initial angle θ0 and, schematically,
the shortest escape trajectories (A1,A2,A4, and A6) are shown. In all
simulations we use L = 4 and D = 10.

II. ROUNDING BORDERS, POWER-LAW DECAYS,
AND CHAOS

Stickiness is quantified through the recurrence-time statis-
tics or the ET statistic, where the open channel is chosen as the
recurrence region. Trajectories start at the open channel toward
the inner part of the billiard. The time T is recorded when the
trajectory returns to the open channel and leaves the billiard.
The ET statistic is defined [38] by Q(τ ) = limN→∞ Nτ

N
, where

N is the total number of recurrences and Nτ is the number of
recurrences with time T � τ . For systems with stickiness the
ET statistic decays as a power law Q(τ ) ∝ τ−γesc with γesc > 1
being the scaling exponent. The precise definition of stickiness
is related to the divergence of all higher moments of the mean

recurrence time 〈T 〉 (for details see [29,39,40]). We assume
that there is stickiness when a power-law decay with γesc > 1 is
observed for two decades in time. Integrable billiards can have
power-law decays with γesc = 1 [41]. For hyperbolic chaotic
systems and long times the ET statistic decays exponentially.

In the simulations particles start at times t = 0 from the
open channel (uniformly distributed from D/2 − a/2 � x0 �
D/2) with an initial angle θ0 toward the inner part of the
billiard and with velocity |�v| = 1. The particle suffers elastic
collisions at the billiard boundaries and at the rounded border
of the open channel. For each initial condition we wait until the
particle leaves the billiard and record θf and the escape time T .
We use 105 initial conditions distributed uniformly in the
interval 1.00 × 10−6 � θ0 � 1.57. The dynamics for −π/2 �
θ0 � 0.0 is symmetric.

Without rounding effects (R = r = 0.0) the dynamics in
the closed rectangular billiard is integrable, has zero Lyapunov
exponents, and can be described in terms of invariant tori. This
regular dynamics is shown in the phase space, Fig. 2(a), where
the collision angle θ is plotted as a function of horizontal
coordinate x. Straight lines parallel to the x axis are related to
tori with irrational winding numbers. Periodic orbits are related
to tori with rational winding numbers and are the marginally
unstable periodic orbits (MUPOs) from this problem. When
opening up the billiard, trajectories which start exactly on
a rational torus will never leave the billiard, expect for
those initial conditions which match the opening channel.
Trajectories which start on an irrational torus will certainly
escape the billiard after some time. However, MUPOs can
trap these trajectories generating the power-law decay with
γesc = 1. This is exactly what is observed for the decay of
Q(τ ) in Fig. 3 for R/L = 0.0.

When the rounded border increases (R/L > 0.0) a chaotic
component is introduced by the dispersing boundary and
no regular islands are observed. Figure 2(b) shows the
phase-space dynamics when R/L = 0.1 using just one initial
condition. Blue (dark gray) points occur when the trajectory
collides with the rounded border and defines the scattering
region (SR) or chaotic region which occurs inside the interval
D/2 − a/2 − R � x � D/2 + a/2 + R [see blue (dark gray)
region in Fig. 8]. Green (light gray) points occur when the
trajectory collides with the vertical and horizontal parallel
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FIG. 2. (Color online) Phase-space dynamics for (a) R = r = 0 and (b) R/L = 0.1 (one initial condition). Blue (dark gray) points occur
when the trajectory collides with the rounded border and defines the scattering region (SR) or chaotic region (see also Fig. 8). Green (light
gray) points occur when the trajectory collides with the vertical and horizontal parallel walls.
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walls, where the dynamics is regular and can be still described
by irrational/rational tori. Thus outside the scattering region,
where the trajectory does not collide with the rounded border,
the dynamics is still regular. When the trajectory starts on a
torus, it remains on it until it touches the rounded border of
the opening channel. There it can be scattered to another torus,
moving along this new torus until it touches again the rounded
border, where it can be scattered again to another torus. This
procedure repeats itself many times and the trajectory jumps
between different tori so that for long enough times almost
all irrational tori are visited. This can be seen by the many
horizontal lines in the phase space of Fig. 2(b), which was
obtained starting just on one torus with initial condition θ0 =
0.85. It is important to observe that the chaotic region occurs
only inside the scattering region 4.5 � x � 5.5 and acts like a
chaotic layer which connects different irrational tori. MUPOs
exist inside this region, such as all periodic orbits which collide
with the bottom plane of the billiard but not with the rounded
border, or the bouncing ball orbit colliding between the parallel
vertical walls. Therefore, inside the scattering region chaotic
trajectories are trapped by the MUPOs for the short times
the MUPOs cross the scattering region. Outside this region
we have only regular trajectories trapped by the MUPOs.
It has been observed [23,38,42,43] that when MUPOs are
immersed in a chaotic sea with sharply divided phase spaces,
they generate sticky motion with a power-law decay with
exponent γesc = 2. Such decay, however, changes drastically
when hierarchical phase spaces are present [42]. In our case
we do not have a hierarchical phase space and the MUPOs are
inside the chaotic sea only for small times. In fact, a sharply
divided phase space occurs in time and trajectories are trapped
inside the chaotic region, as can be seen by the higher density
of points close to the center of the scattering region in Fig. 2(b).
This higher density is the consequence of trajectories bouncing
successively between the left and right rounded borders. As
R/L increases more and more, the chaotic scattering region
increases and an almost chaotic phase space is expected. It
is worth mentioning that in dissipative systems it has been
observed [44–47] that the trajectory switches between long
times on the periodic attractor [negative finite-time Lyapunov
exponents (FTLEs)] and smaller times on the chaotic saddle
with positive FTLEs.

We start by discussing numerically the quantity Q(τ ) for
the type I billiard and for different values of the ratio R/L,
where L is kept fixed. The results are shown in Fig. 3 for
a = 0.15 and R/L = 0.0,1.0 × 10−4,1.0 × 10−3,1.0 × 10−2,

5.0 × 10−2,1.0 × 10−1,1.5 × 10−1,3.0 × 10−1, and 1.0. Note
that these results are automatically applied to the type II
billiard. The only difference is that for the type II billiard
the escape time τ ′ is related to τ by τ + tp, where tp is the
time the trajectory needs to travel the two parallel boundaries
from the escape hole (see type II border in Fig. 1). For
comparison we show in Fig. 3 the straight lines with power-law
decay exponents γesc = 1 (dashed) and 2 (points). The first
observation is that for R/L = 0.0 (curve i), Q(τ ) has a
power-law decay with γesc ∼ 1. The power law for this case
is generated by all trajectories on irrational tori trapped by the
periodic orbits from the rectangular billiard. This was checked
by looking at the escape times as a function of the collision
angles θ of the trajectories. All angles between [−π/2,π/2]
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FIG. 3. (Color online) Behavior of Q(τ ) for a = 0.15 and for
different values of the ratio R/L (curves a → i).

are relevant to generate longer escape times. Thus trajectories
close to the periodic orbits inside the rectangle generate the
power-law decay with γesc = 1.

For very small rounding effects, R/L = 10−4 → 10−3

(curves h → g), the qualitative behavior of Q(τ ) approaches
the γesc = 1 decay obtained for the integrable case. This is
expected since, as observed in the phase-space dynamics of
Fig. 2(b), the chaotic scattering region is still very small
and the MUPOs are most of the time surrounded by regular
trajectories. Regular trajectories close to MUPOs generate the
γesc = 1 decay. This decay starts to change slowly for R/L =
1.0 × 10−2 (curve f ), generating a decay with 1 < γesc < 2.
In other words, we observe the effect of MUPOs trapping
alternately (in time) regular and chaotic trajectories, making
the exponent slowly change, γesc = 1 → 2 (see below). Since
the scattering region increases with R/L, the MUPOs start
to trap preferentially the chaotic trajectories, so that for
R/L = 1 × 10−1 (curve d) the power-law decay approaches
γesc ∼ 2. However, this decay occurs for just one and a half
decades and cannot rigorously be characterized as stickiness.
We guess that for smaller values of the aperture a, trajectories
will stay longer inside the billiard and maybe the desired two
decades can be observed. This will be discussed below. As
R/L increases more and more (→ 1.0), the scattering region
increase very much and an exponential decay is observed,
typical of chaotic systems.

Figure 4 shows the Q(τ ) dependence on the aperture a when
R/L = 0.01 is kept fixed. Starting from below [a = 0.4 →
0.1 (curves j → n)], we observe two power-law decays:
for shorter times, inside the dashed lines, γesc ∼ 1, and for
intermediate and larger times, γesc ∼ 1.27. When a decreases,
the first decay disappears giving place to the second decay. For
a = 0.08 and 0.04 (curves o → p) we have just one power-law
decay with γesc ∼ 1.27 and it occurs for two decades. Thus the
stickiness effect occurs for these values of a and R/L. The
exponent γesc ∼ 1.27 arises from the following: In Fig. 2(b)
we observed that the trajectory alternates in time between
the chaotic (blue, dark gray) and regular motion (green, light
gray). When the trajectory is close to MUPOs inside the chaotic
region, the escape exponent tends to γesc → 2, but when it is
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FIG. 4. (Color online) Behavior of Q(τ ) for R/L = 0.01 and for
different values of the aperture a.

close to MUPOs inside the regular region, the escape exponent
tends to γesc → 1. Thus the overall exponent will be something
in between (∼1.27). It is also interesting to observe that de-
creasing a from 0.01 to 0.0001 (curves q → t), the power-law
decay is not observed for long times but is slowly substituted,
from below (smaller times), by the exponential decay, typical
of chaotic systems. This can be understood from the analysis
of the phase-space dynamics: The chaotic scattering region
is also the trapping region; thus as a decreases the time spent
inside the billiard increases and therefore the amount of chaotic
motion increases relative to the time MUPOs are inside the
scattering region. Thus the exponential decay is preferred in-
stead of the power-law decay with γesc = 2. This also explains
why we are not able to observe power-law decays for much
longer times by just decreasing a. It changes the dynamics.

III. ROUNDING BORDERS GENERATING
THE RICH DYNAMICS

The physics involved in the dynamics becomes more
evident when the ETs and escape angles θf are plotted as
function of the initial incoming angle θ0 and for different ratios

R/L. These plots are shown in Fig. 5 and were generated by
using 500 × 500 points in the intervals 0.01 � θ0 � 1.57 and
0.0001 � R/L � 1.0 [−9.2 � ln (R/L) � 0.0]. We start by
discussing Fig. 5(a), where each color represents a given value
of the ETs written as log (τ ) (see the color bar on the right: dark
blue → yellow → white in the color scale and dark gray to
white in the gray scale). Horizontal stripes with different colors
are evident for a significant range of R/L values. Each stripe
is defined by a bunch of initial conditions which lead to the
same ET and consequently have the same color. For example,
for some specific initial angles (θ0 ∼ 0.39,0.56,0.69,0.89) we
observe dark blue (gray) stripes which correspond to very short
ETs. For R/L = 0 these angles can be obtained analytically
for periodic orbits (from the close billiard) with period q = 2n.
They are θ

(n)
0 = arctan [ D

2nL
] (n = 1,2,3, . . .), which is the

middle value of the main dark blue (gray) stripes which are
born at R/L = 0. The corresponding ETs are tn = nt , where
t is ETs from the case n = 1, explained below. The shortest
ET (t0 ∼ 8.0) occurs for θ0 ∼ 0.0, where the particle collides
once against the wall in front of the escape hole and then
leaves the billiard (see trajectory A1 in Fig. 1). The widths of
the stripes are always related to the aperture a from the hole.
The next shortest ET (t1 = t ∼ 12.8) occurs for n = 1 at θ (1) =
arctan 5.0/4.0 ∼ 0.89, where the particle collides directly with
the corner of the billiard (see trajectory A2 in Fig. 1). The third
shortest ET (∼2t) occurs for θ (2) = arctan 5.0/8.0 ∼ 0.56 and
is shown by trajectory A4 in Fig. 1. In the limit θ0 → π/2
the ETs tend to increase since the trajectories are parallel to
the escape point. As n increases the ETs from the trajectories
A2n increase, the corresponding stripes assume other colors
[light blue (gray) → green (light gray) → yellow (white), see
Fig. 5(a)] and their widths decrease. This is the main behavior
of the ETs and stripes close to R/L ∼ 0.0.

Increasing R/L we observe in Fig. 5(a) that the stripes
from shorter ETs [dark blue (gray)] tend to survive longer the
rounding border effect, while stripes with larger ETs [light
blue (gray), green (light gray), and yellow (white)] tend to be
destroyed, or even to mix themselves. As a matter of notation,
we call the dark blue (gray) stripes the main stripes and
the other stripes the secondary stripes. Therefore, secondary
stripes are always related to intermediate and larger values of
ETs. Outside the main stripes the dynamics becomes very rich
and complex. It is important to mention that for θ0 → π/2

FIG. 5. (Color online) (a) Ln of the escape time and (b) emission angle θf as a function of ln (R/L) and θ0.
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(close to the horizontal MUPO) we observe that as R/L → 1
the ETs decrease. This makes sense because trajectories close
to the horizontal MUPOs are more easily scattered away when
R/L increases. This is also the reason why the ETs in Q(τ )
decrease when R/L increases, as observed in Fig. 3. Thus we
have two opposite behaviors for the ETs when R/L increases:
The ETs decrease when θ0 ∼ π/2 but they increase inside
secondary stripes. Before we explain how this second effect
occurs we would like to bring to attention the rich dynamics
generated by the rounding effects.

Figure 5(b) shows θf as a function of ln (R/L) and θ0. Each
color is now related to one emission angle θf (see the color
bar on the right: dark blue → red → yellow → white in the
color scale and dark gray to white in the gray scale). These
emission angles vary between θf ∼ 1.4 (almost horizontally
to the left) and θf ∼ 4.5 (almost horizontally to the right). As
in Fig. 5(a), also here stripes with different colors are evident
for a significant range of R/L values. Each stripe is defined
by a bunch of initial conditions which lead to the same θf . In
most cases these stripes occur for the same values of θ0 from
Fig. 5(a). However, two stripes with the same color (same ETs)
in Fig. 5(a) do not necessarily have the same color (same θf )
in Fig. 5(b). In other words, different escape angles can have
the same ETs. As R/L increases more and more, some stripes
survive while others are destroyed or mixed, as in Fig. 5(a).
The emission angles show a very rich dynamics due to the
increasing rounded borders, alternating between all possible
colors.

IV. ROUNDING BORDERS GENERATING
BACKGAMMON STRIPES

In Figs. 6(a) and 6(b) we show, respectively, a magnification
for log (τ ) and θf . The magnification is taken around the
trajectory A2 (see Fig. 1) which has a short ET (main stripe).
We observe in Fig. 6(a) that above the main stripe the ET
dynamics changes significantly when R/L increases: Larger
[light blue (gray) and yellow (white)] and shorter [dark blue
(gray)] ETs appear inside a secondary stripe. The width of this
secondary stripe increases linearly with R/L. For the emission
angle [see Fig. 6(b)] we see a very rich dynamics emerging
inside such a secondary stripe, alternating between all possible
colors (all emission angles). In addition, below the main stripe
a sequence of secondary stripes appear in the light blue (gray)
background, as can observed in the magnification shown in
Fig. 7(a). The width of each stripe in this sequence increases
with R/L, resembling stripes from a backgammon board.
As a matter of notation, secondary stripes with increasing
width will be referred as “backgammon stripes.” Stickiness
and the power-law behavior with γesc > 1 observed in Figs. 3
and 4 are born from initial angles which start inside the
backgammon stripes. These are the initial conditions which
collide, at least once, with the rounded border. For a given
value of R/L they define the instability regions for the injection
angles. The emergence of the power-law behavior becomes
more evident if we compare Fig. 7(a) with the emission-angle
behavior shown in Fig. 7(b). The light blue (gray) background
observed in Fig. 7(a), which corresponds to one ET, has
two colors [purple (black) and orange (white)] in Fig. 7(b),
which correspond to two emission angles (∼2.1 and ∼3.5).

FIG. 6. (Color online) Magnifications from the boxes shown in
Figs. 5(a) and 5(b).

It is interesting that the sequence of backgammon stripes
in Fig. 7(a), and the corresponding multicolor backgammon
stripes from Fig. 7(b), are born exactly at the boundary
between the purple (black) and orange (white) escape angles at
R/L ∼ 0. Inside the backgammon stripes the range of allowed
ETs increases, as can be observed by the increasing number
of light blue (gray) and yellow (white) points. The dynamics
involved in the emission angles inside the backgammon stripes
is also impressive, showing that tiny changes or errors in
the initial angle may drastically change the emission angle.
Observe that the dynamics inside the backgammon stripes is
a consequence of trajectories which collide with the inner
part of the semicircle from the escape channel, generating
the power law with a tendency to change, γesc = 1 → 2 (see
Figs. 3 and 4). This is important since such stripes allow us to
characterize the different domains of the dynamics, from stable
to unstable and from short to long ejection times. Another
observation is that the location of the backgammon stripes
itself is not self-similar, but inside the backgammon stripes
the self-similar structure is evident. Many simulations (not
shown) were performed to check this statement. A simple way
to understand how the self-similar structure appears is shown in
the example of Fig. 8. Two real trajectories starting, at the right
rounded border, very close to each other, θ0 = 0.895 (green
continuous line) and θ0 = 0.897 (red dot dashed line), collide
once with the upper left corner of the billiard and return back
to collide with the right rounded border. After that the green
continuous line trajectory collides with the left rounded border
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FIG. 7. (Color online) Magnifications from the boxes shown in Fig. 6.

and is scattered with an angle θs = 0.182 in the direction of the
upper horizontal wall. The red dot-dashed trajectory, however,
passes tangentially to the left rounder border in the direction
of the vertical wall, with an angle θs = 1.30. Thus any initial
angle between 0.895 and 0.897 will have a large number of
trajectories with scattering angles between θs = 0.182 and
1.30. This is just one example which occurs for trajectories
which collide, at least twice, with the rounded border. For
each collision with the rounded border this process can repeat
itself. This shows the origin of the self-similar behavior for
trajectories which collide with the rounded border. As R/L

increases more and more, the self-similar regions increase
very fast, always in the form of backgammon stripes which
emerge at different initial angles at R/L ∼ 0.0.

FIG. 8. (Color online) Two real trajectories starting, at the right
rounded border, very close to each other θ0 = 0.895 (green continuous
line) and θ0 = 0.897 (red dot dashed). After a few collisions,
the scattering angle is respectively θs = 0.18 and θs = 1.30. The
magnification shows the blue (gray) scattering region (SR).

The boundary of the stripes can be obtained analytically.
Using simple geometrical relations, we obtain for the red (light
gray) trajectory in Fig. 9 the condition

tan θ+ = ε + R sin (α+ − θ+)

L + R − R cos (α+ − θ+)
. (1)

The solution of this equation gives the angle of a trajectory
which collides, at least once, with the rounded border.
The above relation can be used to obtain exact solutions for θ+.
We are interested in the limiting angle θ∗

+, between touching
the rounded border and not. Thus we assume α+ ∼ π/2 and
the above equation gives

θ∗
±(ε,L,R) ∼ arctan

{
R(L + R) ± ε

√
L2 + 2LR + ε2

−εR ± (L + R)
√

L2 + 2LR + ε2

}
.

(2)

Two solutions are obtained: one for the red (light gray)
trajectory in Fig. 9 with θ∗

+(ε,L,R) and one for the blue
(gray) trajectory with θ∗

−(ε,L,R). For angles in the inter-
val θ∗

−(ε,L,R) < θ < θ∗
+(ε,L,R) trajectories collide, at least

once, with the rounded border. We start by discussing results
for the case ε = 0. If we use ε = D/2 = 5.0, for example, we
will look at the effect of the rounded border on the trajectory
A2 from Fig. 1, which has an initial angle θ0 ∼ 0.89. The
limiting angles θ∗

±(ε = 5, L = 4, R) are plotted in Fig. 10(a)
showing that they increase unsymmetrically around the initial

R
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ε ε
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FIG. 9. (Color online) Schematic trajectories before escaping.
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FIG. 10. (Color online) Limiting angles θ∗
+ and θ∗

− as a function
of R, determining the boundary of the secondary stripes.

angle. All angles inside these curves collide, at least once, with
the rounded border. If we do not take into account the width
of primarily stripes, the behavior of θ∗

+ and θ∗
− follows exactly

the secondary stripes observed in the numerical simulations
from Fig. 6(b) around θ0 ∼ 0.91 (the difference in the angles
is due to the width of stripes in the numerical simulations for
R/L = 0). Similar curves can be obtained for other values of
ε; each one is related to a given trajectory. For ε = 0 Fig. 10(b)
shows the behavior of θ∗

±(ε = 0, L = 4, R) as a function of R.
It shows exactly the form of the backgammon stripes, which
increase symmetrically around θ0 = 0. It is also possible to
obtain such symmetrical curves for the backgammon stripes
around angles θ0 = 0 by plotting θ∗

+(ε,L,R) and θ∗
−(−ε,L,R)

for ε = 0. Therefore, all boundaries of the secondary stripes
can be obtained from the angles θ∗

±(±ε,L,R). In addition, all
trajectories with angles inside the interval θ∗

−(ε,L,R) < θ <

θ∗
+(ε,L,R), which do not escape the billiard after one collision,

will be scattered back, repeating the whole process, allowing
now second, third, etc., collisions with the rounded border.
Thus, any small initial angle in the interval between θ∗

−(ε,L,R)
and θ∗

+(ε,L,R) may allow a large number of ejection angles
and the self-similar structure becomes evident again.

V. CONCLUSIONS

Since experiments usually measure a signal coming out
from the system of interest, the description of open physical
devices is of utmost relevance. For experiments at the frontier
of technological limitations, the open channel (the escape point
or hole) can present irregularities or defects which may induce
undesirable and intrinsic changes in the out-coming signal.

In this work we show that rounded borders in the open chan-
nel generate a rich dynamics in the integrable rectangular bil-
liard. The escape-time statistics in the integrable billiard obeys
a power-law decay with exponent γesc = 1. When rounded bor-
ders of around 0.1% → 10% from the whole billiard size are
introduced, the exponent γesc tends slowly to change from 1 →
2. Such exponents arise due to the following dynamics in phase
space: When trajectories are close to MUPOs immersed inside
the chaotic region (our scattering region), the escape exponent
γesc tends to the value 2, but when they are close to MUPOs
immersed in the regular region, the escape exponent tends to 1.

Since trajectories continuously switch between chaotic and
regular regions, without selecting preferentially one of them,
the overall escape exponent converges to something between 1
and 2. The cases in which we observe power-law decays for two
decades, and thus stickiness, occur by keeping R/L = 0.01
fixed and changing the open channel aperture in the interval
a = 0.08 → 0.04. The related exponent is γesc ∼ 1.27. All
exponents are independent of the location of the open channel
along the horizontal wall. According to recent works [25],
decay exponents change for holes located at distinct points
when the smallest period of periodic orbits inside the different
holes changes. In our case, for any location of the open channel
along the horizontal axis, the smallest period is always equal
to 1, which is related to the vertical periodic orbit A1 shown in
Fig. 1. Thus our power-law decay exponents are independent of
the location of the open channel along the horizontal wall. It is
interesting to observe that by decreasing a from 0.01 to 0.0001
the power-law decay is slowly substituted by the exponential
decay, typical of chaotic systems. This can be explained since
the chaotic scattering region is also the trapping region. Thus
as a decreases, the time spent inside the billiard increases, and
consequently the time inside the trapping region. Therefore,
the amount of chaotic motion relative to the time MUPOs travel
inside the chaotic region increases, and the exponential decay
is preferred instead the power-law decay. In other words, for
such small values of a and R/L, the time MUPOs travel inside
the chaotic region is too small to trap the chaotic trajectories
in order to generate the power law with γesc. This is also
the reason why we were not able to observe, besides the
stickiness cases mentioned above, power-law decays longer
than two decades by just decreasing a. For larger rounded
borders (>10%) the scattering region increases and the chaotic
component becomes larger, so that an exponential decay is
observed for the escape times, typical of chaotic motion.

Emission angles and escape times show a self-similar
structure only for initial angles inside backgammon like stripes
which are born at the integrable case R/L = 0. As R/L

increases, the backgammon stripes increase more and more
as was observed numerically and by the analytical solution
(2). Trajectories which start inside the backgammon stripes
will collide, at least once, with the rounded border, generating
the rich dynamics, power-law decays, and chaotic motion.
These stripes allow us to characterize the different domains of
the dynamics, from stable to unstable and from short to long
ejection times.

From the nonlinear perspective our results are impressive,
showing that a very rich dynamics and stickiness may come
alone from tiny border effects (∼ 0.1% → 10%) in integrable
billiards. Such effects should be visible directly in experiments
with open integrable devices, open systems with leaks (see
[20] and therein cited references), and in problems related
to conduction fluctuations in semiconductors [15,18], particle
transport in nanostructures, and cold atoms in open optical
billiards [19].

Instead of rounded borders, other shapes for the open
channels could be used. All of them (except for some
trivial geometry) should generate a power-law decay and
chaotic motion in integrable billiards, strongly affecting the
out-coming signal. In this work we considered an integrable
billiard as the starting point. We also performed extensive
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numerical simulations to study rounded border effects in the
stadium billiard, which is already chaotic without border
effects (R/L = 0). For all values of R/L we found that the
escape-time statistic has an exponential decay, expected for
the chaotic behavior. For systems with mixed phase space we
anticipate strong variation in the escape-time decay [42].
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