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Coarse-graining model is a promising way to analyze and visualize large-scale networks. The coarse-grained
networks are required to preserve statistical properties as well as the dynamic behaviors of the initial networks.
Some methods have been proposed and found effective in undirected networks, while the study on coarse-graining
directed networks lacks of consideration. In this paper we proposed a path-based coarse-graining (PCG) method
to coarse grain the directed networks. Performing the linear stability analysis of synchronization and numerical
simulation of the Kuramoto model on four kinds of directed networks, including tree networks and variants
of Barabási-Albert networks, Watts-Strogatz networks, and Erdös-Rényi networks, we find our method can
effectively preserve the network synchronizability.
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I. INTRODUCTION

Complex networks have become a key approach to un-
derstanding many social, biological, chemical, physical, and
information systems where nodes represent individuals and
links denote the relations or interactions between nodes. In
this sense to study the dynamics of such systems is actually
to investigate the dynamical behaviors on the networks. In
particular, the network synchronization as an important emerg-
ing phenomenon of a population of dynamically interacting
units in various fields of science has attracted much attention
[1–12]. Most works focused on studying the relation between
network topology and the synchronization [3–7], enhancing
the synchronizability by designing the weighting strategies
[8–12]. Moveover, some efforts have been made to study the
synchronization in directed networks [13–17]. It has been
pointed out that the optimal structure for synchronizability
is a directed tree [13,14] and the convergence time is strongly
related to the depth of the tree [15,16]. Most of the experiments
on investigating the dynamic behaviors are implemented on
small-size networks. However, when the networks contain
very large number of nodes, it becomes sometimes impossible
to model the dynamic process. For example, to investigate
the synchronization, extrapolating the coupled differential
equations model of a single node to this large system is too
complicated to be carried out.

A promising way to address this problem is to coarse
grain the network, namely to reduce the network complexity
by means of mapping the large network into a smaller
one. The coarse-graining techniques have been successfully
applied to model large genetic networks [18] and extract
the slowest motions in protein networks [19]. Essentially,
the coarse-graining process is very similar to the problem
of cluster finding or community detection in networks (see
Refs. [20–23] for some popular methods). The coarse-grained
network is obtained by merging the nodes in the same cluster or
community. However, the coarse-graining model is far beyond
the clustering techniques, since it requires the coarse-grained
networks keep the same topological properties or dynamic
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behaviors as the initial networks, such as preserving the
degree distribution, cluster coefficient, assortativity correlation
[24], the properties of random walk on the network [25],
synchronization [26], and critical phenomena [27]. Most of
the former works on coarse graining consider undirected
networks. However, in many real systems, the interactions
between individuals are not reciprocal. For example, the
food web, gene regulation system, metabolic system, and
neural system are usually represented by directed networks
where the nodes are affected by their upstream nodes. In
directed networks of course we can ignore link directions and
apply methods developed for undirected networks, but this
approach discarding potentially useful information contained
in the link directions may lead to dramatic change of the key
organizational features when coarse graining the networks
[28]. In addition, some prominent methods may confront
problems when applied to directed networks. Among all these
existing coarse-graining methods for undirected networks,
the spectral coarse-graining (SCG) method is a very general
method which can be applied in many dynamic processes
such as synchronization, random walk, and epidemic spread
[25,26]. In order to preserve a typical eigenvalue, the SCG
method coarse grains the nodes with similar elements in the
corresponding eigenvectors. For different dynamic processes,
different eigenvalues should be considered. Therefore the
choice of the eigenvectors is indeed problem dependent. As the
synchronizability is mainly related to the largest and smallest
nonzero eigenvalue, the SCG method for synchronization
takes the p2 and pN into consideration (p2 and pN are,
respectively, the eigenvectors for the smallest nonzero and the
largest eigenvalue). However, this method may not provide
good performance in directed networks since the eigenvector
elements cannot successfully characterize the nodes’ dynamic
role. For instance, the nodes in different layers may have
exactly the same eigenvector elements in directed acyclic
networks while the nodes with exactly the same topology
may have totally different eigenvector elements in directed
networks with cycles. In a word, to design an effective coarse-
graining method for directed networks is still challenging.

In this paper we propose a path-based coarse-graining
(PCG) method to coarse-grain directed networks for
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synchronization. The basic idea is that the nodes who obtain
the same impacts from other nodes are similar to each other,
and thus can be merged. The impacts that one node receives
from other nodes are calculated via tracing the origin of
the source in the directed networks (i.e., along the opposite
direction of links). It has been pointed out that the dynamical
correlation can be predicted from such topological similarity
[29]. Therefore, coarse graining in this way will most naturally
merge the nodes according to their functional performance and
likely preserve the dynamical properties. The linear stability
analysis of synchronization and numerical simulation of the
Kuramoto model on four kinds of directed networks, including
tree networks and variants of Barabási-Albert networks, Watts-
Strogatz networks, and Erdös-Rényi networks, show that our
method can effectively preserve the synchronizability of the
initial directed networks. Additionally, we find the far sources
play more important roles when identifying the nodes’ roles
in directed networks with obvious hierarchy structure, while
the near sources are more important in the directed networks
with many loops.

II. PATH-BASED COARSE-GRAINING (PCG) METHOD

A. Definition of node’s impact vector

Many structural-based similarity indices have been pro-
posed to quantify the nodes’ similarity [30–32], most of
which only work for undirected networks. How to define the
nodes’ similarity in directed networks is still a challenge. Here
we propose a method via tracing the origin of impacts in
directed network. The basic assumption is that two nodes
are structural similar if they obtain the same impacts from
other nodes, and thus they are more likely to be merged
during the coarse-graining process. Given a directed network
G(V,E), where V and E denote the set of nodes and directed
links, respectively. Multiple links and self-connections are
not allowed. The impact of node x on node y is defined by
summing over the collection of directed paths from x to y with
exponential weights by length. The mathematical expression
reads

fx→y =
lmax∑
l=1

βl |P 〈l〉
x→y |, (1)

where |P 〈l〉
x→y | is the set of all directed paths with length l

starting from node x to node y. Mathematically, |P 〈l〉
x→y | =

(Al)xy , where A is the adjacency matrix: if x points to y

Axy = 1, otherwise Axy = 0. β is a free parameter that controls
the weights of the paths. Smaller β indicates assigning more
weights on the short paths, and vice versa. Here the paths
whose lengths are not larger than lmax are considered. If
lmax = ∞, namely considering all directed paths from x to
y, Eq. (1) is similar to the Katz index [33]. However, the
significant difference is twofold: on one hand the adjacency
matrix in Katz index is symmetrical while asymmetrical in
Eq. (1) and on the other hand the parameter β is usually smaller
than unit in Katz index, namely assigning more weights to the
short paths, while in Eq. (1) β has no limitation. Since counting
all paths between every pair of nodes is very time consuming
especially in large networks, here we set lmax equal to the
length of the longest path among all the shortest paths between

two nodes. Note that when lmax = ∞ and β is smaller than
the reciprocal of the largest eigenvalue of A (i.e., ensure the
convergence), the impact matrix F with element fxy defined
in Eq. (1) can be directly calculated by F = (I − βA)−1 − I .

B. Group partition via k-means clustering

We assign each node x a N dimensional impact vector
which is equal to the xth column of matrix F , namely
�fx = (f1x,f2x,f3x, . . . ,fNx)T , where N = |V | is the number

of nodes. Clearly if two nodes receive the same impacts from
their ancestors (i.e., upstream nodes), they tend to have the
same phase in synchronization, and thus are more likely to
be merged during coarse graining. Suppose we are going to
coarse grain a network containing N nodes to a smaller one
with K nodes. We adopt the k-means clustering method [34]
to partition the N nodes into K groups. The nodes in the same
group will be merged. The k-means clustering technique aims
at minimizing the within-cluster sum of squares:

E =
K∑

i=1

∑
x∈V (i)

|| �fx − �c(i)||2, (2)

where V (i) is the set of nodes in cluster i (i = 1,2, . . . ,K) and
�c(i) is the centroid of cluster i which is equal to the mean of
points in cluster i, namely

ck(i) = 1

|V (i)|
∑

x∈V (i)

fkx. (3)

The detailed steps of k-means clustering are shown as follows.
(i) Choose K vectors as the initial centroid of each cluster.
(ii) Randomly choose a node x from the set V . This node
will belong to the cluster i if the distance between its vector
�fx and the centroid of cluster i, namely �c(i), is the minimum

among all the centroids of K clusters. (iii) Update the centroid
of each cluster according to Eq. (3). (iv) Repeat steps (ii)
and (iii) until all the centroids cannot be modified. Note that
for a given K , clusters will depend heavily on the initial
configuration of the set of centroids, thus making interpretation
of the clusters rather uncertain. Different initialization may
lead to different solutions which may be trapped in the local
minimum. Clusters should be, as much as possible, compact,
well separated, and interpretable, possibly with the help of
some additional variables, such as the F statistic. Here we
only focus on whether the clusters are compact, namely the
vectors (nodes) within one cluster are close (similar) enough,
while neglect if the clusters are well separated. Therefore we
will finally choose the clustering result subject to the lowest E

among L-possible solutions (we set L = 20 in this paper).

C. Weighting strategy for the coarse-grained networks

Another crucial problem in the process of coarse graining
is how to update the links’ weights after merging the nodes
so that the resulting network is truly representative of the
initial one. An effective weighting strategy was proposed by
Gfeller et al. [26]. Here we apply it to directed networks.
Specifically, when we merge the nodes in cluster i to form
a new node labeled by mi , the weights of the merged links
update according to the following principle:

056123-2



COARSE GRAINING FOR SYNCHRONIZATION IN . . . PHYSICAL REVIEW E 83, 056123 (2011)

FIG. 1. (Color online) A simple illustration of how to update the
links’ weights in the coarse-graining process. (a) The initial network
consisting of seven nodes and eight directed links. (b) The reduced
network after merging the three nodes a, b, and c. Numbers on the
links indicate the new weights of the links.

wx→mi
=

∑
y∈V (i)

wx→y

|V (i)| for the in-links of mi,

wmi→x =
∑

y∈V (i)

wx→y for the out-links of mi, (4)

where wx→y indicates the weight of the directed link from x

to y, which can also be interpreted as the coupling strength. A
simple illustration is shown in Fig. 1. The initial network as
shown in Fig. 1(a) consists of seven nodes and eight directed
links. Assuming the initial links’ weights are all equal to unit.
After merging the three nodes a, b, and c, a new node m

is generated, and according to Eq. (4) the links weights in
the reduced network are drawn as in Fig. 1(b). Indeed, since
the three nodes in total receive three in-links from node d,
while two from node e, the weights of m’s two in-links are,
respectively, wd→m = 3/3 = 1 and we→m = 2/3. For m’s out-
links, since the three nodes have two out-links to node f and
one to g, the weights are, respectively, wm→f = 1 + 1 = 2
and wm→g = 1.

Under the framework of master stability analysis, the
synchronizability of an undirected network can be quantified
by the ratio between the largest and the smallest nonzero
eigenvalues of the Laplacian matrix of this network, namely
R = λN/λ2, where λN and λ2 are, respectively, the largest
and the smallest nonzero eigenvalues of the Laplacian matrix
[35–37]. In directed networks, since the Laplacian matrix
defined as Lij = kin

i δij − aij is asymmetric with zero rowsum,
it has complex eigenvalues. In order to achieve the synchro-
nization condition, every eigenvalue is entirely contained in the
region of negative Lyapunov exponent for the particular master
stability function. Once the stability zone is bounded and the
imaginary part of complex eigenvalue is small enough, the
network synchronizability can be approximately measured by
the real part of eigenvalue ratio R = λr

N/λr
2, where λr

N and λr
2

are, respectively, the largest and the second smallest real parts
of eigenvalues [11,38,39]. Generally speaking, the stronger the
synchronizability, the smaller the ratio R. Note that an accurate
index for measuring the synchronizability in directed networks
has not yet been proposed and asks for further studies. Here we
use the approximate index R = λr

N/λr
2 as an indicator to see

whether the synchronizability of a directed network changes
after coarse graining. Usually λN is proportional to the largest
degree kmax (i.e., largest node’s strength in weighted network)
of the network and λ2 corresponds to the lowest degree

kmin (i.e., lowest node’s strength in weighted network) [1].
Therefore, keeping the kmax and kmin unchanged can effectively
help to maintain the synchronizability after coarse graining.
Thus, in the coarse-graining process the nodes with largest and
smallest in-degrees can only be merged if the kmax and kmin

of the coarse-grained network are respectively equal to that
of the initial network. Otherwise, we will randomly selected
two nodes, one with largest in-degree and the other with
the smallest in-degree, before group partition. Then the rest
N − 2 nodes will be classified into K − 2 groups according
to k-means clustering. Note that, unless stated otherwise, k

always refers to the in-degree. In the Appendix we further
discuss the effect of the constraint of keeping kmax and kmin

on coarse-graining results. It shows that the eigenvalue ratio
R is sensitive to kmax and kmin, while the order parameter of
Kuramoto model does not.

Finally, for the aspect of computational complexity, the
k-means clustering algorithm is of O(N2), and the time
complexity of calculating the impact-vector F is O(N3).
Likewise, the calculation of eigenvectors in SCG method also
takes O(N3). However, with the development of computing
techniques, lots of fast calculation algorithms can help to
reduce the computational complexity and make our method
be able to deal with large networks. For example, the
computational complexity of Katz index (i.e., the case for
β < 1) can be reduced to O(N + M), where M is the number
of edges in the network [40].

III. RESULTS

A. Coarse graining on modeled networks

We apply the path-based coarse-graining (PCG) approach
to four kinds of directed networks. (i) Directed tree network.
A tree with N nodes and L layers is generated starting from
a directed train with length L, in which each node represents
a layer. Then rest N − L nodes are added one by one. Each
new added node is connected by a directed link starting from
one of its ancestors which are not located in the layer L.
(ii) A variant of Barabási-Albert networks [41]: Directed
BA network. An acyclic directed BA network is generated
by using the mechanism for undirected BA network and
assuming the link direction can only be from older node to
younger node. (iii) A variant of Watts-Strogatz networks [42]:
Directed WS network. The model starts from a completely
regular network with identical degree and clockwise links.
Each link will be rewired with two randomly selected nodes
with probability q [∈ (0,1)]. (iv) A variant of Erdös-Rényi
networks [43]: Directed ER random network. The directed ER
random networks can be generated by setting q = 1.

First we investigate the performance of PCG on the four
kinds of networks. The synchronizability of the coarse-grained
network R in the (β,K) plane is shown in Fig. 2, where K

is the size of the coarse-grained network. Interestingly, we
find that in tree network and acyclic BA network larger β in
average provides better results than smaller β. In particular,
in tree network there is an obvious line at β ≈ 1. In the
BA network with β > 1 the coarse-grained network can
keep the synchronizability exactly the same as the initial
network. In the cyclic WS network the β that best preserves
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(a)Tree network

(c)WS network (d)ER network

(b)BA network

FIG. 2. (Color online) The synchronizability R in the (β,K) plane
for (a) directed tree networks (N = 1000, L = 20), (b) directed BA
network (N = 1000, k̄ = 3), (c) directed WS network (N = 1000,
k̄ = 10, q = 0.1), and (d) directed ER network (N = 1000, k̄ = 10).

the synchronizability is around 0.1. It seems that networks
with more loops tend to obtain better coarse graining with
smaller β (see Sec. III C for detailed discussion of the
relationship between the optimal parameter β∗ and the number
of loops in network). The result in Fig. 2(d) shows that the
synchronizability of the coarse-grained ER network is not
sensitive to β regardless of K , since the total fluctuation is
smaller than 0.07.

We compare the PCG method with other two methods,
namely random coarse graining (RCG) and spectral coarse
graining (SCG) [26]. In RCG the N elements of each
node’s vector are randomly selected in the range of (0,1).
Then the nodes will be classified into K groups by using
k-means clustering. In directed networks the egeinvalues and
egeinvectors of their Laplacian matrixes have complex values.
When we apply SCG to directed networks, we consider only
the real parts of the values in this paper. In practice, we define
I equally distributed intervals between the maximum and
minimum of pr

2 (pr
N ), where pr

2 and pr
N are the egeinvectors

corresponding to the second smallest and the largest real-part
egeinvalues of the Laplacian matrix, respectively. The nodes
whose eigenvector components in pr

2 (pr
N ) fall in the same

interval are merged. Specifically, if the elements in both pr
2

and pr
N are identical, we will randomly divide the nodes

into K groups. Actually, the relation between I and K

strongly depends on the network structure (i.e., the distribution
of the elements in pr

2 and pr
N ). For instance, considering

the initial WS and ER network shown in Fig. 2, when
I = 800 the size of the coarse-grained WS network is 951,
while the reduced ER network only contains 281 clusters.
Note that there are many potential ways to apply the SCG
method to directed networks making use of the imaginary
part of the elements in eigenvectors. For example, the vectors
p2 (pN ) can be generated by combining the real part and the

imaginary part [such as
√

(pr
2)2 + (pi

2)2, pr
2 + pi

2, pr
2p

i
2, et al.].
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FIG. 3. (Color online) The evolution of the ratio R = λr
N/λr

2 as
a function of the size of the coarse-grained network K . The initial
networks are the same as the ones in Fig. 2. We use the typical
parameter β = 5 for (a) directed tree networks and (b) directed BA
networks, and β = 0.1 for (c) directed WS networks and (d) directed
ER networks. The results for RCG and PCG are obtained by averaging
over 100 independent network realizations. Insets show the results for
K ∈ [2,100].

Another way is grouping the nodes according to four
vectors, namely (pr

2,p
i
2,p

r
N ,pi

N ). If the imaginary parts are
appropriately considered, the performance of SCG can be
improved. However, how to find the right way to make use
of the imaginary parts is a tough problem and inappropriately
involving the imaginary parts in SCG method may lead to even
worse results.

Figure 3 shows how the indicator R changes with K on
the four kinds of directed networks with typical β. Overall
speaking, PCG outperforms SCG, and RCG performs worst.
As shown in Figs. 3(a)–3(c), with SCG and RCG, the
synchronizability changes even only if a few nodes have been
merged, while the PCG displays a large stable range. In a
directed tree network, most of the elements in eigenvectors
corresponding to the smallest and the largest eigenvalues are
identical. Thus it is impossible to distinguish the role of nodes
by the analysis on the eigenvectors as suggested in Ref. [26]. In
the tree networks, the most effective coarse-graining strategy
is to merge the nodes in the same layer. PCG can indeed
well identify the nodes in different layers by using a larger
parameter β (> 1). In this sense, PCG is very effective in
acyclic directed tree network. From Fig. 3(a) one can see that
when K > L PCG can keep the synchronizability exactly the
same as the initial network. When K = L the tree will be
reduced to a train with length L, namely all the nodes in the
same layer are merged. When K < L there exist a sudden
jump of R [see inset of Fig. 3(a)]. This is caused by merging
the nodes in different layers and thus leading to a smaller kmin

according to the weighting strategy in Eq. (4). In this case, if
we artificially set kmin of the reduced network equal to that of
the initial network, the synchronizability can be well preserved
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(exactly equal to 1). Similar phenomenon exists in acyclic BA
network where the hierarchical structure is clear.

It has been demonstrated that the synchronizability of the
directed BA network with average in-degree k̄ = 3 is exactly
3 [11]. Figure 3(b) shows that PCG with parameter β = 5 can
guarantee R = 3 by keeping the network acyclic and kmax and
kmin unchanged, even the network is reduced to 30 clusters
(i.e., K = 30). When K < 30 merging may generate some
loops and decrease kmin, and thus lead to a sharp increase of
R. It cannot be perfectly avoided by artificially keeping kmin

as what we did in the tree network, instead R can effectively
reduce to around 3, since here the loops also play a role. On the
contrary, the SCG method may induce loops even merging a
few nodes (i.e., for a larger K). For example, when K = 600,
the synchronizability of the reduced SCG network is R = 3.77,
while synchronizability of the reduced PCG network is exactly
equal to 3.

In the networks with cycles including directed WS networks
and directed ER networks, there are no clear hierarchical
structures, thus the local information (i.e., short paths) plays
a more important role to quantify the node’s impact during
the coarse-graining process, and thus a relative small β is
required. Here we use β = 0.1. The results show that the PCG
method performs as well as the SCG method in directed ER
networks while much better than SCG and RCG in directed
WS networks.

In addition, we point out that grouping the nodes aiming
at preserving the dynamics cannot maintain the topological
properties at the same time, although the grouping is according
to the topological similarity. Generally the average degree of
the coarse-grained network is larger than that of the initial
network. For comparison, we generate a group of modeled
networks which have the same topological properties as the
initial network and same size as the coarse-grained network.
It is shown that the average number of reachable nodes and
loop number of the coarse-grained networks are always higher
than that of the modeled networks, while the average shortest
distance of the coarse-grained networks is always smaller
than the modeled networks. Moreover, the coarse-graining
procedure may change the degree distribution of the initial
networks. However, the topological properties of the PCG
networks are relatively closer to the initial networks than
the SCG networks especially in the acyclic networks (not so
obvious in directed networks with cycles). For example, the
PCG method can prevent the producing of loops and keep the
coarse-grained networks still partially reachable.

B. Kuramoto model on coarse-grained networks

Since the Laplacian matrices for directed networks are
asymmetric, the egeinvalues λ2 and λN are complex. In this
case the indicator R cannot exactly represent the synchro-
nizability of a network. Hence we further test our method
with the Kuramoto model [44,45], which is a classical model
to investigate the phase synchronization phenomena. The
coupled Kuramoto model in the network can be written as

θ̇i = ωi + σ

N∑
j=1

Aij sin(θj − θi), i = 1,2, . . . ,N, (5)

where ωi and θi are the natural frequency and the phase of
oscillator i, respectively, and A is the adjacency matrix. The
collective dynamics of the whole population is measured by
the macroscopic complex order parameter,

r(t)eiφ(t) = 1

N

N∑
j=1

eiθj (t), (6)

where the modulus r(t) (∈ [0,1]) measures the phase coher-
ence of the population and φ(t) is the average phase. r(t) 
 1
and r(t) 
 0 describe the limits in which all oscillators
are, respectively, phase locked and moving incoherently. By
studying the behavior of the order parameter r(t), we are
able to investigate whether the topology of the coarse-grained
network is representative of the initial one. The initial network
is a tree network as shown in Fig. 4(a), which contains 100
nodes and has 10 layers. After the PCG procedure we obtain
a train-like network with depth equal to 10 [see Fig. 4(b)].
With the SCG method a cyclic network will be generated as
shown in Fig. 4(c). The result of how the order parameter r(t)
of the Kuramoto model performs in these three networks is
shown in Fig. 4(d). It is obvious that r(t) of the PCG network
converges with almost the same speed as the initial one, while
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FIG. 4. (Color online) Given a specific directed tree network
with N = 100 nodes and L = 10 layers as shown in (a), the
coarse-grained networks through PCG and SCG are, respectively,
presented in (b) and (c) which consist of K = 10 clusters. (d) The
performance of the Kuramoto model on these three networks, namely
(a) original network, (b) PCG network, and (c) SCG network.
(e) and (f) The results of WS network (with N = 100, k̄ = 4, q = 0.1)
and BA network (with N = 100 and k̄ = 3), respectively. Their
coarse-grained networks all contain K = 25 clusters. The coupling
strength is σ = 10 and wi is randomly selected in the range of
(−0.5,0.5). Initially θi is randomly chosen in (−π,π ).
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in the SCG network it converges faster. Moreover, the results
of directed WS network and BA network are, respectively,
shown in Figs. 4(e) and 4(f). Their coarse-grained networks
all contain 25 clusters. It is clearly that the PCG method can
preserve the synchronizability more effectively than SCG.

C. The optimal parameter β∗ for different networks

In different networks the optimal parameter β∗ correspond-
ing to the best performance on coarse graining are different.
Empirically the β∗ of acyclic networks is larger than those
containing loops. To investigate whether β∗ is affected by
the cycles in networks, we carry out an experiment based
on directed BA networks, on which loops are generated by
reshuffling some links. Specifically, we randomly select two
directed links from the network, for example, one is from
node A to B and the other is from node C to D. Then
we rewired these two links as A to D and C to B. In this
way the degree of these nodes will not be changed during
the reshuffling procedure. On average, reshuffling more links
leads to more loops, see an example in Fig. 5(a) where the
numbers of loops with length 3, 4, and 5 all increase with
the increasing of reshuffling steps. Now we would like to
find the optimal parameters for the reshuffled networks. For
a given network, β∗ might be different with different K as
we have shown in Fig. 2. However, in practice, checking the
optimal parameter for different K in advance is sometimes
impossible. Thus here we ignore the relationship between
β and K , and consider the general performances of one
parameter on the coarse-grained networks with the possible
sizes we concerned. The β∗ is thus corresponding to the β that
yields the minimum synchronizability difference between the
coarse-grained networks and the initial networks, which can
be mathematically expressed by

d =
N∑

K=n

|RK − R0|, (7)

where RK is the synchronizability of the coarse-grained
network with K nodes, R0 is the synchronizability of the initial
network, and n is the minimum size of the coarse-grained
network that we considered. Since too small K may lead to
dramatic change of R, here we choose n = 10 in the example
shown in Fig. 5. We obtain β∗ subject to the minimum d. The
dependence of β∗ on the number of reshuffling steps is shown
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FIG. 5. (Color online) (a) The dependence of the number of loops
with different length on the reshuffling steps in directed BA network
(N = 100, k̄ = 5). (b) The β∗ as function of the reshuffling steps.
Each point is obtained by averaging over 100 independent network
realizations.

in Fig. 5(b). Instead of considering all possible β which is
very time consuming, we test the parameter β in the range of
[0.01,10] with steps 0.01, 0.1, and 1, respectively, in [0.01,0.1),
[0.1,1), and [1,10]. It is clear that β∗ decreases with the
increasing of reshuffling steps. Actually, if directed networks
have obvious hierarchical structure and rare loops, PCG can
perform better with a relatively large β since it emphasizes
on long paths to detect the hierarchical structure. However, in
directed networks with many loops, the hierarchical structure
is not clear. As a path involved in loops can be regarded as
an infinite long path, its effect on the impact vector will be
enormously amplified with a large β, and thus leading to noise
when characterizing the dynamic role of a node. In this case it is
better to pay more attention to the impacts from local structure,
namely emphasize the effects of short paths by using small β.

IV. CONCLUSION

Coarse graining is an effective way to analyze and visu-
alize large networks. Many methods and models have been
proposed to reduce the size of the networks and preserve
main properties such as degree distribution, cluster coefficient,
degree correlation, as well as some dynamic behaviors such
as random walks, synchronizability, and critical phenomena.
However, most of these works take into account the undirected
networks, while the study on coarse graining of directed
networks lacks attention. In this paper we introduce a path-
based coarse-graining (PCG) method which assumes that two
nodes are structural similar if they obtain the same impacts
from other nodes, and thus they are more likely to be merged
during the coarse-graining process. The impacts that a node
obtained from other nodes are calculated via tracing the origin
of impacts in directed network. Specifically, the impact of
node x on node y is defined by summing over the collection

100 400 700 1000
0

0.4

0.8

1.2

K

R

(a)

100 400 700 1000

0

1

2

3

K

R

(b)

100 400 700 1000
0

5

10

15

K

R

(c)

100 400 700 1000
0

3

6

9

12

(d)

K

R

No constraint PCG Constraint PCG 

10
0

10
1

10
2

10
0

10
2

10
1

10
0

10
1

10
2

10
0

10
2

10
1

10
0

10
1

10
2

10
0

10
1

10
0

10
1

10
2

10
0

10
1

FIG. 6. (Color online) Comparison of the PCG with and without
the constraint of kmax and kmin. All the parameters in this figure are
the same to the ones in Fig. 2.
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FIG. 7. (Color online) The order parameter of the Kuramoto
model on four networks. All the parameters in this figure are the
same to the ones in Fig. 4.

of directed paths from x to y with exponential weights by
length, which are controlled by a parameter β. Larger β

indicates the long paths are more important (i.e., assign more
weights to the long paths). Numerical analysis on four kinds of
directed networks, including tree-like networks and variants
of Barabási-Albert networks, Watts-Strogatz networks, and
Erdös-Rényi networks, shows that our method can effectively
preserve the synchronizability during the coarse-graining
process. This result is further demonstrated by the Kuramoto
model. In addition, we find that the long paths play more
important roles on the coarse graining in the tree-like networks,
while in the cyclic networks the long paths that involve
the loops usually have negative effects on quantifying the

impacts of one node on the other nodes during the coarse-
graining process, and thus a smaller parameter β gives better
performance.

Finally, we claim that the idea for merging nodes which
receive the same impacts from the network is quite general for
coarse-graining directed networks. For example, for random
walk two nodes in a directed network having exactly the same
upstream neighbors should be grouped together since their
random walker probabilities come from the same sources.
In this sense, coarse-graining directed networks for other
dynamics can be interesting extensions.
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APPENDIX: PCG METHOD WITHOUT DEGREE
CONSTRAINT

In the paper we assumed that the nodes with largest and
smallest in-degrees can only be merged if the kmax and kmin

of the coarse-grained network are respectively equal to that of
the initial network. In order to investigate the effect of keeping
the maximum and minimum in-degree on the coarse-graining
result, we remove the constraint of kmax and kmin in PCG and
see the performance of the modified PCG method. As we
mainly consider synchronization, the indicator R is shown to
be sensitive to the kmax and kmin (see Fig. 6). It is obvious
that the PCG with constraint performs better than that without
constraint. However, as shown in Fig. 7, the order parameter
r(t) of the Kuramoto model does not show obvious differences.
Moreover, we compared the RCG with and without the in-
degree constraint. The result shows that the degree constraint
cannot prominently improve the performance of RCG.
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AN ZENG AND LINYUAN LÜ PHYSICAL REVIEW E 83, 056123 (2011)

[21] J. Reichardt and S. Bornholdt, Phys. Rev. Lett. 93, 218701
(2004).

[22] L. Danon, A. Dı́az-Guilera, J. Duch, and A. Arenas, J. Stat.
Mech. (2005) P09008.

[23] S. Fortunato, Phys. Rep. 486, 75 (2010).
[24] B. J. Kim, Phys. Rev. Lett. 93, 168701 (2004).
[25] D. Gfeller and P. De Los Rios, Phys. Rev. Lett. 99, 038701

(2007).
[26] D. Gfeller and P. De Los Rios, Phys. Rev. Lett. 100, 174104

(2008).
[27] H. Chen, Z. Hou, H. Xin, and Y. J. Yan, Phys. Rev. E 82, 011107

(2010).
[28] Y. Kim, S. W. Son, and H. Jeong, Phys. Rev. E 81, 016103

(2010).
[29] J. Zhang, C. Zhou, X. Xu, and M. Small, Phys. Rev. E 82, 026116

(2010).
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