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Mechanics of three-dimensional, nonbonded random fiber networks
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The mechanical behavior of an ensemble of athermal fibers forming a nonbonded network subjected to triaxial
compression is studied using a numerical model. The response exhibits a power law dependence of stress on the
dilatation strain and hysteresis upon loading and unloading. A stable hysteresis loop results after the first loading
and unloading cycle. In the early stages of compaction, strain energy is associated primarily with the bending
of fibers, while at higher densities, it is stored primarily in the axial deformation mode. It is shown that the
exponent of the power law, and the partition of energy in the axial and bending modes depends on the ratio of the
bending to axial stiffness of the fibers. Accounting for interfiber friction does not change the functional form of
the stress-strain relationship or the exponent. The central feature that distinguishes the mechanics of this system
from that of bonded random networks is the relative sliding at contacts and the ensuing fiber rearrangements. We
show that suppressing sliding leads to a much stiffer response. The results indicate that the value of the exponent
of the stress-strain power law is determined not only by fiber bending and the formation of new contacts, but also
by the relative sliding and axial deformation of fibers.

DOI: 10.1103/PhysRevE.83.056120 PACS number(s): 62.20.F−, 45.70.Cc, 45.70.Vn

I. INTRODUCTION

Structures made from fibers are a common occurrence in
both the synthetic and biological worlds. A common example
is rubber, which is a cross-linked molecular network [1,2]. Gels
are also molecular networks that are swollen by the absorption
of water [3]. Polymeric fibers of diameter on the order of
several micrometers are used in a variety of consumer products.
Nonwovens are made from fibers of high aspect ratio that are
not bonded to each other, but entangle and interact frictionally.
Nonwovens are used for thermal insulation (e.g., fiberglass and
felt), filtration, and sound insulation [4–6]. They are also used
for liquid absorption in hygiene products. Paper is one of the
oldest manmade materials based on random fiber networks
and is made from cellulose fibers obtained from pulp through
a wet process.

Many naturally occurring materials, including arterial
walls [7], intervertebral discs [8,9], and cellular cytoskeleton
[10], are being increasingly understood as complex dynamic
structures. In particular, the cytoskeleton, which is responsible
for cell locomotion [11], cell division [12], and integrity
and viscoelasticity of the cytoplasm [13], has been shown
to be a highly dynamic structure that undergoes continual
rearrangement [14].

When individual fibers of a network have nanoscale di-
mensions, such as in molecular networks, thermal fluctuations
play an important role in their mechanics, and their mechanical
behavior is entropic. Larger fibers are less affected by thermal
fluctuations, and their response is enthalpic. These latter
networks are referred to as athermal. Further classification
can be made based on the relative axial and bending stiffness
of individual fibers: The high aspect ratio of individual fibers
leads to a higher axial stiffness than bending stiffness. If
the bending stiffness can be neglected relative to the axial
stiffness, fibers are considered flexible. In such networks sub-
jected to thermal fluctuations, axial deformation (stretching)
entails a reduction of filament entropy before a significant
enthalpic contribution is observed. The degree of tortuosity

of the filament is characterized by the persistence length,
which indicates the length along the filament beyond which
orientation memory is lost. When the persistence length is
comparable to the filament length (or the mean segment length
in bonded networks), the fiber is considered semiflexible.

The mechanics of bonded networks has been studied
extensively by both the engineering, and physics communities,
and extensive references can be found in reviews [15–17]. In
these systems, the bonds, or cross links, are permanent, and the
formation of new contacts (i.e., the effect of excluded volume)
is usually neglected.

On the other hand, the mechanics of nonbonded, athermal,
random networks has received less attention. Some experi-
mental [18–22], and modeling/simulation studies [23–29] are
present in the literature. The focus in most cases has been
on the response of fiber mats/wads to uniaxial or triaxial
compression, motivated by industrial compaction processes.
The central feature that governs the mechanical behavior
of these entangled (as opposed to cross-linked) systems is
the formation of temporary contacts between fibers. One
theoretical treatment by van Wyk [23] leads to a constitutive
model for fiber wads predicting a scaling of stress with density
of the form,

σ = ψ
(
ρn − ρn

th

)
, (1)

where ρ and ρth are the current and stiffness percolation
densities, respectively. The coefficient ψ is proportional to
the elastic modulus of the fibers, and the exponent n = 3.
Toll [26] confirmed this value of n and predicted that for
systems in which fibers are preferentially oriented in the plane
perpendicular to the direction of compression at the beginning
of the deformation, n increases to 5.

In experiments it was observed that the exponent increases
with sample mass and takes on values between 2 and 6 [21].
In experiments performed with various types of fibers, sig-
nificant hysteresis was observed during the loading-unloading
cycling. The stress-strain curves eventually overlap on a stable
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hysteresis loop after a small number of cycles. Rate sensitivity
was also observed and appears to be related to the size of
the hysteresis loop [19]. In experiments, as interfiber friction
cannot be eliminated, both hysteresis and rate effects have
been attributed to fiber rearrangements and to viscous effects
at fiber-fiber contacts. In particular, the presence of water is
known to significantly influence the mechanics of nonbonded
fiber networks. This effect is well-known in granular media,
where the constitutive behavior of contacts is likely more
important than in fiber networks.

A relatively small number of numerical studies addressing
the mechanical behavior of nonbonded networks has been
published [19,28–30]. These models are limited in the number
and size of fibers considered. Using fibers of aspect ratio
38, Durville [29] obtained results which generally agree with
van Wyk’s theory and observed that the number of contacts
increased as ρ2/3. He also studied the effect of fiber waviness,
but for the range of parameters considered in his study, no
definite conclusion can be drawn regarding the effect of this
parameter. The results by Rodney et al. [28] confirm these
observations. They used fibers of aspect ratio as high as 100
and concluded that stress follows van Wyk’s prediction of
n = 3, and that the number of contacts increases linearly with
density.

In this study, we examine the mechanical behavior of
athermal, nonbonded fiber networks subjected to triaxial
compression, focusing on the overall response of the system
[functional form, and exponent in Eq. (1)]. In particular, we
look at the effect of friction and sliding at fiber contacts. Both
these aspects have not been examined in previous numerical
studies and are difficult to control/observe in experiments. We
show that sliding is an important component of the physics of
this system. We also study the effect of the ratio between the
fiber bending and axial stiffness on the network behavior and
conclude that while the power function form remains valid,
the value of the exponent depends on this ratio. The model
reproduces the hysteretic behavior and the stabilization after
initial cycling observed in experiments.

II. SIMULATION METHOD

Semiflexible fibers are modeled using a modified bead-
spring model. As in the classical bead-spring model, contact
energy between nonbonded beads is modeled using a shifted
and truncated Lennard-Jones potential, given by

Ucontact (r) =
{

4ê[(ŝ/r)12 − (ŝ/r)6] + ê, r � rc,

0 , r > rc.
(2)

We use the symbols ŝ and ê in lieu of the traditional σ and
ε, as σ is reserved to mean stress and ε could potentially mean
strain. The fundamental units in this study are m, ŝ, and ê,
where m is the mass of a single bead, and ŝ and ê set the length
and energy scales of the simulations. The cutoff distance of the
Lennard-Jones potential is chosen as rc = 21/6ŝ, making the
pairwise interaction potential purely repulsive. This choice
of cutoff distance sets the bead diameter and thereby fiber
diameter d = rc.

Axial energy is modeled using a harmonic bond potential
between consecutive beads, and bending energy of the fiber is

modeled using a harmonic angle potential between triplets of
consecutive beads. These energies are given by

Uaxial(r) = ka

2
(r − d)2 , (3)

Ubending(r) = kb

2
(θ − θ0)2 . (4)

The equilibrium bond length is chosen to be the fiber diam-
eter d, and the equilibrium angle between three consecutive
beads is chosen as θ0 = π . (Choosing θ0 different from π

can be used to model crimped fibers.) The coefficients of
the interaction potentials in Eqs. (3) and (4) are taken as
ka = 372.2ê/ŝ2, and kb = 29.31ê. This choice ensures that for
a given fiber with Young’s modulus E, and diameter d = rc, the
energy of deformation in Hertzian contact, axial, and bending
modes is given by the classical expressions from continuum
mechanics (see the Appendix ). This relatively large value of ka

minimizes effects of fiber surface roughness. Using a harmonic
bond for the axial stiffness has been shown to minimize the
possibility of fiber crossing [31–33] and is further reduced by
the high value of ka . The volume of a fiber is taken to be the
volume of an equivalent cylinder, with two hemispherical caps.
At any given point of time, the volumetric density ρ is the ratio
of the volume of all fibers to the volume of the simulation box.

Coulomb friction is introduced between contacting, non-
bonded beads that move relative to each other. The coefficient
of dynamic friction, that is, the ratio between the friction force
and the normal force, is denoted by μ. Dynamic friction is
applied in the direction opposite to the relative tangential
velocity between beads. Static friction is applied between pairs
of beads whose relative velocity is less than 10−10ŝ2m−0.5ê−0.5.
A small dissipative viscous damping factor η = 0.1 was
introduced for numerical stability. This damping factor, along
with the friction serves to cool down the system, and hence,
the results discussed are relevant for the athermal limit of the
system.

All simulations were run using a modified version of
LAMMPS [34], with fibers of aspect ratio 50; the parameters
used in these simulations are summarized in Table I. Initial
configurations of fibers were obtained by growing straight
fibers with random orientations in a cubic simulation box with
periodic boundary conditions. In this initial configuration,
the volumetric density ρ is low enough to ensure that there
are no interactions between fibers. Since fibers are grown at
random, there is inevitably some degree of overlap between
a small number of fibers, which is removed by an energy
minimization. The resulting configuration is then subjected
to stepwise triaxial compaction using displacement-imposed
boundary conditions. At each step, the simulation box is
deformed by a small amount, and the equations of motion
are integrated. As a result of the deformation, the fibers gain
some energy, and start to move. The size of the simulation box
is then held fixed, until the average velocity of the beads drops

TABLE I. Summary of system parameters used.

No. Beads/ Fiber Sparse Compact
of fibers fiber length box side box side

1200 50 56.13 509.7 57.0
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FIG. 1. (Color online) Snapshot of a simulation cell, with fibers
depicted as continuous filaments.

below a cutoff value of 1 × 10−5ŝ2m−0.5ê−0.5. The system is
then allowed to proceed to the next step of deformation. A
snapshot of the fiber network during the compaction process
is shown in Fig. 1.

The triaxial compaction is continued until the preset
maximum density is reached. The number of fibers in the
system is chosen such that at this maximum density, the side
of the simulation box is larger than the equilibrium length of
a fiber. This is done to ensure that artifacts arising from fibers
interacting with themselves across the periodic boundaries are
eliminated. Once this maximum density has been attained,
the simulation box is subjected to stepwise triaxial expansion,
ensuring that the average bead velocity drops below the cutoff
at each step. At the end of each step during both compaction
and expansion, the configuration of the simulation box is
recorded, and the energies of each mode (contact, axial, and
bending) are computed.

Stress and dilatation strain for each configuration are
computed using the following procedure. The deformation is
described by a spherical deformation gradient tensor F = qI,
where I is the identity matrix, and q is a parameter related to
the current density ρ as

q =
(

ρ0

ρ

)1/3

, (5)

where ρ0 is a reference density and is arbitrarily assigned a
value of unity. Dilatation is then computed as the trace of the
Green strain E, and is given by

	 = Eii = 3
2 (q2 − 1). (6)

Note that the inverse relationship between ρ and 	 implies
that a decreasing value of 	 corresponds to compaction.

The Cauchy stress is evaluated as

T = 1

detF
F

∂Û

∂E
FT , (7)

where Û is the total strain energy density. Since the contri-
butions to the total strain energy density is the sum of the in-
dividual components (Û = Ûaxial + Ûbending + Ûcontact ), the
stresses due to each interaction can be similarly decomposed

as T = Taxial + Tbending + Tcontact . The components Tj are
spherical tensors with diagonal elements given by

σj = [Tii]j = −3
ρ2

ρ0

∂Ûj

∂ρ
;

j ∈ [axial,bending,contact]. (8)

The pressure associated with the Cauchy stress is given by
σ = σaxial + σbending + σcontact and is referred to as the total
stress.

The average fiber orientation was seen to remain random
at all levels of compaction in this study, as evidenced by
computing the orientational order parameter,

〈P2(cos β)〉 =
〈

3 cos2 β − 1

2

〉
, (9)

where β is the angle made by the end-to-end vector of a fiber
and one of the coordinate axes, and the average is taken over
all fibers in the system.

III. RESULTS AND DISCUSSION

A. Structural regimes and evolution of stress

As an assembly of fibers is compacted from low-density to
high-density, the system progresses through three identifiable
regimes. We refer to these regimes as sparse, network, and
compacted. The characteristics associated with the transition
between regimes are described in this section.

In order to differentiate between the sparse and network
regimes, we use the concept of percolation. Geometric perco-
lation is defined as the formation of a continuous path/cluster
spanning the entire problem domain. This structure may or
may not be sufficiently rigid to provide nonzero elastic moduli
on the global scale. Rigidity percolation refers to the critical
density at which the structure acquires stiffness. Geometric and
rigidity percolation are, in general, distinct events [35]. For a
system of initially straight fibers, geometric percolation can be
estimated using the results in Bug et al. [36] and Balberg et al.
[37], where it was shown theoretically and numerically that the
percolation number density of rods scales as φth ∼ R−1L−2

0 ,
where R is the fiber radius, and L0 is the fiber length.
This relationship is approximate; the approximation becomes
better for high aspect ratio fibers. The proportionality constant
resulting from the numerical study in Balberg et al. [37]
is approximately 0.44. Interestingly, the maximum packing
number density of spherocylinders is related to the fiber radius
and length through an identical relationship with a scaling
constant 3.24 [38].

To our knowledge, the stiffness percolation threshold for
this system has not been studied systematically. Also, it is
not clear that the stiffness percolation threshold for the bulk
modulus is identical to that for the shear modulus. In fact, the
fragility observed in networks close to percolation indicates
that these thresholds may be different. Numerical data for
stiffness percolation in triaxial compression (bulk modulus)
were reported by Rodney et al. [28]. The number density at
stiffness percolation was observed to scale as φth ∼ R−1L−2

0 ,
with a proportionality constant of 2.93. Although we did
not study the stiffness percolation threshold in detail, our
numerical estimates follow these trends.
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FIG. 2. (Color online) Schematic illustrating the definition of free
segment length used in the study. The fiber shown has three free
segments of lengths l1,l2,l3.

The transition from network to compacted regimes is
identified by monitoring the free segment length l. This
quantity is the length of segments between two contacts
on a fiber and is computed directly from the simulation
snapshots, as depicted schematically in Fig. 2. A single fiber
can have multiple free segments. The mean free segment length
lc = 〈l〉 is computed over all free segments li . Figure 3(a)
shows a plot of lc as a function of the dilatation strain 	

during compaction. The system evolves during cycling, with
parameters being substantially different for the first cycle, and
reaching steady state at later stages. The figure shows the
evolution of lc during the first cycle (labeled “Transient”) and
two of the stable cycles. We observe that the curve shows
pronounced hysteresis, with the network range extending to
larger dilatation strains during unloading. Also shown as
a straight solid line is lc ∼ 	1.5, which, for this range of
densities, corresponds to lc ∼ ρ−1. This line shows the scaling
predicted by the Corte-Kallmes theory [24] and is seen to
provide a reasonable approximation for the loading branch
of the stable cycle in the network regime. As compaction
proceeds, as seen in Fig. 3(a), the slope of the lc vs 	 curve
seems to change in the vicinity of 	 ≈ 2 (ρ ≈ 0.28), and
lc → 0. This change of slope can be associated with a transition
that is an indicator of approaching the compacted regime.

The probability density function (PDF) of the free segment
length, P (l), for the loading branch of a single stable cycle
is shown in Fig. 3(b) at various levels of compaction. Close
to the percolation threshold, the PDF is nearly a δ function,
centered at l = L0. The probability of finding segments of
various lengths is nevertheless nonzero, as a small number
of fibers make contact. At higher densities, the distribution
is exponential (P (l) = l−1

c exp [−l/ lc]), consistent with a
Poisson process where contacts on a fiber are formed at random
locations, also discussed in the Corte-Kallmes theory [24].
In the high-compaction limit, P (l) approaches a δ function,
centered at zero.

The stress produced in the system was also examined. After
the transient loading-unloading cycle, the system evolves to a
stable hysteresis loop. The total stress σ , obtained for the
first and stable cycles is shown in Fig. 4 for systems with
no friction, that is, μ = 0. This hysteretic behavior, also seen
in Fig. 3(a), has been observed experimentally [19]. During
the transient cycle, the system softens; this phenomenon is
commonly observed in fatigue testing of metals that have been
hardened (by either prestraining or heat treatment) before
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FIG. 3. (Color online) (a) Evolution of mean free segment
length, lc, during cycling, shown for the transient cycle, and two
stable cycles. Also shown are the approximate boundaries of the
three different regimes. (b) Probability density function (PDF) of
segment lengths, P (l), at four stages of a stable compaction cycle.
The PDF evolves from nearly a δ function at low compactions to
exponential, with progressively lower mean.

cycling. For our system, which is frictionless, softening is
associated with fiber rearrangements.

The stress-strain curves are power laws for almost two
decades of dilatation strain. The loading branch of the transient
stress-dilatation curve is fitted to σ ∼ 	−5.03, while the cor-
responding branch of the stable cycle is fitted to σ ∼ 	−5.46.
These scalings correspond to fits of σ ∼ ρ3.79 and σ ∼ ρ4.11,
respectively. Our exponents are larger than van Wyk’s model
[23], which, as stated in the Introduction, predicts σ ∼ ρ3. The
larger exponent values are consistent with the departure from
theory that is observed in experiments. Exponents ranging
from 2 to 6, with the higher values corresponding to samples of
larger initial mass are reported [19,21,22]. The values reported
here are in agreement with these experimental findings.

The loading branch of the stable stress-dilatation curve was
decomposed into its constituents, as in Eq. (8), and the three
components are shown in Fig. 5. The total stress is dominated
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FIG. 4. (Color online) Total stress produced during compaction
and expansion of a random fiber network without friction (μ = 0)
during the transient and stable cycles.

by the bending mode at large 	 (low densities). As the network
is compacted, the axial mode contribution increases faster
than the bending mode contribution, and eventually takes over
(σbending ∼ 	−5.09; σaxial ∼ 	−7.35). The crossover happens at
	 = 2.44. This transition is shown in the inset, where the ratios
of the strain energy density associated with fiber bending, to the
total strain (Ûbending : Ûtotal), and the corresponding ratio for
the axial mode are shown as a function of the dilatation strain.
This observation of a larger scaling exponent of σaxial with 	

suggests an explanation for the larger exponents observed in
experiments. If the system behavior is dominated by the axial
deformation mode, the total stress should follow the trend set
by σaxial . This issue is discussed in more detail later in this
section.

The contribution of σcontact is at least an order of magnitude
lower than the contribution of the other two components
at all dilatations, and its scaling exponent is similar to the
scaling exponent of σbending . This is because the contact forces,
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FIG. 5. (Color online) Partition of total stress into contact, axial,
and bending components during the loading portion of a stable cycle
for a system with μ = 0. (Inset) Ratios of energy density associated
with bending and axial modes to the total energy density.

perpendicular to the fiber axis, are responsible for bending.
The dominance of the bending mode at low densities, and the
transition from bending-dominated to axial-dominated defor-
mation as the network density increases has been observed
in two-dimensional (2D) bonded networks of phantom fibers
(fibers that can cross each other) [39,40]. In 2D systems, the
transition is controlled by both the density, and the ratio of
the bending to axial stiffness of fibers, l2

b = EI/EA. The
bending mode dominates at small densities and for small lb
(long, slender fiber segments). Our data show that nonbonded
networks behave qualitatively in a similar manner.

We also compute the bulk modulus, K = ∂σ/∂	, obtained
from the total stress of the loading branch of the stable cycle,
in Fig. 4(a). The fits obtained by computing the appropriate
derivatives are K ∼ 	−6.25, which is equivalent to K ∼ ρ4.75.
Experimentally, the Young’s modulus, as measured from the
slope of the unloading branch of the stress-strain curve, varies
with the density as E ∼ ρm, where, for experiments reported
by Masse et al. [21], m increases from 3 to approximately 4.5 as
the sample mass increases. Cross-linked networks subjected to
smaller deformations exhibit more complex behavior, where
if the density and/or lb is large, the network shear modulus
scales linearly with density. This is also the prediction of the
affine or effective medium theories of network mechanics, as
well as the behavior of open cell networks and of rubber [41].
This type of response is denoted as “affine.” When the density
and/or lb is small, the shear modulus scales as G ∼ ρm, with
m being quite large (m = 6.67 in [39]). This regime is denoted
as “nonaffine” and, as the name suggests, theories based on
the affine motion of network segments do not apply.

To further investigate the effect of lb = √
kb/ka on the

stress-strain curve, kb is varied while keeping ka constant.
The stiffness ka is not modified in order to keep the effective
fiber surface roughness unchanged. Also, the diameter of
the fiber, d, is kept constant, so that the excluded volume
contribution remains the same in all these systems. For
isotropic cylindrical fibers, with lb = d/4, this modification is
artificial but allows us to decouple the effect of fiber bending
stiffness and fiber aspect ratio on the stress-strain behavior
of the network. The issue is relevant for fibers made from
anisotropic materials. Figure 6(a) shows the loading branch of
the stable cycle of systems with kb one order of magnitude
larger, and two orders of magnitude smaller than the value
used in all other simulations, where kb = 29.31ê. The energy
partition in bending and axial modes for these systems is
shown in Fig. 6(b). Reducing kb by two orders of magnitude
enables more energy to be stored in the bending mode, and
the stress-dilatation curve follows a scaling of σ ∼ 	5, which
corresponds to σ ∼ ρ3, thereby recovering the prediction from
van Wyk’s theory [23], which takes into account only the
bending stiffness of the fibers.

Increasing the bending stiffness by an order of magnitude,
on the other hand, cripples the bending mode and stores more
energy in the axial mode. This corresponds to a much higher
slope of the σ -	 curve, which is comparable to the slope of
the axial component in Fig. 5. This result can be related to a
number of experimental observations. Poquillon et al. [19] per-
formed compression on two types of steel wool with l2

b differ-
ing by an order of magnitude. The system with small lb follows
the relationship σ ∼ ρ2.5, while the one with larger lb follows
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FIG. 6. (Color online) (a) Total stress and (b) partition of energies,
during loading in networks with the original, and artificially modified
bending stiffness. Reduction in bending stiffness by two orders of
magnitude produces a σ -	 scaling that matches earlier theories
[23,26].

σ ∼ ρ3.93. Data are also reported for wads of vegetable horse-
hair composed of mixed fibers, with diameters ranging from 20
to 2000 μm, which lead to a much higher exponent, σ ∼ ρ5.48.

Looking at the effect of fiber-fiber friction, Fig. 7 shows the
total stress as a function of dilatation strain for the reference
system with μ = 0 and for systems with μ = 0.1 and μ = 1.
Friction does not modify the functional form of the stress-strain
relationship, but increases the value of stress. The increase
is rather small, and for a more realistic friction coefficient,
μ = 0.1, the curve is essentially indistinguishable from that
for μ = 0 in this log-log plot.

B. Sliding at contact points

The foregoing discussion suggests that the mechanical
behavior of a system of nonbonded fibers in the network
regime is determined by a number of factors such as
(a) fiber bending, which dominates at low densities; (b) axial
deformation of fibers, which dominates at higher densities;
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FIG. 7. (Color online) Stress-strain curves for networks with μ ∈
[0.0,0.1,1.0]. Introduction of friction slightly modifies the magnitude
of stress.

(c) formation of new contacts during compaction; (d) relative
fiber sliding at contacts and subsequent fiber rearrangement;
(e) friction at contacts. The theories of van Wyk [23] and
Toll [26] account for fiber bending and for the increase of
the number of contacts as the wad is compressed. We have
seen that the axial contribution may increase the absolute
value of the σ -	 power law exponent, relative to the exponent
predicted by considering only the bending deformation of the
fibers (Fig. 5). Friction has negligible effect on these exponents
(Fig. 7). In this section we investigate the importance of
relative fiber sliding in defining the constitutive response of
the ensemble of fibers.

To identify the magnitude of sliding events, the following
procedure is employed. A configuration in the network regime
from the stable loading branch of the system is selected
and taken as the reference (	 = 5.21). All contacts in this
configuration are identified and then the system is subjected to
compression in small increments (each step corresponds to a
change of the simulation box size by 0.16ŝ, i.e., approximately
d/7). The relative motion of fibers is monitored at all contacts.
Figure 8 shows a schematic of a contact between two fibers and
the quantities of interest. The rectangle denotes a fiber viewed

FIG. 8. (Color online) Schematic illustrating the relative motion
of two fibers and the definition of separation and sliding vectors. The
axes of the two fibers in contact are assumed to be perpendicular
to each other, but this is not a requirement. The rectangle is a fiber
viewed sideways, while the circles indicate a second fiber viewed
along its axis.
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FIG. 9. (Color online) Contacts formed at an arbitrarily selected
configuration with 	 = 5.21 are tracked. (a) Mean separation 〈δ⊥〉
and mean sliding 〈δ||〉 distance at contacts. (b) For the system
with μ = 0, PDF of sliding distances, P (δ||), between the reference
configuration with 	 = 5.21 and configurations at various values of
	. These PDFs are exponential, consistent with a Poisson process.

sideways, while the circles indicate a second fiber viewed
along its axis. While the two fibers shown in the schematic
are perpendicular to each other, this is not a requirement for
the computations. The broken and solid circles indicate the
second fiber in the reference and deformed configurations, re-
spectively. The relative motion is defined by the vector r. This
vector is decomposed in two orthogonal components: r⊥,
which is perpendicular to, and r||, which is parallel to, the
tangent at the point of contact between the two fibers. The
magnitudes of these orthogonal vectors are denoted as δ||,
which represents the relative sliding, and δ⊥, which represents
the separation. A negative value for δ⊥ indicates that fibers
press against each other at the contact point.

Figure 9(a) shows the variation of the mean sliding and
separation during loading from the reference configuration.
The separation δ⊥ is negative, indicating that, on average,
fibers in contact in the reference configuration remain in
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Crosslinked at Δ = 2.81
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Non-bonded fibers

FIG. 10. (Color online) Total stress obtained when compressing a
cross-linked network, shown as solid symbols with solid lines. Open
symbols joined by a broken line show part of the loading branch of
the stable cycle, from Fig. 4(a). Cross links are introduced at fiber
contacts at various stages of compaction (	) in separate simulations.

contact. However, the amount of sliding, δ||, is significant,
and increases almost linearly with 	. These conclusions
remain valid in systems with friction. The relative sliding
decreases to some extent as the friction coefficient increases.
We also see that sliding occurs in bursts which involve multiple
neighboring contacts, a behavior similar to that leading to
intermittent dynamics and avalanches in other discrete systems
such as granular media and large populations of interacting
dislocations. The analysis of the statistics of these bursts
and associated phenomenology is deferred to a subsequent
publication. The variation of δ|| with 	 in Fig. 9 exhibits
only traces of these events due to the smoothing induced by
averaging over all contacts and over neighboring snapshots
of the simulation. Figure 9(b) shows the PDF of δ|| obtained
at a few 	 values indicated in the legend. The distribution is
exponential, which indicates that the sliding magnitudes are
random.

In order to determine the importance of such relative fiber
rearrangements on the overall behavior of the network, fibers
that were in contact in the reference configuration were cross
linked at their contact points by introducing harmonic bonds
with the stiff potential given in Eq. (4). This synthetic cross-
linking process effectively prevents sliding and opening of
contacts, but allows the formation of new contacts. The cross-
linked network was then subjected to triaxial compression.
The stress was evaluated without taking the contribution of the
new cross links into account. Figure 10 shows the stress-strain
response of the nonbonded network (open symbols), and of
four different networks, in which cross links were introduced
at 	 ∈ {4.94,3.71,2.72,1.91}. The cross-linked networks are
all significantly stiffer than the original nonbonded network.
This observation shows that sliding is an important component
of the physics in these systems and constitutive models aimed
at predicting the average global response of the network must
take it into account. This observation has also been made by
Carnaby and Pan [25], who compare their model, which takes
sliding into account, with experimental data and a model by
Lee and Lee [18].
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FIG. 11. (Color online) Least-squares fit of the approximated
Hertzian form of the Lennard-Jones potential with C1 = 210.86.

IV. CONCLUSIONS

The macroscopic behavior of an ensemble of random,
nonbonded fiber networks was examined using a coarse-
grained bead-spring model that was calibrated to replicate
continuous cylindrical fibers. The ensemble was subjected to
triaxial compression and expansion. We observed hysteretic
behavior associated with fiber rearrangements. We see that the
dependence of the Cauchy stress on density is a power law.
The exponent of this power law is controlled by both bending
and axial deformation modes. At low densities, the response of
the network is bending dominated, while at higher densities,
it is axial dominated. Friction does not appreciably change the
exponent of the stress-strain function. Relative sliding of fibers
is an important component of the physics associated with the
macroscopic response of the network. We have demonstrated
that constitutive models for the response of an ensemble of
fibers that consider bending and formation of new contacts
should also incorporate the effect of contributions from relative
fiber sliding and that of the axial deformation modes.

ACKNOWLEDGMENTS

Part of the simulations were executed on the SUR Blue-
Gene/L at Rensselaer Polytechnic Institute, which is supported

by Grant No. 0420703 and a gift by the IBM Corporation of a
BlueGene/L computer. Thanks to Tim Wickberg for his expert
maintenance of the SCOREC computing clusters.

APPENDIX: CHOICE OF INTERACTION POTENTIAL
COEFFICIENTS

The discrete bead-spring model is calibrated to represent
cylindrical fibers described by the Euler-Bernoulli beam
theory. The calibration is based on requiring that the energies
computed using Eqs. (2), (3), and (4) for the discrete model are
equivalent to the strain energy stored in the bending and axial
modes, and to the strain energy stored due to the deformation
of the material at contact points in the continuum model of
the fiber. Requiring that Eq. (3) provides a value equal to
the energy stored in a cylinder of length d subjected to axial
loading leads to an expression for the axial stiffness, and
similarly requiring that Eq. (4) provides a value equivalent
to the energy stored in a fiber subjected to bending leads
to an expression for the bending stiffness. These expressions
are

ka = π
4 Ed, (A1)

kb = π
64Ed3, (A2)

where E is Young’s modulus of the fiber material.
Equation (2) describing the contact between beads should

provide values equivalent to those computed using Hertz
theory [42] for the contact of two cylinders of equal diameter d.
In this theory, the energy stored at a contact for which the
distance between centers of the two fibers involved is r is
given by

Ucontact = 2E

3(1 − ν2)

√
d

2
(d − r)5/2. (A3)

We fit the Lennard-Jones potential of Eq. (2) close
to the cutoff r = rc with the function C1(d − r)5/2ê. A
least squares fit in the range r ∈ [0.85d : d] yields C1 =
210.86. The fit obtained is shown in Fig. 11. We can
further take 1 − ν2 ≈ 1 for realistic values of ν and ob-
tain the value for the Young’s modulus as E = 420.4êŝ−3,
which yields the coefficients entering the axial and bend-
ing potentials in Eqs. (3) and (4) as ka = 372.2ê/ŝ2 and
kb = 29.31ê.
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