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In this paper we consider the Schelling social segregation model for two different populations. In Schelling’s
model, segregation appears as a consequence of discrimination, measured by the local difference between two
populations. For that, the model defines a tolerance criterion on the neighborhood of an individual, indicating
wether the individual is able to move to a new place or not. Next, the model chooses which of the available
unhappy individuals really moves. In our work, we study the patterns generated by the dynamical evolution of the
Schelling model in terms of various parameters or the initial condition, such as the size of the neighborhood of
an inhabitant, the tolerance, and the initial number of individuals. As a general rule we observe that segregation
patterns minimize the interface of zones of different people. In this context we introduce an energy functional
associated with the configuration which is a strictly decreasing function for the tolerant people case. Moreover,
as far as we know, we are the first to notice that in the case of a non-strictly-decreasing energy functional, the
system may segregate very efficiently.
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I. INTRODUCTION

Forty years ago Thomas C. Schelling considered the prob-
lem of social segregation as an issue of social discrimination
[1–3]. Schelling’s seminal model of segregation considers
two kinds of individuals of different characteristics living
in a network, namely, a city. According to simple rules the
individuals of different populations exchange their location.
The majority rules model discriminates by measuring the
mismatch of both populations in the neighborhood of a
given individual; for example, if an individual is in numeric
inferiority in its neighborhood, then he would feel “unhappy,”
and hence he would look for a possibility to change to a
different place. Originally, Schelling considers this majority
rule, but we can easily generalize it to perform a more realistic
situation of more or less tolerant individuals.

Perhaps the most spectacular result of the Schelling model
is the natural appearance of macroscopic segregation patterns,
reminding us of the most classical motives of segregation in a
physical system such as binary fluids. Naturally, the connection
to physics is not evident; however, usually the motifs of nature
do not depend on rules of the “micromotive behavior”—in
Schelling’s terms [3]—but only on the symmetries of the
system; hence, it is not a surprise that social segregation
patterns may be similar to physical motives. Pattern formation
is almost independent of the social rules and the individuals;
indeed, these are certainly different from physical interactions
and atoms. Universal mechanisms of pattern formation in
physics have been very well known since the second half of
the 20th century [4,5]. Nature organizes itself in a variety of
motives and patterns: skin motives of zebras, jaguars, fish, and
insects; pigmentation of seashell patterns; convection in fluids;
ripple formation in dunes; patterns in chemical reactions,
laser physics, liquid crystals, etc. Despite many fundamental
differences among these systems (some of them are actually
living systems), these patterns have many similarities. More-
over, all those systems have something in common, which is

the existence of an instability, expressing that the system is
not stable in its actual configuration and tends to evolve; for
example, a sand grain flies from one place to another because
of air flow. Another common concept is the existence of a
threshold for pattern formation which depends on a parameter,
for example, the wind velocity for ripple formation on a dune:
If the wind speed is slow, the air drag cannot overcome the
weight of the grain, so the most preferable state of the system
is repose; hence, a ripple would not develop.

The Schelling model is characterized by the existence of
two populations of individuals, the • ≡ −1 and the ◦ ≡ +1,
living in a lattice composed of habitations (in practice one can
coarse-grain the residential information given at an individual
scale and consider that a site contains the average information
of many families belonging to a same group). If an individual,
say •, has a large number of ◦ in its neighborhood, it will
be considered unhappy, thus preferring to move to a more
pleasant place where the number of ◦ individuals is lower.
Therefore, we can see that the • individual is unstable; this
instability is what will end up forming a segregation pattern in
the system. However, there are some constraints: An individual
can move from one site to another only if the last site is
available or empty; otherwise, the individual waits until he
can exchange his habitation with an opposite individual ◦ in
a similar unhappy state. Moreover, in the case of no empty
habitations, the individual is only allowed to exchange if,
and only if, another individual of the opposite population
wants to exchange its habitation. Although, the happiness
criterion concerns only the neighborhood, the swapping of
two individuals of different populations could be a long-range
process, as we exchange randomly two unhappy individuals
of different populations, independently of the actual position
of the individuals.

Usually, a pattern is characterized by a characteristic length
which can be intrinsic, say a property of the system, which
is the case of Turing patterns [6], or extrinsic, say imposed
by the external world; for example, in fluid convection the
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convective length is given by the boundaries. In Schelling’s
work this length is intrinsic because it is related to the size
of the vicinity, for instance, in the explicit case considered by
Schelling of a two-dimensional square lattice, if an individual
vicinity is composed by his eight surrounding individuals
(we omit the individual itself), the typical length is of
order

√
8 ≈ 3, while in the case of a vicinity composed by

the individuals inside a 5 × 5 region, a length of
√

24 ≈ 5
is obtained, and so forth. In general, a vicinity of size
|V | in a D-dimensional lattice implies a typical length of
order of |V |1/D . Similarly, the threshold corresponds to the
tolerance parameter θ , which is the number of individuals of
another population that an individual does actually tolerate
in its neighborhood; for example, if an individual sees
more than θ individuals of his opposite population, he is
unhappy. This parameter is defined in a more general way in
Sec. II B.

There has been a renewed interest in the Schelling seg-
regation model over the last years. The close similarities of
social segregation with the one observed in physical systems
has driven attention to the existence of an energy, which is in
some sense a measure of the perimeter of the interface between
two individual populations. Using rules which are more or less
similar to the ones used by Schelling, Pollicott, and Weiss [7],
consider an exchange of individuals in a way that the hapinness
always increases. In their model, they introduce an energy
which is the familiar energy of the Ising model. This energy
decreases strictly after a swap is performed, and because of the
discrete characteristics of the segregation problem, the energy
is bounded from below; therefore, a strictly decreasing energy
dynamic does allow us to bound the duration of the process
of segregation. Moreover, the Ising energy is a measure of
the perimeter of the interfaces between the two populations
of individuals. If the length of the total interface is reduced
(thus reducing the energy), one would also diminish the
contact between individuals of different populations. In this
way, Vinković and Kirman [8] developed a macroscopical
continuous model based on the geometry of an interface by
following the rules of the surface energy of two phase systems.
That is, to create segregation patterns one diminishes the
energy of the system. The discrimination threshold parameter
is replaced by a critical angle of occupancy by unlike
neighbors. The model, naturally predicts the phenomenology
of the Schelling segregation problem. Similarly, Stauffer and
Solomon [9] put forward the similarities between segregation
and phase separation. More recently Singh, Vainchtein, and
Weiss [10], studied several scaling laws for segregation of two
classes of individuals but with an important role of vacancies
in the limit of very large cities, showing that segregation is
independent of the size of the city. From a more economic
point of view, Pancs and Vriend [11] consider a utility function
implying that despite the preference for a perfect integration
of the individuals, segregation is the robust behavior of the
system.

In this article, we reexamine the original Schelling segre-
gation problem in a regular lattice with two populations of
individuals and we provide an exhaustive study of the system
dynamics by varying the spatial dimensions of the lattice,
the size of the neighborhood |V |, the degree of tolerance
(the discrimination), and the initial populations. The case of

very tolerant people θ � |V | is probably the simplest: Because
almost all the individuals are happy, only a few exchanges are
performed, making the segregation stop very quickly. The case
of very intolerant people, 1 � θ , is, in some sense, very similar:
Because almost no happy individuals are settled, they usually
keep swapping in a randomlike fashion and no emergence of
a segregation pattern may appear. In both cases of the extreme
values of θ , the segregation is very inefficient. The cases near
the majority rule, θ ≡ |V |/2, are, without any doubt, the most
interesting.

In Sec. II D we notice that the existence of a strictly
decreasing energy after an exchange of individuals is per-
formed does not apply for every value of the tolerance
parameter θ ; indeed, there are dramatic differences in the
system behavior depending on if θ is greater or smaller than
half of the vicinity size, |V |. If θ > |V |/2 the energy is a
strictly decreasing function and, as it has already been said,
the dynamics stops after a finite time. Therefore, although
the energy decreases the segregation is not really efficient
because the dynamics eventually stop. This behavior does
remind us of the nonequilibrium isolated thermodynamical
system, which is driven irreversibly, by the existence of a
thermodynamical potential (e.g., the entropy, a free energy,
etc.), to an equilibrium, a minimum of the thermodynamical
potential. In the absence of fluctuations, this minimum is not
necessarily the ground state (the absolute minimum); it is
simply the lowest energy that the segregation performs until
it stops because of the absence of unhappy individuals of
one of the populations. Although in various contexts, pattern
formation arises as an energy argument: It is energetically
favorable to display a pattern. This cannot be the general
argument in favor of pattern forming structures; indeed, we
do not see any energy involved in the underlying mechanism
of skin motives in zebras, nor in other animals. The deep
reason for pattern formation is not related to the existence
of an energy, but it is tightly related to the existence of an
instability; however, the existence of an energy simplifies the
mathematics enormously.

In the case θ < |V |/2 the energy is not a strictly decreasing
quantity; thus, it cannot be interpreted as a thermodynamical
potential. However, the story is not over, we first remarked
that for θ < |V |/2 the long-time dynamics show a very
efficient segregation pattern, which is measured in terms
of the aforementioned energy. We observe numerically that
for θ � |V |/2 the energy has a tendency to decrease in the
long-time behavior, thus reaching the ground state, that is,
the configuration with the minimum energy. The discovery
of this critical behavior near θ = |V |/2 leads one to explore
the case of very large |V |, which is easily obtained in
three-dimensional lattices or in two-dimensional lattices with
a nonlocal neighborhood or indirected graphs.

The existence of an energy allows us to define with precision
what we mean by inefficient or efficient segregation. If the
energy approaches its minimum possible value (its ground
state), we say that segregation is efficient; however, if the final
energy is much larger than the ground-state energy, we say
that the segregation is inefficient. From a qualitative point of
view, the resulting patterns from an efficient segregation exhibit
very well-defined domains with phase separation, while an
inefficient segregation does not.
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FIG. 1. (Color online) Examples of lattices and neighborhoods.
We illustrate explicitly: an arbitrary undirected network (i), a
regular square lattice in two dimensions, with a von Neumann
neighborhood of 4 individuals (ii), and a Moore neighborhood of eight
individuals (iii).

In Sec. II, we briefly discuss the general model, definitions,
rules, and main properties, and we define the energy [7].
Next, in Sec. III, we study the behavior of segregation in
various dimensions. First, in Sec. III A we pay attention to
a one-dimensional periodical array, where each individual
possesses two neighbors. Then in Sec. III B we examine
in detail the case of a two-dimensional lattice with a von
Neumann vicinity of four neighbors and a Moore vicinity
of eight neighbors. Finally, in Sec. III C we study briefly the
segregation in a three-dimensional lattice. Finally, we conclude
and we discuss briefly further generalizations of the Schelling
model and the computational complexity of the Schelling
segregation problem.

II. MODEL AND DEFINITIONS

A. The lattice

We consider a Schelling model which consists of a general
network with N nodes. Each node k possesses a neighbor
Vk and the number of neighbors is named by the natural
number |Vk|. Although nonregular lattices [see Fig. 1(i)]
maybe considered, the special case of regular and periodic
networks in D spatial dimensions are the most studied in our
paper. Among them, the one-dimensional case with only two
neighbors, the square lattice with a von Neumann vicinity
|Vk| = 4 [see Fig. 1(ii)], and the Moore vicinity |Vk| = 8
[Fig. 1(iii)] are examples of regular lattices in two spatial
dimensions. The cubic lattice with von Neumann vicinity
(6 neighbors) and the cubic lattice with the Moore vicinity
(26 neighbors) are examples of regular lattices in three spatial
dimensions. For a sake of generality we describe the Schelling
model and its properties in general; however, the detailed study
of the dynamics are realized in regular lattice in two and three
spatial dimensions.

Each node k possesses a discrete value xk that may
take values +1 and −1. At the initial state we consider
N+ habitants of one kind (state) +1 and N− habitants of
the other kind −1. Those numbers remain unchanged in
the subsequently social evolution. Naturally, N+ + N− = N .
Finally, the concentration of one population, say +1, is defined
by φ = N+

N++N−
= N+

N
and is a parameter of the dynamical

system.

B. The discrimination criterion

We say that an individual xk at the node k (the house) is
not happy at his site if there are more than θk neighbors at

an opposite state. θk is a parameter that depends in principle
on the node and it may take the following values: θk =
{0,1,2, . . . ,|Vk|}. Notice that in the case θ = 0 all individuals
are never happy, so the system is under a continuous swapping.
There is no search of a coherent segregation. This case does
not seem very interesting so we exclude it from our study.

Let nk(+1) be the number of neighbors of xk that are at
the state +1 and nk(−1) the number of neighbors of xk at
−1; naturally, nk(+1) + nk(−1) = |Vk|, then the satisfaction
criterion reads as follows: If xk = +1 and if nk(−1) > θk , then
xk is unhappy. This criterion may be rewritten as
∑
i∈Vk

xi = nk(+1) − nk(−1) = |Vk| − 2nk(−1) � |Vk| − 2θk.

(1)
On the other hand, if xk = −1 the satisfaction criterion

reads∑
i∈Vk

xi = nk(+1) − nk(−1) = 2nk(−1) − |Vk| � 2θk − |Vk|.

(2)
Multiplying by xk both sides of criteria (1) and (2) one gets

an unifying criterion:

an individual xk is unhappy at the node k if, and only if,

xk

∑
i∈Vk

xi � |Vk| − 2θk. (3)

C. The exchange rule

At a given time t , the state is fully characterized by {xk(t)},
and we build two distinct lists, �+(t) and �−(t), that contains all
the unhappy nodes of the population +1 and −1, respectively.
If both of these lists are not empty, then one takes randomly one
element of each list and exchanges them; this is the Schelling
protocol.

If k and l are these chosen elements, then the evo-
lution dictates xk(t) → xk(t + 1) = −xk(t), xl(t) → xl(t +
1) = −xl(t), and all other nodes i �= k and i �= l remain
unchanged, xi(t) → xi(t + 1) = xi(t). Then, at the next step
t + 1, one reactualizes both lists, getting �+(t + 1) and �−(t +
1), and proceeds to exchange randomly again two unhappy
individuals of the actual lists, etc. The evolutions continue up
to infinity or until one of the lists becomes empty, depending
of the parameter θk .

Although other exchange protocols maybe implemented,1

we think that the Schelling protocol we use is more natural
because there is no clear mechanism of the sort where the
happiness or unhappiness of the individuals causes them
to move their habitation; therefore, we study the Schelling
protocol hereafter.

D. The energy

This criterion provides us a general principle satisfied by
the algorithm. Indeed the quantity, that we call the energy

1For example, both list �+(t) and �−(t) are ordered from most to
less unhappy individuals, and then we take randomly among the most
unhappy individuals one element of each list and exchange them.
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NICOLÁS GOLES DOMIC, ERIC GOLES, AND SERGIO RICA PHYSICAL REVIEW E 83, 056111 (2011)

by analogy with spin-glasses systems which posses the same
energy expression (here {x} = {x1,x2, . . . ,xN } represents the
full states of all nodes),

E[{x}] = −1

2

N∑
k=1

xk

∑
i∈Vk

xi, (4)

always decreases during the evolution if and only if θk � |Vk |
2 +

1. On the other hand, if θk � |Vk |
2 the energy may increase or

decrease during the evolution.
Proof. Let us consider two distinct unhappy individuals,

xk = +1 and xl = −1, with opposite states that may exchange
residence or node xk(t + 1) = −xk(t) and xl(t + 1) = −xl(t).

As an intermediate step, we rewrite the energy in a more
symmetrical way, defining wij as the unity if xi ∈ Vj (and
xj ∈ Vi since wij is symmetric) and zero elsewhere including
the diagonal terms, wii = 0. One may split the terms into the
sums that do involve or do not involve the indicies k and l:

E[{x}] = −1

2

N∑
i,j=1

wijxixj = −1

2

N∑
{i,j}�={k,l}

wijxixj − wklxkxl

−xl

N∑
j �=k

wjlxj − xk

N∑
j �=l

wjkxj , (5)

where the notation {i,j} �= {k,l} means that i �= k, i �= l and
j �= k, j �= l.

The first term − 1
2

∑N
{i,j}�={k,l} wijxixj does not involve any

k and l, and thus does not change after an exchange; similarly,
the term wklxkxl ≡ −wkl . The energy difference after the
exchange of the individuals k and l is [below x ′

k refers to
xk(t + 1) = −xk(t) = −xk]

�E = E[{x(t + 1)}] − E[{x(t)}]
= (xk − x ′

k)
∑
j �=l

wjkxj + (xl − x ′
l )

∑
j �=k

wjlxj

= 4wkl + 2

⎛
⎝xk

∑
j∈Vk

xj + xl

∑
j∈Vl

xj

⎞
⎠ . (6)

Finally, because both k and l are unhappy individuals,
applying the condition (3),

�E � 2 (2wkl + |Vk| + |Vl| − 2θk − 2θl) . (7)

In conclusion, if θk � |Vk |
2 + 1 any exchange k ↔ l de-

creases the energy because

�E � 2 (2wkl + |Vk| + |Vl| − 2θk − 2θl)

� 4 (wkl − 2) < −4 < 0, (8)

because wkl is bounded by 1.
Remark 1. The energy functional (4) is bounded, indeed

the lowest value of the energy is for a state composed
by individuals of the same population. Therefore, for any
configuration {x} one has that E[{x}] � E0 = − 1

2

∑N
k=1 |Vk|,

where E0 is the lowest energy allowed by the functional
E[{x}].

Remark 2. For θk >
|Vk |

2 , the evolution stops in finite time
because the energy (4) is bounded and decreases by finite
amounts.

Remark 3. For θk >
|Vk |

2 , the energy decreases at least by an
amount �E < −8 for long-range exchange but �E < −4 for
near (inside) neighbor exchange (that is, whenever wkl = 1).

Remark 4. For θk = |Vk |
2 one has �E � 4wkl ; thus, any

long-range exchange does not increase the energy, but near
neighbor exchange may increase the energy.

Remark 5. For θk <
|Vk |

2 , the energy is not formally a
decreasing functional and may increase or decrease after an
exchange indistinctly.

Remark 6. If we have θk = θ , an integer, constant over the
lattice, and we consider a regular lattice |Vk| = |V |, one has
that the condition (7) simplifies to

�E � 4 (wkl + |V | − 2θ ) .

Remark 7. The energy may be directly generalized for
multiple state variable cases, in particular, when the lattice
has empty places available for both kind of individuals.

Remark 8. The definition of the energy (4) is naturally valid
for an arbitrary undirected graph. However, the existence of a
strictly decreasing energy depends on the local values of the
satisfaction parameter, θk , and the number of neighbors of the
node, |Vk|. If all nodes satisfy θk > |Vk|/2, then the energy is
a strictly decreasing functional after any swap.

E. Energy in terms of the geometry of the interface

The energy (4) may be rewritten as

E[{x}] = −1

2

N∑
k=1

∑
i∈Vk

1 + 1

2

N∑
k=1

∑
i∈Vk

(1 − xkxi)

= E0 + 1

2

N∑
k=1

∑
i∈Vk

(1 − xkxi).

The first term is the bulk energy defined previously, and the
remainder term (1 − xkxi) is different from zero (and equal
to 2) only if the neighbors bond involves individuals of the
opposite population, we may call this a “state-antistate bond.”
These kind of bonds are represented in Fig. 2 for the von
Neumann [Fig. 2(i)] and Moore vicinities [Fig. 2(ii)].

In the case of the von Neumann vicinity [see Fig. 1(ii)]
one has one state-antistate bond per interface or edge; more
precisely, one has in Fig. 2(iii) one bond per one interface or
edge. In conclusion, the energy is

E = E0 + 2
∑

edges = E0 + 2 × perimeter, (9)

with E0 = −2N .

(i) (ii)

FIG. 2. (Color online) Scheme of an interface with explicit bond
contribution depending on the neighborhood: (i) for von Neumann
vicinity and (ii) for the Moore vicinity of eight neighbors.
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(a) (b)

FIG. 3. (a) Staircase interface configuration. (b) Horizontal
interface.

In the case of the Moore vicinity [see Fig. 1(ii)] one has
in average three state-antistate bond per interface, but the
corners modify slightly this equivalence. In a two-dimensional
periodic lattice we have noticed that for closed interfaces the
energy reads

E = E0 + 2 ×
(

3
∑

edges −
∑

corners
)

= E0 + 2 × (3 × perimeter − No. of corners), (10)

with E0 = −4N . Notice that this result is not true in open
interfaces, as we can see in the examples of Fig. 2.

In the same vein, in three spatial dimensions, one expects
an energy expansion of the form

E = E0+c2 ×
∑

faces + c1 ×
∑

edges + c0 ×
∑

corners.

The constant c2 = 2 in the case of the von Neumann vicinity
and c2 = 2 × 9 for the Moore neighborhood. Other coeffi-
cients need a careful computation.

In conclusion, the energy of this system is under the class of
universality of a Gibbs type of expansion in thermodynamics
(L is the size of the system):

E = E0L
D + E1L

D−1 + E2L
D−2 + · · · . (11)

Remark. In two-dimensional lattices, the cases of von
Neumann and Moore vicinities presents some differences. Ba-
sically, the Moore neighborhood is intrinsically more isotropic;
indeed, the energy of a staircase interface [see in Fig. 3(a)] and
of a horizontal [3(b)] or vertical interface have roughly—there
is a minor difference because of the boundaries—the same
energy; however, in the case of a von Neumann vicinity the
energy of a horizontal or vertical interface is smaller than
the energy of a diagonal (staircase) interface. More precisely,
in the case drawn in Fig. 3(a) the energy is proportional to
the interface length 17, while in Fig. 3(b) the perimeter is
only 11. Though not clear in this small system, one can notice
that the ratio between the staircase and a vertical or horizontal
interface is

√
2. Indeed, a diagonal frontier in usual Euclidean

geometry measures a length of
√

2 but because of the lattice
a diagonal perimeter cost 2 in length in the von Neumann
vicinity; therefore, the system prefers to enclose the individuals
of one population inside a square domain oriented vertically
and horizontally.

We see in next section that this fact emerges as a
characteristic feature of the patterns displayed.

III. DYNAMICAL EVOLUTION OF THE
SCHELLING MODEL

The Schelling model defined in Sec. II contains structural
parameters of the lattice and two easily tunable parameters like
the satisfaction parameter and the initial fraction of individuals
of one population φ. From now on, we consider only regular
lattices in one, two, and three spatial dimensions with a uniform
value of the satisfaction parameter θ .

A. One-dimensional periodic lattice

The Schelling model in a one-dimensional lattice; that is,
each site possesses two neighbors, divided into two different
cases depending on the threshold θ . Because of the simplicity
of this case, we treat, the one-dimensional lattice in some
detail.

(i) The case θ = 2. In this case an individual is unhappy if
its two neighbors are in the opposite state. As an example, in
the configuration • • • • • ◦ • • • • • the site with a state
in ◦ is unhappy; in the configuration ◦ • ◦ • ◦ • ◦ • ◦ •
all individuals are unhappy. Nevertheless, the configuration
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • • is stable; moreover, any
configuration where a population has a minimal length of two is
always stable, for example, ◦ ◦ • • ◦ ◦ • • • ◦ ◦ ◦ ◦ • • •
◦ ◦ • • . Because of the large number of stable configurations,
the Schelling dynamics quench very fast and the final state
would consist of a scarcely segregated state.

(ii) The case θ = 1. In this case an individual is unhappy if
only one of its neighbors is of an opposite state. In this case
the interfacial sites play an important role. As an example,
in ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • the underlined individuals
at the interface are both in an unhappy state. The dynamics
in this case is very rich because an interface is never stable.
The previous configuration evolves via the Schelling dynamics
through:

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • → ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦• • • • •.

The only possible swap creates more unhappy individuals
(underlined). For the next step one may go back to previous
configuration or may depart further from the initial configu-
ration, for example, ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • • • • or ◦ ◦ ◦ ◦
◦ ◦ ◦ • ◦ ◦ • • • • •. Because of the natural instability of an
interface the evolution never stops; moreover, although there is
a visible evolution to segregation, the interface is never stable,
as one may see in Fig. 4.

B. Two-dimensional periodic lattices

We analyze the dynamics in two-dimensional lattices.
Among a great variety of regular lattices we consider the
square lattice with a von Neumann vicinity |V | = 4 [see
Fig. 1(ii)] and the Moore vicinity |V | = 8 [Fig. 1(iii)]. As
in the one-dimensional lattice the dynamics depends on the
parameters of intolerance θ , which varies between 1 � θ �
|V |. The phenomenology also depends on the initial fraction
of populations φ. For this purpose we consider an initially
randomly distributed set of individuals of one population
with a concentration φ in a large system size, usually
128 × 128. However, we emphasize that we ran simulations
for various dimensions from 32 × 32 up to 512 × 512, noticing
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FIG. 4. (Color online) Spatiotemporal snapshot of the Schelling dynamics. The blue (dark gray) represents a state +1, while the yellow
(light gray) represents a state −1. The horizontal axis represents the time (saved up to 512 steps) while the vertical axis represents the lattice
(256 points) with periodic boundary conditions. The typical evolution for θ = 1 is represented in these figures. In particular, the merging or
coalescence of two domains is represented in (a) and a splitting or nucleation into two interfaces is captured in (b).

independence of the behavior in the system size. Despite
the nonlocal character of the exchange rule (individuals are
exchanged over all the system) the size of the system is not
pertinent if the linear size of the system is much larger than
the linear size of the neighbor.

1. The Schelling dynamics in a square lattice with four neighbors

As a first example we study the Schelling segregation
problem with a von Neumann neighborhood composed of four
nearest individuals. We recall that in this case the energy is just
the perimeter of the interfaces between the regions of different
individuals. The parameter θ thus runs from θ ∈ {1,2,3,4}.
One sees from the parameters phase space of cases θ = 1
and θ = 4 that the segregation is clearly inefficient. In the case
θ = 1 there is a constant swapping of unhappy individuals. The
strongly unstable activity forbids any kind of self-organization.
In the case θ = 4 the number of unhappy individuals is very
scarce; therefore, the dynamic stops very quickly because it
reaches the end of one of the lists of unhappy individuals.

The case θ = 3 is a situation in which the energy of
the system diminishes after every swap. As already said,

θ

φ

321 4

25%

50%

finite time evolutioninfinite time evolution

12.5%

FIG. 5. (Color online) Phase diagram of the Schelling dynamics
in a two dimensional square lattice with von Neumann neighbor.
Each snapshot corresponds to a 128 × 128 numerical simulation, the
violet (dark gray) represents a state +1, while the yellow (light gray)
represents a state −1. This picture summarizes the phenomenology
for different values of the initial concentration and the parameter θ .

the evolution in this case ends in finite time because of the
segregation quench in a semisegregated situation.

The case of θ = 2, in which the energy does not necessarily
decrease after a swap is, perhaps, the most interesting case:
Because of the possibility of an increase of energy, the system
evolves globally in a more efficient way the segregation so
that it can exchange individuals increasing a bit the energy
and allowing to decrease more and more the global energy.
Indeed, after a long time the system is very efficient in
segregation, as noticed in Fig 5. In this case the dynamics
could be eventually in finite time. This happens if the domain
containing a population closes its perimeter perfectly; thus,
there is no more unhappy individual in the domain, and thus
one list becomes empty (see Fig. 6). The Schelling dynamics
stops this.

Perhaps the most relevant aspect of the case θ = 2 is
that segregation is not isotropic, indeed one observes that
segregation leads to the emergence of square domains (see
Fig. 5, case θ = 2). From an energetic point of view, as
it has already been said in Sec. II E, it is “cheaper” to
make only vertical or horizontal frontiers. Finally, one notices
that the energy decreases very fast for the cases θ = 4 and
θ = 3 (see inset Fig. 7). In the case θ = 1, a very unstable
regime because of constant swapping is observed; hence, the
energy fluctuates around a value which is relatively high with
respect to the ground-state energy (despite an initial energy
decreasing transient), which means that the segregation is not
very efficient. The case of θ = 2 is the most efficient because
the energy diminishes until reaching the ground-state energy,
which is a stripe (see Fig. 5, case θ = 2 and φ = 50%).

(a) (b)

FIG. 6. (a) This configuration is stationary state of the Schelling
segregation model with von Neumann neighborhood and with θ = 2.
Though there are four unhappy •’s, there is not a single ◦ for an
exchange. The configuration (b) is not a stationary state, because
there are both unhappy •’s and ◦’s. Schelling’s rule runs forever in
this case.
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E/N

t [10  units ]3

GSE

FIG. 7. (Color online) Plot of the Energy vs time for various
values of θ and for a concentration of a 50% of individuals of both
populations. The inset zooms of the early evolution of the energy.
The GSE line represents the ground-state energy corresponding to
the initial state of φ = 50%, given by the energy expression (9).

The square shape, which is observed for low concentrations,
has a simple explanation. One needs to enclose a determined
number of individuals φN inside a domain of a minimum
possible perimeter. As has already been mentioned, vertical
and horizontal lines are “cheaper”; therefore, the resulting
geometrical figure would be a rectangle, indeed a square
because it minimizes the rectangle’s perimeter. The energy
of a square of side a is E = E0 + 2 × 4a with a = √

Nφ;
therefore, E = E0 + 8

√
Nφ, while the energy of a stripe

E = E0 + 2 × 2
√

N . Therefore, the square is advantageous
for φ < 1/4, while the stripe is the less energetic configuration
for concentrations such a that 1/4 < φ � 1/2.

2. The Schelling dynamics in a square lattice with
the Moore neighborhood

Let us consider now the case of the Moore vicinity
[Fig. 1(iii)] where each individual is surrounded by eight
neighbors; that is, θ rules between 1 and 8. Therefore, the
range of parameter θ < 4 and θ > 4 is wider. A general result
is that for θ � 5 the energy only decreases (by a finite amount)
after any exchange; consequently, the evolution is of finite time
and ultimately stops. However, for θ � 4 the dynamics may
evolve forever.

Let us first consider the case of φ = 50%, that is, both
populations are equally distributed. One sees that for θ = 5 and
θ = 6, as in the case of the von Neumann vicinity, the system
segregates until it reaches a well defined final state where
the segregation is far from complete. The system quenches
because one of the two list of unhappy individuals becomes
empty.

In the same line, in these two cases one notices that the
decreasing energy rate is larger for θ = 6 than for θ = 5
[in this case, �E � −4(2θ − 9)]; however, the final energy
is less for θ = 5 than for θ = 6. Then in this sense θ = 5
is more efficient than θ = 6 which is more efficient than
θ = 7, etc. (see Figs. 8). The case θ = 4, whenever the energy
increases only in a limited number of cases, is the most
efficient situation. The evolution finally approaches very near
the ground-state energy (minimum energy possible allowed

E/N

t [10  units ]3

GSE

FIG. 8. (Color online) Plot of the energy vs time for various values
of θ and for a concentration of 50% of individuals of both populations.
The graphics plots the long-time evolution of the energy, while the
inset plots a magnification of the early evolution of the energy. The
GSE represents the ground-state energy (10) corresponding to a initial
state of φ = 50%.

by the initial population conditions). As one approaches the
ground sate the boundary fluctuates in a quite organized way.
Sometimes the dynamics stop definitively and sometimes the
dynamics continues indefinitely as in the case of Figs. 8
and 9.

In this case (θ = 4) the dynamics is eventually restricted
only to the swapping of individual on the interface. The
interfaces play a major role, they are preferentially in angles
0◦, 45◦, and 90◦ with respect to the horizontal line. Therefore,
the final state is composed of an assembly of facets; instead of
an approximate circle, one has an octahedron. These facets are
very characteristic in this case and they maybe seen in Fig. 10
(case θ = 4). Because the dynamics is finally restricted only to
the interface, this case may be mapped into a one-dimensional
problem. Since in one dimension the interface fluctuates, in
two spatial dimensions these fluctuations are also observed.
The dynamics stops if the interfaces arrange their number of
individuals to get at least one of the unhappy lists empty.

In the case θ = 3 the energy reaches eventually the ground
state; indeed, in Fig. 10 one sees that the state evolves to a
lowest energy configuration. Although the dynamics allows
an increment of energy, the energy changes are more frequent
for a decreasing process than for an increasing process, so that,
on average, the energy tends to the minimal allowed value, the
ground-state energy. However, this process is less efficient than
θ = 4. The reason for that is because the existence of a larger
fluctuating frontier, clearly observed in the sates of Fig. 10.
Indeed, in the case θ = 4 the frontier involves one layer of
individuals; however, in the case θ = 3 one sees a very rich
dynamics in a thicker frontier, something similar to the one
expected in two phase systems, for instance, a liquid droplet
coexisting with vapor.

The minimal energy configuration is essentially realized
via a minimal perimeter interface. The shape of the minimal
perimeter interface depends on the initial fraction of individu-
als. If φ = 1/2 (the two populations posses the same number
of individuals) the minimum energy in the two-dimensional
periodic square is a stripe (see Fig. 10, with θ = 3 and
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E/N t [10  units ]3

φ=1/2

φ=1/3

φ=1/4

φ=1/8

φ=1/5

θ = 3 

E/N t [10  units ]3

φ=1/2

φ=1/3

φ=1/4

φ=1/8

φ=1/5

θ = 4 

E/N t [10  units ]3

φ=1/2

φ=1/3

φ=1/4φ=1/5

θ = 5 

FIG. 9. (Color online) Plot of the energy per node E/N vs time for various values of θ and various values of the concentration of a φ

of individuals. (a) Case θ = 3. As said in the main text the energy decreases to reach efficiently almost the ground-sate energy. One notices,
however, that the rate of energy decrease is quicker for smaller concentration of an initial population, for example, φ = 1/8. (b) Case θ = 4.
Large concentrations tend to the ground-state energy, but the dynamics eventually stops in finite time for smaller concentrations (φ = 1/5 and
φ = 1/8). (c) In the case of θ = 5, the dynamics is of finite time. The decreasing energy rate is almost constant for all initial concentrations
and takes values ranging from −14 to −15 units per step. This is roughly twice the maximum possible energy decreasing rate which is, after
(8), �E < −8 units for a not close neighbor exchange. Finally, one notices that for φ = 50% the energy is the lowest at the end. This is clearly
shown in Fig. 10, where, as one sees, that segregation effectively takes place and both communities separate and the perimeter decreases.

φ = 50%); however, as the initial fraction of individuals of one
population is lowered the minimal perimeter curve becomes a
circle (see Fig. 10, with θ = 3 and φ = 25% and φ = 12.5%).

These considerations follow from an energy argument.
Let us consider the minimal energy of a state where the
concentration of one population is φ. As already said, this
is a problem of minimizing a perimeter under the constraint
of having a total area of population, for example, N+ fixed.
In general this is a circle. The energy of a circular domain
composed only by individuals of the population N+ is E =
E0 + c1(2πr), with r the radius of the circle, which is given
by the area of the region Nφ = πr2. Thus, the total energy
is E = E0 + c12

√
πNφ, while the energy of a straight strip

of individuals +1 is simply twice thst of the borderlines
E = E0 + c12

√
N , so that the circular domain is the lowest

energy if φ < 1
π

and the stripe domain is the lowest for
1
π

< φ < 1
2 . The comparison of these energies is done in the

Figs. 11(i) and 11(ii).

θ432 5 6

25%

50%

12.5%

7

FIG. 10. (Color online) Phase diagram of the Schelling dynamics
in a two-dimensional square lattice with the Moore neighbor. Each
snapshot corresponds to a 128 × 128 numerical simulation, the violet
(dark gray) represents a state +1, while the yellow (light gray)
represents a state −1. This picture summarizes the phenomenology
for different values of the initial concentration and for different values
of the parameter θ .

The highly intolerant case θ = 2 is dramatically less
efficient than the θ = 3 case; the number of exchanges which
increase the energy and the events that decreases the energy are
roughly similar (excepting, perhaps, during the early evolution;
see Fig. 8). For an initial concentration φ = 1/2 the system
essentially does not segregate, the high level of unhappiness
makes exchanges so often that the system cannot self-organize
in a coherent way (see Fig. 10 for θ = 2 and φ = 50%).
However, for lower concentration the system can self-organize
and it does create a segregate domain in a very particular way
(see Fig. 10 for θ = 2 and φ = 25% and φ = 12.5%).

Ending this section we discuss the energy long-time
behavior. The long-time energy behaviors for the cases θ = 3
and θ = 4 are expounded in Fig. 8. As already said, the energy
decreases faster in the case θ = 4 than in the case θ = 3;
indeed, for θ = 4 one has that the energy approaches the
ground-state energy as [see Fig. 12(b)]

E/EGS − 1 ∼ t−3/2,

φ

(i)

(ii)

E       /√Nsurface

FIG. 11. (Color online) Plot of the rescaled perimeter energies
(Esurf ace/

√
N ) of (i) circular configuration and (ii) a planar domain.

The dots correspond to the numerical values of the energies for these
given states and for a concentration φ. The vertical line corresponds to
φ = 1/π ; it intersects the two other energies Esurf ace/

√
N ≈ 6 × 2 =

12.
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3/2

log  (1-E/E   )10                     GS

ii)

i)

iii)

log  t
10

3/2

0.9
ii)

i)

iii)

iv)

log  (1-E/E   )10                     GS

log  t
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FIG. 12. (Color online) Plot of the intermediate evolution of the energy vs time in log-log scale for the case of the von Neumann (a) and
Moore (b) vicinities. Precisely, we plot log10(1 − E/EGS) vs log10 t with EGS = −32 256 in the case of the von Neumann neighborhood (a)
and EGS = −128 000 for the case of the Moore vicinity (b). In plot (a), the parameter of tolerance is θ = 2, and the curves are (i) φ = 1/2, (ii)
φ = 1/4, and (iii) φ = 1/8. For plot (b), one has that (i) θ = 3 and φ = 1/2 and (ii) θ = 3 and φ = 1/3. The evolution during the “coarsening”
phase is consistent with a behavior 1 − E/EGS ∼ t−0.9. The cases (iii) θ = 4 and φ = 1/2 and (iv) θ = 4 and φ = 1/3 are also plotted. The
evolution in this cases is faster during the “coarsening” phase, which is consistent with a behavior 1 − E/EGS ∼ t−3/2.

indicating that the perimeter decreases as P ∼ t−3/2. Similarly,
in the case of von Neumann vicinity, with θ = 2, one has
also a t−3/2 behavior in time. However, in the case θ = 3 the
evolution during the “coarsening” phase is consistent with a
behavior E/EGS − 1 ∼ t−0.9. We notice that these behaviors
do not depend that much on the initial concentrations. One
notices that the energy rates are much faster than a diffusive
process. We do not have an explanation of any of these
behaviors.

Discussion . In conclusion, segregation is more effective
in the case of fairly intolerant cases θ = 4 and θ = 3. The
mechanism of segregation may be explained simply from the

phenomenology observed. In the cases θ = 5 and θ = 6 the
decrease in energy rate is large but the system decreases so
fast its energy and the dynamics end quenched in a frozen
segregation structure because one of the lists of unhappy indi-
viduals becomes empty. Similarly, one cannot rearrange some
exchanges because this implies that the energy must increase a
bit, something forbidden in these cases. In the cases θ = 4 and
θ = 3 the system is sometimes allowed to increase its energy
and the system may reorganize the individuals to minimize
energy. This happens naturally because of the fluctuations of
the interface among individuals of different population. These
interface fluctuations enhance the segregation effectivity.

FIG. 13. (Color online) 3D snapshots of the interface (in yellow or light gray) between the two distinct populations after evolution of the
Schelling segregation model in 3D with the Moore vicinity. The initial state is a random distribution of individuals with an initial concentration
φ = 1/2. Cases (a) θ = 18, (b) θ = 16, (c) θ = 15, (d) θ = 14, (e) θ = 13, (f) θ = 12, (g) θ = 11, and (h) θ = 10.
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FIG. 14. (Color online) 3D Schelling segregation model with the Moore vicinity. Case θ = 12 for initial concentrations (a) φ = 1/2,
(b) φ = 1/3, (c) φ = 0.225, and (d) φ = 1/5.

C. Three-dimensional periodic lattices

Finally, we consider the Schelling dynamics in a three-
dimensional lattice with a 3 × 3 × 3 (excluding the center)
neighborhood. This vicinity contains 26 sites. The values of
the parameter θ ranges from θ = 1 to θ = 26. One expects to
have a broader range to observe in more detail the regimes near
the value θ = 13 (in some sense the parameter θ becomes a
continuous variable). The full phenomenology is represented
in Fig. 13 for various values of the parameter θ . Although
the segregation mechanism works perfectly and the images of
segregation, in the phenomenology there is no big surprise;
naturally, for θ � 14 the dynamics decreases strictly energy
at each swap, as in the one- and two-dimensional cases, and
the system reaches in finite time to a quenched state, which is
a kind of porous media. The porosity size depending on the
value of θ . Indeed, as θ reaches the critical θc = 13 the typical
length of the porosity increases.

For θ = 13 the system does not decrease strictly the
energy and allows a search of an optimal configuration which
eventually minimizes the energy. As in the case of a two-
dimensional lattice with the Moore neighborhood, the system
creates well defined facets, which minimizes the energy.

For θ less than, but close to, 12 the system evolves slowly
to a global energy minimum, similar to the case θ = 3 for the
two-dimensional lattice with the Moore vicinity and θ = 3.
As in the two-dimensional case, the minimum energy is given
by the minimum surface interface. The minimal surface, at
constant volume, depends on the initial fraction φ. For φ = 1/2
in the periodic three-dimensional cube the minimal surface is
the so-called Schwarz surface [12,13]; as one decreases the
initial fraction one has that the minimal surface becomes a
cylinder, and for low initial concentrations it is a sphere (see
Fig. 13 and 14).

As in the two-dimensional lattice the dynamics explore the
configuration of a minimal surface. For a low concentration
one has that the minimal surface problem is a spherical
bubble. Similarly, one may observe the energy of a cylindrical
concentration, which is essentially the circular interface in two
dimensions. Finally, unlike the two-dimensional lattice, the
lowest energy is not a straight strip for larger concentrations
but a Schwarz minimal P surface [13], which is a periodic
surface of genus 3.

The energy of a sphere is E = E0 + c2(4πr2), with Nφ =
4π
3 r3, that is, E = E0 + c262/3π1/3φ2/3N2/3, while the energy

of the cylindrical configuration is (the length of the cylinder is

N1/3) E = E0 + 2c2

√
φ

π
N2/3.

So that the energy of a spherical distribution is the lowest
if φ � 4π

81 ≈ 0.155 14, while the cylindrical distribution of
individuals is the lowest energy for 4π

81 � φ � 1
π
, the Schwarz-

P surface is the optimal for 1
π

� φ � 1
2 . These behaviors

maybe seen roughly in Fig. 14.

IV. CONCLUDING REMARKS, DISCUSSION

In this article we have discussed various properties of the
Schelling segregation both from the points of view of physical
science. Our study was focused on intensive numerical simu-
lations of the Schelling segregation model for one-, two-, and
three-dimensional lattices. More precisely, we varied the size
of the neighborhood, |V |, the degree of tolerance parameter,
θ , and the initial proportion of the populations, φ. We
established a general satisfaction criterion which characterizes
the fundamental instability of the segregation phenomena.
Further, we characterize a macroscopical quantity, a kind of
energy or “utility function,” which decreases efficiently if
θ ≈ |V |/2.

Perhaps the most interesting result of this article deals with
the situation in which the tolerance parameter θ � |V |/2 in
which case the energy cannot be interpreted as a thermo-
dynamical equilibrium. However, the numerical simulations
show that the long-time evolution displays a very efficient
segregation pattern with an energy close to the ground-state
energy.

There are many variations on the Schelling segregation
problem, for instance, to consider the existence of empty sites
or vacancies. As we already said in Sec. II D (Remark 7)
the energy introduced maybe easily generalized for multiple
values of the variable xk . On the other hand, one may undertake
a mean field approach whenever the number of neighbors is
much larger than unity and use the powerful techniques of the
analysis. Similarly, no regular networks, as undirected graphs,
may produce more realistic applications to segregation. In this
case, from a phenomenological point of view, it seems that the
relevant parameters are an average of discrimination parameter
θk and the degree of the graph. Finally, another variant not
considered in the present model is the following. Usually
the satisfaction parameter θk depends on the individual, but
here we considered that θk depends on the site k. We can state
the following open problem: What would happen if when one
exchanges two different individuals, they keep their own θ?
These considerations will be treated elsewhere.
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We conclude with some considerations of the computa-
tional complexity of a prediction problem associated to the
Schelling segregation rule, in particular the connection of the
physical system with the computational complexity.

One may define the complexity of a physical system as the
number of computer steps needed to predict its outcome. In
this context, we study the following prediction problem: Given
an initial condition, we want to know if a swap sequence exists
such that one specific site will change in a finite number of
steps. The answer to this question is not always simple, and
in some cases it can take a huge amount of time depending
on the lattice dimensions and the happiness parameter. Hence,
spending a large amount of time implies that predicting the
system behavior is not always possible. In these cases the only
feasible option to answer our prediction problem is to fully run
the simulation.

We have proof, for the one-dimensional lattice case, that
it is always possible to make a fast prediction. For the
two-dimensional lattice with the von Neumann (four nearest
neighbors in a square lattice) or the Moore neighborhood (the
eight neighbors of the 3 × 3 neighbor in a square lattice), we
prove that for very tolerant or intolerant individuals the system
behavior is also easy to predict. However, when the tolerance
paramenter is around |V |/2 to perform a prediction becomes
a difficult problem, which means that we have to run the full
simulation to obtain an answer. We sketch these considerations
in the Appendix.

In summary, from a physical and computing complexity
point of view, we notice that the case of very tolerant people
θ � |V | and the case of very intolerant people (1 � θ ) are
very similar. However, although the cases θ ≈ |V |/2 are very
complex from a computational point of view, from a physical
point of view there are some differences: If θ > |V |/2 the
energy is a thermodynamical potential which drives the system
to an equilibrium whence segregation stops.
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APPENDIX: COMPLEXITY OF THE SEGREGATION
MODEL

The computational complexity of a model can be defined
as the number of computer steps required to predict it. By
“predict” we mean to know if a given site swaps after a given
time. In this context, we associated to the segregation model
the generic prediction problem.

Segregation prediction problem (SPP). Given an initial
configuration of +1 and −1 in a D-dimensional lattice,
consider a specific site, say 0, such that x0(t = 0) = −1. Then,
does a finite number of applications of the segregation model

(a) (b)

FIG. 15. (a) Fixed connected component. The symbol • ≡ −1,
◦ ≡ +1. The gray • ≡ −1 states are stable because the are connected
to two self-stable blocks (the •). (b) Minimum fixed connected
component.

exist T � 1, (a sequence of swaps) that change the value of
this site to +1?

In some cases to find such a sequence could take a large
amount of time, depending on the specific graph, the dimension
of the lattice or the happiness parameter θ , as we sketch
below. Essentially, we try to characterize such complexity in
D-dimensional lattices and for any happiness parameter. To do
that we consider the classic complexity classes P and NC. The
class P takes into account the problems which can be solved,
by a serial computer, in a polynomial time (Nα) on the problem
size N . The class NC considers problems whose can be solved
quickly, in polylogarithmic time of the order of (log N )α in
a parallel computer with a polynomial number of processors.
Clearly NC is contained in P. The deep question concerning
both classes is the following: If they are really different, that
is, if intrinsically sequential problems exist, so that it cannot
be possible to translate them to a parallel computer with a
logarithmic time performance. One of this candidates (to be
in P but not in NC) is the circuit value problem (CVP): Given
a Boolean circuit (a directed graph whose nodes are AND, OR,
and NOT gates), and given the truth values of its inputs (say 0’s
and 1’s), then, is the output true (1) or false (0)?

This intuition is associated with the observation that it
is hard to imagine how to compute the output without
sequentially going across each layer in the circuit, so the time
is directly associated with the depth of the circuit. We say that
a problem in P is P complete if it is in P and if any other
problem in this class P can be reduced to it in log-space,
that is, the amount of memory to codify the information
scales as the logarithm of the size of the problem (log N ).
Further, the CVP and the particular case of the monotone

(a) (b)

FIG. 16. Representation of wires which convey information, a •
represents a −1 state, while a ◦ represents a +1 state. The isolated •
represents a −1 traveling in the direction of the head of the arrow by
swapping with its neighbor in the same line or column. (a) Horizontal
wire and (b) vertical wire.
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FIG. 17. (Color online) (a) AND gate; (b) OR gate; and (c) CROSS-OVER.

circuit value problem (MCV) (circuits without negations) are
P complete [14,15]. From previous remarks we may say that
P problems are inherently sequential unless P = NC. Thus, to
prove or disprove the P completeness of a problem is a good
way to taste its prediction possibilities. So in this context we
study the complexity of the SPP in D-dimensional systems,
with D = 1,2,3.

Let us consider the one-dimensional case, that is, a periodic
lattice with N sites, such that each one is connected to its
nearest neighbors and the happiness parameter may take the
value θ = 1 and θ = 2. Because of simplicity we study in detail
the case θ = 1. We recall that in this situation a site is unhappy
when at least one of its neighbors is in the opposite state. So a
couple of consecutive different states are both unhappy and if
we interchange them they remain unhappy. From that and the
definition of SPP it is easy to see that to give the answer to the
SPP one has to know the nearest site (left or right) to the site 0
such that it is at state +1. First, one computes the position of
sites at state +1. By considering N processors we do that in
constant time. After that, for each position k, such that it is in
state +1, we compute min{k,N − k}, and finally we compute
the minimum of this value by using O(N ) processors in log N

steps. So the SPP is in the NC class.
For θ = 2 the analysis is roughly similar, which implies

that the SPP also belongs to the class NC.
As an illustration of our complexity study in two-

dimensional lattices, let us consider the von Neumann neigh-
borhood so θ ∈ {1,2,3,4}. In this situation one may prove,
by using a similar argument to the one-dimensional case,
that for θ = 1 and θ = 4 the SPP belongs to the class NC.
In the case θ = |V |/2 ≡ 3 we have an energy principle so
every initial configuration converges to a fixed point. The
shape of a fixed point is such a that each site has at least
two neighbors in its same value. Typically we have, say, for
−1, fixed configuration, as in Fig. 15.

In Figs. 15 each site has at least two neighbors in its state.
The square in Fig. 15(b) is the smallest fixed configuration.
Then a connected component of −1 (the same argument holds
for +1) will be fixed if and only if each site has two −1’s.
We say that a configuration of −1’s (+1’s) is self-stable if,
and only if, it is a rectangle or a circuit of −1’s (+1’s). In this
context a configuration of −1’s (+1’s) is fixed if, and only if,
(i) it is self-stable or (ii) each site is connected to two different
self-stable blocks.

Therefore, an algorithm to know if the site, say (0,0) at a
state −1 has some possibility to change in finite time consists

essentially of computing the −1 connected components which
contain (0,0) and verifying if this site belongs to a self-
stable block or it is between two different self-stable blocks.
Otherwise, if there are enough unhappy sites at value +1 the
site (0,0) will swap to +1. Moreover, to compute a connected
component in a parallel computer with a polynomial number of
processor takes O(log N )2 steps [16]; furthermore, computing
if the site (0,0) belongs to a self-stable block, or it is connected
to two self-stable blocks, is equivalent to computing if the site
belongs to a biconnected component which can be done, in a
parallel computer, also in O(log N )2 steps [16]. Finally, one
also may compute the number of unhappy 1’Õs in O(log N )
steps. In conclusion, the decision problem, to determine if a
site may change its initial state, can be answered in a parallel
computer in O(log N )2, so SPP belongs to the class NC.

The most complex case happens for θ = 2. In this situation
we may prove the decision problem is P complete. Essentially,
our proof consists to reduce the MCV (monotone circuit
problem) to SPP. To achieve that we define as specific
configurations of the segregation model wires (see Fig. 16),
the AND and OR gates, as well as a CROSS-OVER (see Fig. 17).
Clearly, for the CROSS-OVER we could create a misleading
signal if, for instance, a vertical one (from the bottom to
the top) in the intersection goes to the right. To avoid that
we use a specific way to update the network. First, the
CROSS-OVER, if it exists, will be only in sites (a,a) in the
diagonal of the lattice, and the update policy we consider is
the following: First, form the bottom to the top and from the
left to the right, update by rows, contiguous horizontal sites
(x,y) �= (a − 1,a) for any a � 1, or else update the three cou-
ples of sites {(a − 1,a),(a,a)},{(a,a),(a,a + 1)},{(a + 1,a +
1),(a + 2,a + 1)}. When this procedure is finished, update
every couple of neighbor sites from the bottom to the top and
from left to right.

By doing so we evaluate any monotone circuit by using
previous update rule as well as configurations defined below.
Hence, the Schelling prediction problem is P complete.

One may study in a similar way the case of the Moore
neighborhood in a two-dimensional lattice. Further, in the
three-dimensional lattice with the nearest neighborhood and
θ = 3, the prediction problem is P complete. The P complete-
ness is inherited from the two-dimensional case; the proof
follows similarly as in the two-dimensional lattice with the
von Neumann neighborhood and θ = 2. Another possibility is
to build logical gates directly in 3D, as in the majority automata
studied in [14].
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