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The recent availability of data describing social networks is changing our understanding of the “microscopic
structure” of a social tie. A social tie indeed is an aggregated outcome of many social interactions such as
face-to-face conversations or phone calls. Analysis of data on face-to-face interactions shows that such events,
as many other human activities, are bursty, with very heterogeneous durations. In this paper we present a
model for social interactions at short time scales, aimed at describing contexts such as conference venues in
which individuals interact in small groups. We present a detailed analytical and numerical study of the model’s
dynamical properties, and show that it reproduces important features of empirical data. The model allows for
many generalizations toward an increasingly realistic description of social interactions. In particular, in this paper
we investigate the case where the agents have intrinsic heterogeneities in their social behavior, or where dynamic
variations of the local number of individuals are included. Finally we propose this model as a very flexible
framework to investigate how dynamical processes unfold in social networks.
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I. INTRODUCTION

In the last decade complexity theory has greatly advanced
thanks to the availability of extensive data on a wide variety
of networked systems. Empirical studies have uncovered the
presence of ubiquitous features in complex networks, such
as the small-world property, or strong heterogeneities in the
topological structure, revealed for instance by broad degree
distributions [1–5]. These findings have deeply affected our
understanding of self-organized networks and have been used
for the investigation, characterization, and modeling of many
different systems such as infrastructure or biological and social
networks.

Many works have studied the influence of complex network
topologies observed in real networks on the dynamical
phenomena that unfold on them [6,7]. While these studies
have mostly focused on networks considered as static objects
with a fixed topology, networks’ structures may in principle
evolve, links may appear and disappear. A first approach
consists of assuming that links are created and annihilated
at a constant rate, independently of the dynamical process that
takes place on them [8–10]. Networks can however display
more interesting properties such as an adaptative behavior,
in which the dynamics on the network and of the network
are related by feedback effects [11–17]. Moreover, empirical
investigations have shown that link durations can significantly
deviate from a Poisson process [18–23].

Social networks [24,25] are prominent examples of evolv-
ing networks. Social relationships are indeed continuously
changing, possibly in a way correlated with the dynamical
processes taking place during social interactions (such as
epidemic spreading or opinion dynamics). Consequently, a
number of works have been devoted to modeling the dynamics
of social interactions. Issues investigated in this context are
in particular community formation [26–28] and the evolution
of adaptive dynamics of opinions and social ties through
schematic models in which links can disappear or be rewired at

random [11–17]. Moreover, social networks evolve on many
different time scales. The static representation of social ties
indeed hide dynamical sequences of events such as face-to-face
interactions, phone calls, or email exchanges, and can be
measured by aggregating fast social interactions over a certain
period of time.

Recently technological advances have made possible the
access to data sets that give new insights into such link internal
dynamics, characterized by sequences of events of different
durations. Traces of human behavior are often unwittingly
recorded in a variety of contexts (financial transactions, phone
calls, mobility patterns, purchases using credit cards, etc.).
Data have been gathered and analyzed about the mobility
patterns inside a city [29], between cities [30], as well as
at the country and at worldwide levels [20,31–33]. At a
more detailed level, mobile devices such as cell phones
make it possible to investigate individual mobility patterns
and their predictability [34,35]. Mobile devices and wearable
sensors using Bluetooth and Wifi technologies give access to
proximity patterns of pairs of individuals [18,36–39], and even
face-to-face presence can be resolved with high spatial and
temporal resolution [21–23,40]. Finally, online interactions
occurring between individuals can be monitored by logging
instant messaging or email exchange [41–47].

The combination of these technological advances and
of heterogeneous data sources allows researchers to gather
longitudinal data that have been traditionally scarce in social
network analysis [48,49]. Analysis of such data sets has clearly
shown the bursty nature of many human and social activities,
revealing the inadequacy of many traditional frameworks that
posit Poisson distributed processes. In particular, the durations
of “contacts” between individuals, as defined by the proximity
of these individuals, display broad distributions, as well as the
time intervals between successive contacts [18,19,21–23,39].
Burstiness of interactions has strong consequences on dynam-
ical processes [23,50–54], and should therefore be correctly
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taken into account when modeling the interaction networks.
New frameworks are therefore needed which integrate the
bursty character of human interactions and behaviors into
dynamic network models.

While a lot of modeling efforts have been devoted to static
networks, the development of models of dynamic networks has
indeed until recently attracted less attention [17,19,20,55,56].
In a recent paper [56] we have presented an agent-based
modeling framework to describe how individuals interact at
short times scales in venues such as social gatherings (e.g.,
scientific conferences). The model is based on a reinforcement
dynamics (in the spirit of the preferential attachment in
complex networks [57] and of Hebbian learning) which might
be responsible for the bursty dynamics of social face-to-face
interactions. The proposed mechanism implies that the longer
an agent is interacting in a group, the smaller is the probability
that he/she will leave the group; the longer an agent is isolated
the smaller is the probability that he/she will form a new group.

In the present paper we present an extensive characteri-
zation of the model’s properties and show that it reproduces
important features of empirical data on social interactions at
short time scales. We characterize the rich phase diagram
of the model which includes stationary and nonstationary
regions. The analysis of the dynamical properties of the model
shows that it yields stationary broad distribution of group
lifetimes even if the underlying dynamics is nonstationary,
as also found in empirical data. In order to illustrate the
model’s versatility, we give two examples of how it can
be extended to more realistic cases: in the first example
agents can have heterogeneous propensities to form group with
others; in the second example we introduce the possibility of
a varying population, where the number of individuals can
be an arbitrary function or extracted from empirical data.
In the two cases we show how properties very close to the
ones of real-world data sets can be obtained. The proposed
model is easily implementable, uses simple but realistic
mechanisms, reproduces a certain number of empirical facts,
and is amenable to further refinements. It can therefore be used
to produce artificial data sets of bursty interaction networks on
which dynamical phenomena can be simulated and studied.

The paper is organized as follows. In Sec. II we review
the main properties of a representative empirical data set
describing the face-to-face proximity of individuals in social
gatherings. Section III is devoted to the definition of the
modeling framework and to the analytical and numerical study
of the simplest versions of the model. Section IV is devoted
to two extensions of the model. We outline some conclusions
and perspectives in Sec. V.

II. EMPIRICAL DATA

The infrastructure developed by the SocioPatterns project,
described in [21–23], has yielded measurements about the
face-to-face proximity of individuals in different types of
social contexts (hospital, primary school, scientific confer-
ences, museum), with a fine grained time resolution. The
infrastructure is currently based on radio frequency identi-
fication devices (RFID). Individuals participating to the data
collection are asked to wear small RFID tags on their chests (as
a conference badge) that emit radio packets at very low power.

The parameters of the infrastructure are tuned so that the tags
can exchange radio packets only when the individuals wearing
them face each other at close range (about 1 to 1.5 m), and so
that face-to-face proximity events (“contacts”) can be assessed
with very high accuracy with a time resolution of 20 s. We
present here for the sake of completeness some characteristics
of the data collected during the 6th European Semantic Web
Conference (ESWC, Heraklion, Greece) in 2009. Analysis of
other data sets can be found in Refs. [21–23] with very similar
features.

Face-to-face proximity patterns have been collected for 175
voluntary participants (among the 305 conference attendants)
over 3 days. 14 520 contact events have been registered,
corresponding to 27.3 contacts per individual per day. The
contact durations display a very broad distribution, close to
a power law (shown in Fig. 1): the average duration is of
46 s, but long-lasting contacts are as well observed, and no
characteristic contact time scale can be extracted from the
data. Figure 1 also displays a quantity of interest, namely
the distribution of time intervals between the start of two
consecutive contacts of a given individual A with two distinct
persons B and C. In other words, if A starts a contact with B

at time tAB , and then starts a different contact with C at tAC ,
the intercontact interval is defined as τ = tAC − tAB . These

10
1

10
2

10
3

10
4

10
5

10
6

Interval τ between two contacts (s)

10
-8

10
-6

10
-4

10
-2

10
0

P
A

B
-A

C
(τ

)

12 hours

(b)

10
1

10
2

10
3

10
4

Contact duration Δt (s)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
(Δ

t)

(a)

FIG. 1. Distribution of contact durations (a) and of time intervals
between two contacts involving a common individual (b).
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FIG. 2. (Color online) Distributions Pn(τ ) of the durations (in
seconds) of groups of size n + 1 for the ESWC data set.

time intervals constrain causal processes such as information
diffusion or epidemic spreading, as they determine the time
scale after which an individual receiving some information
or disease is able to propagate it to another individual. As
shown in Fig. 1, broad distributions are also found in this
case. We also show in Fig. 2 the distributions of lifetimes
of groups of size n + 1 (n = 0 corresponds to an isolated
person, n = 1 to a pair, etc). All these distributions are broad,
compatible with power-law shapes, and become narrower
for increasing n (larger groups are less stable than smaller
ones).

The burstiness of the contact pattern revealed by the
broad distribution of contact durations also has consequences
on aggregated views of the dynamical contact network.
Aggregated contact networks over a given time window are
defined as follows: each node corresponds to an individual,
and an edge is drawn between two nodes if at least one contact
event has been registered during the time window between
the two corresponding individuals. Each edge is weighted by
the sum of the contact durations between these individuals
during this time window. As shown in Fig. 3 (top right), the
distributions of such weights are broad, independent of the
time window considered (see also [22,23]).

Figure 3 also displays other characteristics of aggregated
networks constructed with time windows of different lengths.
As also found in [22,23] for other deployments of the
same infrastructure, the distribution of degrees (the degree
gives the number of distinct individuals with whom a given
individual has been in contact) are not broadly distributed.
This behavior is in contrast with the degree distribution
of many empirically studied social networks [6,58,59]. It
should however be emphasized that we are here dealing with
face-to-face interactions occurring in a restricted environment
among a relatively small population and on short time
scales, while studies such as [58,59] are concerned with
social ties created and defined over much longer time scales.
Moreover, we note that a narrow degree distribution (a power
law with a large exponent) has also been found in the
degree distribution of networks defined by phone-call data
sets [52].
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FIG. 3. (Color online) Aggregated networks’ characteristics for
the empirical ESWC data: (a) degree distribution, (b) weight
distribution, (c) average strength of nodes of degree k vs k, and
(d) average Herfindahl-Hirschman index of nodes of degree k vs k.

The strength si of a node i is defined as the sum of the
weights wij between i and its neighbors j , that is,

si =
∑

j

wij . (1)

It gives the cumulated durations of the interactions of the
corresponding individual. The average strength of nodes of
degree k [〈s(k)〉] indicates how the weights are distributed. If
the weights are uniformly distributed among the links of the
networks, the average strength 〈s(k)〉 grows linearly with k,
that is, 〈s(k)〉 ∝ k〈w〉. On the contrary, if stronger ties are more
frequently linked to highly connected agents, a superlinear
behavior of 〈s(k)〉 versus k is observed [31]. The RFID data
on face-to face interactions are consistent with a linear or
slightly faster behavior of 〈s(k)〉 versus k [22,23], hinting at
a weak correlation between weights and degrees. Correlations
between network topology and distribution of the weights have
been found in various complex networks with broad degree
distribution [31], and several models based on reinforcement
dynamics have been proposed in this context [60–62].

Another measure of the weights’ distribution is given by
the Herfindahl-Hirschman index Y2 [63,64], also known in the
physics literature under the name of “participation ratio”. This
index, defined as

Y2(i) =
∑

j∈N (i)

(
wij

si

)2

, (2)

where N (i) refers to the set of neighbors of i, gives a measure
of the heterogeneity of the weights among the neighbors of a
node. When all weights wij of the links connected to node i are
equal, that is, wij = si/ki , this index is inversely proportional
to the degree ki of node i, that is,

Y2(i) = 1

ki

. (3)

On the contrary, when one of the links has a much larger weight
than the others, Y2(i) is close to 1. The departure of kiY2(i)
from 1 thus indicates the local heterogeneity of weights around
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each node. Figure 3 shows that the average of this quantity over
nodes of degree k [〈kY2(k)〉] is larger than 1 and increases with
k: each individual divides his/her time unevenly among his/her
contacts, and this behavior becomes more pronounced as the
number of distinct contacted persons increases.

III. A MODEL FOR SOCIAL DYNAMICS AT
SHORT TIME SCALES

In this section we present a model describing the social
dynamics of N agents forming small groups of different size.
In this model, each agent can interact with any other agent.
This model describes therefore social interactions within a
closed environment of relatively small size where agents are
free to meet, such as a conference venue. We assign to each
agent i = 1,2, . . . ,N a coordination number ni = 0,1,2 . . . ,N

indicating the number of agents interacting with him/her. If an
agent i has coordination number ni = 0 he/she is isolated, and
if ni = n > 0 he/she is part of a group of n + 1 agents, who
all interact with each other (thus forming a clique). We also
assign to each agent i the temporal variable ti indicating the
last time at which his/her coordination number ni has changed.

The dynamics of the model is as follows. Starting from
random initial conditions, at each time step t the following
steps are performed.

(1) An agent i is chosen randomly.
(2) The agent i updates his/her coordination number ni = n

with a certain probability pn(t,ti) that may depend on the
agent’s state, on the present time t , and on the last time ti
at which i’s state evolved. With probability 1 − pn(t,ti), the
agent does not change state. If the coordination number ni is
updated, the action of the agent is chosen with the following
rules.
(i) If the agent i is isolated, that is, ni = 0, he/she starts

an interaction with another isolated agent j chosen with
probability proportional to p0(t,tj ). The coordination
number of the agent i and of the agent j are then updated
according to the rule ni → 1 and nj → 1.

(ii) If the agent i is interacting in a group, that is, ni = n > 0,
with probability λ the agent leaves the group and with
probability (1 − λ) he/she introduces an isolated agent
in the group. If the agent i leaves the group, his/her
coordination number is updated (ni → 0), as well as the
coordination numbers of all the agents in the original
group, that is, nk → n − 1 (for all agents k in the original
group). On the contrary, if the agent i introduces another
isolated agent j to the group, j is chosen with probability
proportional to p0(t,tj ) and the coordination numbers of
all the interacting agents are changed according to the rules
nj → n + 1 and nk → n + 1 (for all k in the group).

The structure and properties of the interactions between
agents depend on the choice of the probabilities pn, which
control the tendency of the agents to change their state, and on
the parameter λ, which determines the tendency either to leave
groups or on the contrary to make them grow. The simplest
choice consists of considering constant probabilities pn(t,t ′) =
pn: at each time every agent has a fixed probability to form
a group or split from a group. In this case the formation of
the groups is a Poisson process, and the distributions of the

durations of contacts between agents or the lifetime of a group
are exponentially distributed.

As recalled in the introduction however, the distributions
of the times describing human activities are typically broad
[18,22,23,37,42,46,51], and are clearly closer to power laws
that lack a characteristic time scale than to exponentials. A
possible explanation of such results is given by mechanisms in
which the decisions of the agents to form or leave a group are
driven by memory effects dictated by reinforcement dynamics,
that can be summarized in the following statement: the longer
an agent is interacting in a group, the smaller is the probability
that he/she will leave the group; the longer an agent is isolated,
the smaller is the probability that he/she will form a new group.
In particular, such reinforcement principle implies that the
probabilities pn(t,t ′) that an agent with coordination number
n changes his/her state depend on the time elapsed since his/her
last change of state. A simple way to introduce this hypothesis
is to consider functions pn(t,t ′) = pn(t − t ′). Reinforcement
mechanisms are then described by decreasing functions pn. We
will see in the next subsections how the evolution equations
of the number of agents in each state can be written at the
mean-field level for arbitrary functions pn. Finding solutions
of this set of equations is however not always possible, and
we will focus on functions pn scaling as 1/(t − t ′) for two
reasons: on the one hand it represents one of the cases that
is fully amenable to analytical computations and on the other
hand such a scaling behavior is needed to obtain power-law
distributions for the contact durations and thus dynamical
characteristics compatible with empirical data. We consider
in particular functions given by

pn(t,t ′) = bn

1 + (t − t ′)/N
(4)

and, in order to reduce the number of parameters, we
moreover take bn = b1 for every n � 1, indicating the fact
that interacting agents change their state independently on the
number of other agents n with whom they are interacting,
provided that n � 1. The model’s parameter are thus b0, b1,
and λ.

A. Pairwise interactions

Let us first consider a restricted version of the model in
which the agents can only interact in pairs. This setup is
obtained by setting λ = 1 and by considering initial conditions
in which the agents interact at most in groups of size 2. In this
case each agent is thus assigned a variable ni = 0,1 indicating
if the agent i is isolated (ni = 0) or interacting with another
agent (ni = 1).

As in the analysis of empirical data, the most immediate
quantities of interest concern the time spent by agents in each
state, the duration of contacts between two agents, and the
time intervals between successive contacts of an agent. To gain
insight into these temporal properties of the system, we can
write rate equations for the evolution of the numbers Nn(t,t ′)
of agents in state n = 0 at time t who have not changed state
since time t ′. In the mean-field approximation, and treating
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time and numbers as continuous variables, these equations are
given by

∂N0(t,t ′)
∂t

= −2
N0(t,t ′)

N
p0(t,t ′) + π10(t)δtt ′,

(5)
∂N1(t,t ′)

∂t
= −2

N1(t,t ′)
N

p1(t,t ′) + π01(t)δtt ′,

where the transition rates πn,m(t) denote the average number
of agents switching their states from n to m (n → m) at
time t . If the agents make their decisions according to the
reinforcement dynamics described by the probabilities pn(t,t ′)
given by Eq. (4), the dynamic equations (5) have a solution of
the form

N0(t,t ′) = π10(t ′)
(

1 + t − t ′

N

)−2b0

,

(6)

N1(t,t ′) = π01(t ′)
(

1 + t − t ′

N

)−2b1

.

Since the total number of isolated agents who change their state
at time t is equal to π01(t) and the total number of interacting
agents who change their state is equal to π10(t), it follows that
π10(t) and π01(t) are given in terms of N0(t,t ′) and N1(t,t ′) by
the relations

π10(t) = 2

N

t∑
t ′=1

p1(t,t ′)N1(t,t ′),

(7)

π01(t) = 2

N

t∑
t ′=1

p0(t,t ′)N0(t,t ′).

To solve the coupled set of equations (6) and (7) we assume
self-consistently that π10(t) and π01(t) are either constant or
decaying in time as power laws. Therefore we assume

π10(t) = π̃10

(
t

N

)−α0

,

(8)

π01(t) = π̃01

(
t

N

)−α1

.

To check the self-consistent assumption Eq. (8), we insert it
in Eqs. (6) and (7) and compute the values of the parameters α0,
α1, π̃10, and π̃01 that determine the solution in the asymptotic
limit t → ∞. If α0 = α1 = 0 we obtain a stationary solution
in which π10(t) = π̃10 and π01(t) = π̃01 are independent of
time. On the contrary, if α0 > 0 or α1 > 0 the system is
nonstationary, with transition rates π10(t) and π01(t) decaying
in time. The system dynamics slows down. In Appendix A we
give the details of this self-consistent calculation in the large
N limit which yields α0 = α1 = α and π̃10 = π̃01 = π̃ , with

α = max (0,1 − 2b1,1 − 2b0) ,

π̃ = sin [2π min (b0,b1)]

π
[1 − δ(α,0)]

+ (2b0 − 1)(2b1 − 1)

2(b0 + b1 − 1)
δ(α,0). (9)

The analytically predicted dynamical behavior or the model
can be summarized by the phase diagram depicted in Fig. 4

FIG. 4. (Color online) Phase diagram of the pairwise model. The
white area indicates the stationary regime in which the transition rate
is constant. The colored (gray) area indicates the nonstationary phase.

(that we discuss now in more detail), together with the
numerical simulations of the stochastic model displayed in
Fig. 5.

1. Stationary region (b0 > 0.5 and b1 > 0.5) In this region
of the phase diagram, the self-consistent equation predicts
α = 0, so that a stationary state solution is expected, where
π01(t) = π̃ is given by Eq. (9). In this stationary state the
number of isolated agents and the number or interacting
agents are constant on average, but the dynamics is not frozen
since π̃ > 0 agents continuously form and leave pairs. The
simulations shown in Fig. 5 for b0 = b1 = 0.7 confirm this
analytical prediction.

2. Nonstationary region (b0 < 0.5 or b1 < 0.5) In this re-
gion of the phase diagram, the self-consistent equation predicts
a nonstationary solution with π10(t) and π01(t) decaying with
t as a power law of exponent α = max(1 − 2b0,1 − 2b1).

FIG. 5. (Color online) Evolution of the transition rate π10(t) in
the different phase regions of the pairwise interaction model. The
simulation is performed with N = 1000 agents for a number of
time steps Tmax = N × 105, and averaged over 10 realizations. The
simulations are performed in the stationary region with parameter
values b0 = b1 = 0.7 (circles) and in the nonstationary region with
parameter values b0 = 0.3, b1 = 0.7 (squares), and b0 = b1 = 0.1
(triangles). The lines indicate the analytical predictions Eqs. (8)
and (9).
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Figure 5 shows such a decay for b0 = 0.3, b1 = 0.7, and
for b0 = b1 = 0.1, which is however truncated by finite-size
effects for t larger than tc(N ) ∝ N . Therefore the system
eventually becomes stationary with a very slow dynamics [very
small transition rates π10(t) and π01(t)].

Empirical studies often focus on the statistics of contact
durations between individuals and of the time intervals
between two contacts of a given individual. These quantities
of interest can be computed in our model, respectively, as the
probabilities P1(τ ) that an agent remains in a pair during a
time τ = (t − t ′)/N and P0(τ ) that an agent remains isolated
for a time interval τ = (t − t ′)/N . These probabilities are
determined by the numbers of agents in each state and the
rates at which the agents change their state. The probability
distributions of the time spent in each state, integrated between
the initial time and an arbitrary time t , are given by

Pn(τ ) ∝
∫ t−Nτ

t ′=0
pn(t ′ + Nτ,t ′)Nn(t ′ + Nτ,t ′)dt ′ (10)

for n = 0,1. Inserting the expression given by Eq. (6) for
Nn(t,t ′) and the definition of pn(t,t ′) given by Eq. (4) in
Eq. (10), we obtain the power-law distributions

Pn(τ ) ∝ (1 + τ )−2bn−1 (11)

for n = 0,1. These analytical predictions are compared with
numerical simulations in Fig. 6 for b0 = 0.6, b1 = 0.8 (station-
ary system) and in Fig. 7 for b0 = b1 = 0.1 (nonstationary π10

and π01). Interestingly, even when the system is nonstationary,
the distributions Pn(τ ) remain stationary.

B. Formation of groups of any size

In this subsection we extend the solution obtained for the
pairwise model to the general model with arbitrary value of
the parameter λ, where groups of any size can be formed.
Therefore the coordination number ni of each agent i can
take any value up to N − 1. Extending the formalism used

FIG. 6. (Color online) Probability distribution of the durations of
contacts P1(τ ) and of the intercontact durations P0(τ ) in the stationary
region, for the pairwise model. The data is reported for a simulation
with N = 1000 agents, run for Tmax = N × 105 elementary time
steps, with parameter values b0 = 0.6, b1 = 0.8. The data is averaged
over 10 realizations.

FIG. 7. (Color online) Probability distribution of the durations
of contacts P1(τ ) and of the intercontact durations P0(τ ) in the
nonstationary region of the pairwise model, with b0 < 0.5 and b1 <

0.5. In this region we observe some deviations of the probabilities
P1(τ ) and P0(τ ) from the power-law behavior for large durations.
The data are reported for a simulation with N = 1000 agents run
for Tmax = N × 105 elementary time steps, with parameter values
b0 = b1 = 0.1. The data are averaged over 10 realizations.

in the previous subsection, we denote by Nn(t,t ′) the number
of agents with coordination number n = 0,1, . . . ,N − 1 at
time t , who have not changed state since time t ′. In the mean-
field approximation the evolution equations for Nn(t,t ′) are
given by

∂N0(t,t ′)
∂t

= −2
N0(t,t ′)

N
p0(t,t ′) − (1 − λ)ε(t)

× N0(t,t ′)
N

p0(t,t ′) +
∑
i�1

πi,0(t)δtt ′,

∂N1(t,t ′)
∂t

= −2
N1(t,t ′)

N
p1(t,t ′)

+ [π0,1(t) + π2,1(t)]δtt ′,

∂Nn(t,t ′)
∂t

= −(n + 1)
Nn(t,t ′)

N
p1(t,t ′) + [πn−1,i(t)

+πn+1,n(t) + π0,n(t)]δtt ′, n � 2. (12)

In these equations the parameter ε(t) indicates the rate
at which isolated nodes are introduced by another agent
in already existing groups of interacting agents. Moreover,
πmn(t) indicates the transition rate at which agents change
coordination number from m to n (i.e., m → n) at time t . In the
mean-field approximation the value of ε(t) can be expressed
in terms of Nn(t,t ′) as

ε(t) =
∑

n�1

∑t
t ′=1 Nn(t,t ′)p1(t,t ′)∑t

t ′=1 N0(t,t ′)p0(t,t ′)
. (13)

In the case of reinforcement dynamics described by the
probabilities pn(t,t ′) given by Eq. (4), and assuming that
asymptotically in time ε(t) converges to a time-independent
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variable, that is, limt→∞ ε(t) = ε̂, the solution to the rate
equations (12) in the large time limit is given by

N0(t,t ′) = N0(t ′,t ′)
(

1 + t − t ′

N

)−b0[2+(1−λ)ε̂]

,

N1(t,t ′) = N1(t ′,t ′)
(

1 + t − t ′

N

)−2b1

, (14)

Nn(t,t ′) = Nn(t ′,t ′)
(

1 + t − t ′

N

)−(n+1)b1

for n � 2,

with

N0(t ′,t ′) =
∑
n�1

πn,0(t ′),

N1(t ′,t ′) = π0,1(t ′) + π2,1(t ′), (15)

Nn(t ′,t ′) = πn−1,n(t ′) + πn+1,n(t ′) + π0,n(t ′) for n � 2.

The transition rates πm,n(t) can be determined in terms of
Nn(t,t ′) as shown in Appendix B. In order to solve the equa-
tions we make the further assumption that the transition rates
πmn(t) are either constant or decaying with time according to
a power law, that is,

πm,n(t) = π̃m,n

(
t

N

)−αm,n

. (16)

Self-consistent calculations (see Appendix B) determine the
value of the quantities ε̂, αmn, and π̃mn. For λ > 0.5 the self-
consistent assumption Eq. (16) is valid and we find, as in the
case of pairwise interactions, that αm,n = α∀(m,n), with

α = max

(
0,1 − b0

3λ − 1

2λ − 1
,1 − 2b1

)
. (17)

This solution generalizes the case of the pairwise model, which
is recovered by setting λ = 1. For λ � 0.5 the self-consistent
assumption breaks down and we will resort to numerical
simulations.

The probability distributions of the time spent in each state,
integrated between the initial time and an arbitrary time t , are
given by

Pn(τ ) ∝
∫ t−Nτ

t ′=0
pn(t ′ + Nτ,t ′)Nn(t ′ + Nτ,t ′) dt ′. (18)

Inserting the expression given by Eq. (14) for Nn(t,t ′) and the
definition of pn(t,t ′) given by Eq. (4) in Eq. (18) we obtain the
power-law distributions

P0(τ ) ∝ (1 + τ )−b0[2+(1−λε̂)]−1 ,
(19)

Pn(τ ) ∝ (1 + τ )−(n+1)b1−1 for n � 1.

The phase diagram of the model is summarized in Fig. 8.
We can distinguish between three phases.

(1) Region (I): The stationary region b1 > 0.5, b0 > (2λ −
1)/(3λ − 1), and λ > 0.5. In this region, the self-consistent
solution yields α = 0. The transition rates πmn(t) converge
rapidly to a constant value [see Fig. 9 for a comparison
between numerics and analytics for π10(t)] and the system
reaches a stationary state. In Fig. 10 we compare the analytical
solution given by Eqs. (19) with the numerical simulations in

FIG. 8. (Color online) Phase diagram of the general model with
formation of groups of arbitrary size. The region behind the green
surface corresponds to the stationary phase [i.e., region (I) with λ >

0.5, b1 > 0.5, and b0 > 2λ−1
3λ−1 ]. The region in front of the green surface

and above the blue one [region (II)] corresponds to a nonstationary
system with decaying transition rates. Strong finite size effects with
a temporary formation of a large cluster are observed in the region
below the blue surface [i.e., region (III) with λ < 0.5].

the stability region, finding perfect agreement. As predicted
by Eqs. (19), Pn(τ ) decays faster as n increases: larger groups
are less stable than smaller ones, as found in the empirical
data sets. Figure 11 displays the distribution PAB−AC(τ ) of
time intervals between the start of two consecutive contacts of
a given individual, which is as well stationary and displays a
power-law behavior.The average coordination number 〈n〉 is
given by

〈n〉 = π10

2λ

∑
n�1

n(n + 1)

(n + 1)b1 − 1

(
1 − λ

λ

)n−1

, (20)

where the detailed calculation and the value of π10(t) are given
in Appendix B. This expression diverges as λ → 0.5. In Fig. 12

FIG. 9. (Color online) Transition rate π10(t) for the model in the
presence of groups of any size for different parameters λ, b0, b1

corresponding to the different regions of the phase diagram. The
straight lines correspond to the analytical predictions. The simulation
is performed with N = 1000 agents for a number of time steps Tmax =
N × 104. The data are averaged over 10 realizations.
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FIG. 10. (Color online) Distribution Pn(τ ) of durations of groups
of size n + 1 in the stationary region. The simulation is performed
with N = 1000 agents for a number of time steps Tmax = N × 105.
The parameter used are b0 = b1 = 0.7, λ = 0.8. The data are
averaged over 10 realizations. The dashed lines correspond to the
analytical predictions Eqs. (19).

we show the perfect agreement between the result of numerical
simulations of 〈n〉 and the theoretical prediction.

(2) Region (II): Nonstationary region b1 < 0.5 or b0 <

(2λ − 1)/(3λ − 1), and λ > 0.5. The dynamics in this region
is nonstationary and the transition rate is decaying with time
as a power law (as shown in Fig. 9 where we report π10(t)
as a function of t). Nevertheless, the distributions of lifetimes
of groups of various sizes Pn(τ ) and of intercontact times
PAB−AC(τ ) remain stationary. These distributions are shown
in Figs. 13 and 11. In this region the average coordination
number in the limit t/N 
 1 remains small, even as λ → 0.5.
In particular, from the mean-field solution of the dynamics (see
Appendix B) the theoretical solution of the model predicts that
for λ > 0.5 and t → ∞

〈n〉 = 1 for α = 1 − 2b1 (21)

FIG. 11. (Color online) Distribution of time intervals between
successive contacts of an individual for λ = 0.8, b0 = 0.7, and
b1 = 0.3 and 0.9. The simulation is performed with N = 104 for
a number of time steps Tmax = N × 105. The data are averaged over
10 realizations.

FIG. 12. (Color online) Average coordination number 〈n〉 vs λ for
b0 = b1 = 0.7. The simulation is performed with N = 2000 agents
for a number of time steps Tmax = N × 103. 〈n〉 is computed in the
final state over 30 realizations. The solid line indicates the theoretical
prediction given by Eq. (20).

and

〈n〉 = 0 for α = 1 − b0
3λ − 1

2λ − 1
. (22)

Figure 14 shows the agreement of this predicted behavior with
simulation results for several values of b0 and b1 and λ = 0.7.
In this region, as λ → 0.5 with fixed b0 and b1, we have
α = 1 − 2b1 and 〈n〉 → 1. Therefore no diverging behavior is
observed.

(3) Region (III): Strong dependence on the number of
agents N and nonstationary dynamics λ < 0.5. In this region
the self-consistent assumption given by Eq. (16) breaks down,
and we find numerically that the average coordination number
〈n〉 strongly depends on the number of agents N and on time. In
order to give a typical example of the corresponding dynamical
behavior, Fig. 15 displays 〈n〉 as a function of time for two
single realizations of the model corresponding to two different
values of N . Interestingly, the distributions of lifetimes of

FIG. 13. (Color online) Distribution Pn(τ ) of durations of groups
of size n + 1 in the nonstationary region [region (II)]. The simulation
is performed with N = 1000 agents for a number of time steps Tmax =
N × 105. The parameter used are b0 = 0.3 and b1 = 0.7, λ = 0.8. The
data are averaged over 10 realizations. The dashed lines correspond
to the analytical predictions Eqs. (19).
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FIG. 14. (Color online) Average coordination number 〈n〉 as a
function of time in Region (II) of the phase diagram for different
values of the parameters λ, b0, and b1. The data are in very good
agreement with the theoretical expectations given by Eqs. (21)
and (22). The simulations are performed with N = 1000 agents for
a number of time steps Tmax = N × 104. The data are averaged over
10 realizations.

groups of various sizes Pn(τ ) remain stationary even in this
parameter region (not shown).

C. Aggregated networks

In the previous paragraphs we have shown how our
modeling framework produces dynamical properties of the
interactions between agents that yield broad distributions
of contact and intercontact times. In order to understand
the structure of the resulting interaction networks at coarser
temporal resolutions, it is as well interesting to investigate the
properties of the aggregated networks constructed as in Sec. II.
Given a starting time t0 and a temporal window 	T the nodes
of these networks are the agents and a link is drawn between
two agents whenever they have been in contact between t0 and
t0 + 	T , with a link weight given by the total time during
which they have interacted in [t0,t0 + 	T ]. As in Sec. II, the

FIG. 15. (Color online) Average coordination number 〈n〉 for
λ = 0.2, b0 = b1 = 0.7. The simulations of a single realization are
performed with N = 250 and N = 500 agents, respectively, for a
number of time steps Tmax = N × 105.

degree ki of an agent i is given by the number of distinct agents
with whom i has been in contact in [t0,t0 + 	T ], while its
strength si is the sum of the interaction times with other agents,
and the participation ratio Y2(i) quantifies the heterogeneity of
the times spent by i with these other agents.

As an exhaustive exploration of the aggregated networks
and of how their properties depend on the model’s parameter
would be tedious, we simply report in Fig. 16 the properties of
aggregated networks for increasing window lengths 	T and
for two sets of parameters. Some properties are qualitatively
similar to the empirically observed networks. In particular, the
degree distributions are peaked around an average value that
increases with 	T . As time passes each agent encounters
more and more distinct other agents, and the distribution
P (k) globally shifts towards larger degrees. The links weights
distributions are broad and extend to larger values as 	T

increases. Some other properties seem to depend strongly on
the model’s parameters. In particular, the average strength of
nodes of degree k, and the average participation ratio of nodes
of degree k, can have shapes rather different from the empirical
ones. Moreover, the time window lengths 	T on which the
aggregated network remains sparse are rather restricted.
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FIG. 16. (Color online) Aggregated networks’ characteristics for
the model with constant number of agents (N = 250), for time
windows 	T of increasing lengths, and two sets of parameters:
(b0, b1, λ) = (0.55, 0.8, 0.9) (a, b, c, d) and (0.7, 0.7, 0.8) (e, f, g, h).
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IV. EXTENSIONS OF THE MODEL

A. Heterogeneous model

In the previous section we have assumed that all the agents
have the same tendency to form a group or to leave a group,
that is, the probabilities pn do not depend on the agent
who performs a status update. Real social systems display
however additional complexity since the social behavior of
individuals may vary significantly across the population. A
natural extension of the model presented above consists
therefore of making the probabilities pn dependent on the agent
who is updating his/her state. To this aim we assign to each
agent i a parameter ηi that characterizes his/her propensity
to form social interactions. In real networks this propensity
will depend on the features of the agents [65]. In the model
we assume that this propensity, that we call “sociability”, is
a quenched random variable, which is assigned to each agent
at the start of the dynamical evolution and remains constant,
and we assume for simplicity that it is uniformly distributed
in [0,1]. In this modified model the probability pi

n(t,t ′) that
an agent i with coordination number n since time t ′ changes
his/her coordination number at time t is given by

pi
0(t,t ′) = ηi

1 + (t − t ′)/N
,

(23)

pi
n(t,t ′) = 1 − ηi

1 + (t − t ′)/N
for n � 1.

In this setup the parameters (b0,b1), which did not depend
on i in Eq. (4), are replaced for each agent i by the values
(ηi,1 − ηi): a large ηi corresponds to an agent who prefers not
to be isolated.

The agents’ heterogeneity adds a significant amount of
complexity to the problem, and we have reached an analytical
solution of the evolution equations only in the case of pairwise
interactions (λ = 1). The general case can be studied through
numerical simulations as we discuss at the end of this section.

Let us denote by N0(t,t ′,η) the number of isolated agents
with parameter ηi ∈ [η,η + 	η] who have not changed their
state since time t ′. Similarly, we indicate by N1(t,t ′,η,η′)
the number of agents in a pair joining two agents i and
j with ηi ∈ [η,η + 	η],ηj ∈ [η′,η′ + 	η], who have been
interacting since time t ′. The mean-field equations for the
model are then given by

∂N0(t,t ′,η)

∂t
= −2

N0(t,t ′,η)

N
p0(t,t ′,η)

+π
η

10(t)δtt ′,

∂N1(t,t ′,η,η′)
∂t

= −N1(t,t ′,η,η′)
N

[p1(t,t ′,η) + p1(t,t ′,η′)]

+π
ηη′
01 (t)δtt ′ . (24)

With the expression for pn(t,t ′,η) given by Eqs. (23) we find

N0(t,t ′,η) = π
η

10(t ′)
(

1 + t − t ′

N

)−2η

,

(25)

N1(t,t ′,η,η′) = π
ηη′
01 (t ′)

(
1 + t − t ′

N

)−2+η+η′

.

The transition rate π
η

10 gives the rate at which agents with

ηi ∈ [η,η + 	η] become isolated, and π
ηη′
01 is the rate at which

pairs ij with ηi ∈ [η,η + 	η],ηj ∈ [η′,η′ + 	η] are formed.
These rates can be expressed as a function of N0(t,t ′,η) and
N1(t,t ′,η,η′) according to

π
η

10(t) =
∑
t ′,η′

N1(t,t ′,η,η′)
N

[p1(t,t ′,η) + p1(t,t ′,η′)],

(26)

π
ηη′
01 (t) = 2

∑
t ′,t ′′

N0(t,t ′,η)N0(t,t ′′,η′)
C(t)N

p0(t,t ′,η)p0(t,t ′′,η′),

where C(t) is a normalization factor given by

C(t) =
t∑

t ′=1

∑
η

N0(t,t ′,η)p0(t,t ′,η). (27)

To solve this problem with the same strategy used for the model
without heterogeneity we make the self-consistent assumption
that the transition rates are either constant or decaying as a
power law with time:

π
η

10(t) = 	ηπ̃
η

10

( t

N

)−α(η)
, (28)

π
ηη′
01 (t) = 	η	η′π̃ ηη′

01

( t

N

)−α(η,η′)
. (29)

In Appendix C we give the details of the self-consistent
calculation, which leads to the analytical prediction

α(η) = max

(
1 − 2η,η − 1

2

)
,

(30)
α(η,η′) = α(η) + α(η′) ,

and the value of π̃
η

10 is given by

π̃
η

10 =
{

ρ(η)
B(1−2η,2η) η � 1

2
ρ(η)

B(η− 1
2 ,1)

η � 1
2

. (31)

In order to check the validity of our mean-field calculation,
we study the probability distribution P0(τ ) of the durations of
intercontact periods and the distribution P1(τ ) of the durations
of pairwise contacts which are given when averaged for a total
simulation time Tmax by

P0(τ ) ∝
∫ Tmax−Nτ

0
dt

∫ 1

0
dηπ

η

10(t)η(1 + τ )−2η−1,

P1(τ ) ∝
∫ Tmax−Nτ

0
dt

∫ 1

0
dη

∫ 1

0
dη′πηη′

01

× (2 − η − η′)(1 + τ )η+η′−3, (32)

where ρ(η) is the probability distribution of η. In Fig. 17
we compare the probabilities of intercontact time P0(τ ) and
contact time P1(τ ) averaged over the full population together
with the numerical solution of the stochastic model, showing
a perfect agreement. In Fig. 18 moreover, we show the
distributions P

η

1 (τ ) of the contact durations of agents with
ηi ∈ (η,η + 	η). Power-law behaviors are obtained even at
fixed sociability, and the broadness of the contact duration
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FIG. 17. (Color online) Distributions of times spent in state 0 and
1 for the heterogeneous model. The simulation is performed with
N = 104 for a number of time steps Tmax = N × 105. The data are
averaged over 10 realizations. The symbols represent the simulation
results (circles for n = 0 and squares for n = 1). The dashed lines
represent our analytical prediction. In order to improve the readability
of the figure we have multiplied P1(τ ) by a factor of 10−1.

distribution of an agent increases with the “sociability” of the
agent under consideration.

As previously mentioned, the model can be extended by
allowing the formation of large groups, by setting λ < 1. The
results of numerical simulations performed for a particular
value of λ are shown in Fig. 19. Power-law distributions of
the lifetime of groups are again found and, as in the basic
model without heterogeneity of the agents, larger groups are
more unstable than smaller groups, as Pn(τ ) decays faster if
the coordination number n is larger. As the parameter λ → 0.5
there is a phase transition and the average coordination number
diverges. In Fig. 20 we show that 〈n〉 ∝ (λ − 0.5)−δ with δ = 1
within the statistical fitting error, similarly to what happens
in the homogeneous case. Overall the main features of the
model are therefore robust with respect to the introduction of
heterogeneity in the agents’ individual behavior.

FIG. 18. (Color online) Distribution P
η

1 (τ ) of contact durations of
individuals with sociability η in the pairwise heterogeneous model.
The simulations are performed with N = 1000 agents and Tmax =
N × 105 time steps. The data are averaged over 10 realizations.
The data decays as a power law P

η

1 (τ ) ∝ τ−ξ (η), and we report the
exponents ξ (η) as a function of η in the inset.

FIG. 19. (Color online) Distribution Pn(τ ) of the durations of
groups of size n + 1 in the heterogeneous model with formation
of groups of any size. The data are shown for simulations of N =
1000 agents performed over Tmax = N × 105 time steps and λ = 0.8,
averaged over 10 realizations.

B. Model with variable number of agents

When measurements on the proximity or face-to-face
contacts of individuals are performed, the number of agents
present on the premises typically fluctuates. Moreover, the
activity of the agents fluctuates as well, because for instance
of day/night patterns or periods of coffee/lunch breaks in a
conference. This is in particular the case in the data sets
described in Sec. II.

In this subsection we use these simple remarks to put
forward an extension of our model of interacting agents that
mimics in a more realistic way the data gathering process,
and that can be used to produce more realistic artificial data
sets. The main point is to consider, instead of a population
with a fixed number of agents N , an open system leaving
the possibility for agents to leave or enter it. To this aim we

FIG. 20. (Color online) Average coordination number 〈n〉 of the
agents in the heterogeneous case as a function of λ. The solid
line indicates the best fit with 〈n〉 ∝ (λ − 0.5)−δ with δ = 0.996 in
agreement with the exponent −1 within the statistical uncertainty.
The data correspond to simulations of N = 500 agents performed
over Tmax = N × 103 time steps. The data are averaged over 10
realizations.
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simply introduce for each agent the possibility to be in a state
called “absent”. In this absent state agents may be isolated or
not, but the measurement infrastructure is not able to know it.
Statistics on the time spent by an agent in a given state, or of the
duration of contact and intercontact times, are thus obtained
by considering only “present” agents. Overall, the model’s
dynamics is as described in Sec. III, with parameters b0, b1, λ,
with the addition that at each time step, absent agents can enter
the system, or agents can leave the system and become absent.
Various rules could be thought of, but for the sake of simplicity
we consider that an agent i entering the system become isolated
(ni → 0), and that agents of any state n can leave the system
(one could also allow absent agents to directly enter a group,
restrict the possibility to leave to isolated agents, etc.). In this
framework two important points have to be considered.

(1) The agents who leave the system can re-enter it: the
global number of agents (absent and present) is constant. We
will see that a setup in which an agent who has left the premises
cannot re-enter the system leads to an interesting modification
of the system’s properties.

(2) The decision for an agent to leave or enter the system
can simply be given by constant probabilities. In the resulting
dynamics, the number of agents who are present is simply
fluctuating around a constant value that depends on these
probabilities. Another possibility consists of fixing at each
time step the number of present agents N (t). The imposed
N (t) can be a given function of time such as for instance a
periodic signal (possibly with superimposed stochastic noise)
to mimic circadian rhythms. To mimic a realistic process, N (t)
can also be given by an empirical time series from a real data
set, as we now consider [note that the total number N of agents
has to be at least equal to maxt N (t)].

In order to impose the number of agents present in the
system at each time, we first construct the empirical time
series. To this aim various time steps can be used. We consider
the natural temporal resolution obtained in SocioPatterns
deployments, that is, 20 s, but other resolutions could be chosen
as well. Considering that agents act independently and make
choices in a simultaneous way we then identify the empirical
time step with one attempted status update per present agent.
After each series of N (t) attempted status updates (according
to the rules described in Sec. III), we check if the number of
present agents is smaller or larger than the desired N (t + 1).
If it is larger, we remove at random agents (i.e., put them in
the absent state) in order to match the desired N (t + 1). If it
is smaller, absent agents are introduced into the system and
put into the isolated state. The system evolves in this way for
a number of steps equal to the number of time steps of the
empirical data set, and we monitor the time evolution of the
number of contacts between agents, and of agents in each state,
as a function of time. We also note that this model can in fact
be simulated for arbitrarily long times by simply repeating the
imposed time series N (t).

Figure 21 compares the resulting activity patterns with the
empirically monitored activity for two values of the parameter
set (b0,b1,λ), when N (t) is taken from the data gathered at the
scientific conference ESWC described in Sec. II. We note that,
although only N (t) is imposed to be exactly the same in the
model and in the data, it is possible to tune the parameters so
that the other measures (number of isolated nodes, of links,
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FIG. 21. (Color online) Timelines of the number of (from top to
bottom) nodes and links in the instantaneous network (top), isolated
nodes, groups of two nodes, groups of three nodes. The left column
corresponds to the model with N (t) imposed from the ESWC data
set and two sets of parameters, namely (b0, b1, λ) = (0.55, 0.8, 0.9)
(black curves) and (0.7, 0.7, 0.8) (red curves), the right column to
the real ESWC data set.

of triangles) are simultaneously similar to real data. Figure 21
illustrates that the system’s dynamics is highly nonstationary.
As shown in [22], empirically observed distributions of contact
durations are however stationary. We check that this is also the
case in our model by measuring the distributions of contact
durations and of time spent by agents in each state in various
time windows of different lengths, during which N (t) strongly
varies. As shown in Figs. 22 and 23, for a given parameter set
(b0,b1,λ), these distributions are broad, as in the original model
with constant number of agents, and do not depend strongly
on the imposed N (t), and can be superimposed from one time
window to the next. As in the real data, the only differences
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FIG. 22. (Color online) Distributions of contact durations for
N (t) given by the ESWC data set and for the model with constant
N for various time windows. Parameter values are (b0, b1, λ) =
(0.55, 0.8, 0.9).
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FIG. 23. (Color online) Distributions of the time spent in various
states for N (t) given by the ESWC data set, and for the model with
constant N . Parameter values are (b0, b1, λ) = (0.55, 0.8, 0.9).

come from different cutoffs stemming from different statistics
in the different time windows.

As for the study of empirical data (see Sec II), we also
construct and study the aggregated networks of contacts
between agents on different time windows. Figure 24, to
be compared with Fig. 16 of Sec. III, illustrates the basic
properties of these networks, which are very similar to the
empirical ones shown in Fig. 3 of Sec. II. With respect to the
case of constant N of Fig. 16, the degree distributions shift
more slowly toward large degrees, and remain broader so that
the average strength of nodes of degree k [〈s(k)〉] and the
average participation ratio of the nodes of degree k [〈ky2(k)〉]
keep more realistic shapes.

We finally illustrate the versatility of the modeling frame-
work by considering the case in which an agent who leaves the
network cannot re-enter it at future times. Such an additional
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FIG. 24. (Color online) Aggregated networks’ characteristics for
N (t) given by the ESWC time series and b0 = b1 = 0.7, λ = 0.8 for
various time window lengths. Top left: degree distributions; top right:
links’ weights distributions; bottom left: average strength 〈s(k)〉 of
nodes of degree k; bottom right: average participation ratio 〈ky2(k)〉
of nodes of degree k.

FIG. 25. (Color online) Example of aggregated network of 157
nodes obtained by imposing the timeline of the number of agents
present at each time during a given day of data gathered during a
SocioPatterns deployment at the Science gallery in Dublin [23]. Here
(b0, b1, λ) = (0.55, 0.8, 0.9) and an agent who leaves the network
cannot re-enter it. The nodes are colored and positioned according to
the entry time of the corresponding visitor, as in [23], from red (top
right) to green (right) to blue (left) to violet (top left). The elongated
shape of the network is similar to the one observed empirically in [23].

assumption can be considered to model environments in which
there is a flux of individuals, such as a museum. As shown in
[23], the daily aggregated network of the interactions between
individuals is then not a small world, as visitors entering the
museum at very different times do not encounter each other.
Figure 25 exemplifies how this kind of configuration can also
be reproduced by our modeling framework by simply imposing
the empirically measured number of visitors present on the
premises, N (t), at each time step, and that an agent leaving
the system does not re-enter it. The resulting network has an
elongated shape whose topology is dictated by the timeline of
the visits, exactly as in [23], and is strongly different from the
case in which agents can leave and re-enter the system, as in a
conference.

V. CONCLUSION

In this paper we have studied with analytical and numer-
ical means an agent-based model aimed at describing the
dynamics of human interactions in social gatherings, as can
be measured by recent technological wearable sensors that
measure proximity patterns of individuals. This model is based
on simple mechanisms in order to be easily implementable
and extended through the introduction of more realistic and
involved ingredients. The resulting distributions of contact
durations and of intercontact times can be either narrowly
or broadly distributed. A detailed study of the latter case,
obtained by a mechanism reminiscent of preferential attach-
ment, reveals moreover interesting nonequilibrium transitions
between stationary and nonstationary phases.

We have illustrated the versatility of the model by introduc-
ing two variations. In the first one, agents have a priori different
propensities to interact in order to mimic the heterogeneity in
the social behaviors of individuals. We have shown that the
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phenomenology of the model is then conserved, with broad
distributions of contact times, intercontact times, and lifetimes
of groups. In the second extension of the model, the population
size can fluctuate. In this case the population size can be taken
as input of the model, as given by an empirical time series
coming from a real-world data set. We have then shown that
the model produces nonstationary dynamical networks whose
features are close to the empirically observed ones.

The present modeling framework, and in particular its
extension to a varying population, opens various perspectives.
For instance, we have considered indistinguishable agents who
enter and leave the system at random times. It would however
be possible to impose for each agent the time intervals in
which he/she is present, which could be taken from real
data. Such a procedure would produce artificial data sets
that closely mimic the empirical timelines. Although this
would happen at the cost of a rather large input of empirical
information, it would produce data sets that retain the details
of the presence properties of individual agents of the empirical
data sets, but with tunable contact and intercontact time
distributions. Another interesting outcome of the model with
varying population size is that it makes it possible, starting
from an empirical data set that is by definition limited in
time, to create a dynamical network on arbitrarily long time
scales, with the same properties as the real one, by simply
repeating the time-series N (t) as many times as required. This
corresponds to an interesting way of creating a nonstationary
dynamical network, without having to repeat the real sequence
of contacts. On each new repetition of N (t) the model will
generate a new sequence of contacts.

The modeling framework we have presented, and the above-
mentioned perspectives, are particularly interesting in the
perspective of the study of dynamical processes on dynamical
networks. The ability to tune the networks’ properties is indeed
crucial to understanding how each of these properties affect
the dynamical processes. Generating artificial data sets that
are based on empirical ones, preserve a certain number of
their properties, modify others in a tunable way, and can be
extended to large sizes or long times, represents therefore a
very important step in such studies.
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APPENDIX A : SELF-CONSISTENT SOLUTION OF THE
PAIRWISE MODEL

In this section we give the details of the self-consistent
calculation that is able to solve for the mean-field dynamics of
the pairwise interaction model. As explained in the main text,
the rate equations Eqs. (5) for this model are solved together
with the definition of the transition rates π10(t) and π01(t) given
by Eqs. (7) by making the self-consistent assumption Eq. (8).

Inserting in the definition of π10(t) and π01(t) given by
Eqs. (7) the structure of the solution of the mean-field
dynamical Eq. (6) and the self-consistent assumption Eqs. (8),
we get

π10(t) = 2π̃01
b1

N

t−1∑
t ′=1

(
t ′

N

)−α1
(

1 + t − t ′

N

)−2b1−1

. (A1)

For large N we can evaluate (A1) by going to the continuous
limit. Therefore in Eq. (A1) we substitute the sum over time
steps t ′ with an integral over the variable y ′ = t ′/N . The
transition rate π10(y) = Nπ10(t), that is, the average number
of agents that shift from state 1 → 0 in the unit time y = t/N ,
can be evaluated by the following integral:

π10(y) = 2Nπ̃01b1y
−α1−2b1

∫ 1

0
x−α(1 + y−1 − x)−2b1−1dx

= 2Nπ̃01b1y
−α1f (α1,2b1 + 1,y), (A2)

where f (a,b,y) is given by

f (a,b,y) = y−(b−1)
∫ 1

0
x−a(1 + y−1 − x)−bdx. (A3)

The asymptotic expansion of f (a,b,y) for y 
 1 is given by

f (a,b,y) = 1

b − 1
+ B(1 − b,1 − a)y1 − b + O

(
1

y
+ y−b

)
,

(A4)

where B is the β function. Inserting (A4) into (A2) we get

π10(y) = Nπ̃01y
−α1 . (A5)

This expression proves that the self-consistent assumption
given by Eq. (8) is valid. In particular, since we have assumed

π10(y) = Nπ̃10y
−α0π01(y) = Nπ̃01y

−α1 ,

these relations are consistent with the result of Eq. (A5)
obtained in the limit N → ∞,y 
 1 if

α0 = α1 = α,
(A6)

π̃10 = π̃01 = π̃ .

In order to find the expression for α and π̃ we use the
conservation of the total number of agents. Indeed we have∑

t ′
[N0(t,t ′) + N1(t,t ′)] = N. (A7)

Using Eqs. (6), (A5), and (A6) and substituting in Eq. (A7)
the sum over t ′ with an integral over the variable x = y ′/y, we
get in the limit N 
 1

Nπ̃y−α

[
y−(2b0−1)

∫ 1

0
x−α(1 + y − x)−2b0dx

+ y−(2b1−1)
∫ 1

0
x−α(1 + y − x)−2b1dx

]
= N, (A8)

which yields

π̃y−α[f (α,2b0,y) + f (α,2b1,y)] = 1. (A9)
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Finally using the asymptotic expansion Eq. (A4) we get the
solution given by Eqs. (9) that we rewrite here for convenience

α = max (0,1 − 2b1,1 − 2b0) ,

π̃ = sin [2π min (b0,b1)]

π
[1 − δ(α,0)]

+ (2b0 − 1)(2b1 − 1)

2(b0 + b1 − 1)
δ(α,0). (A10)

APPENDIX B : SELF-CONSISTENT SOLUTION OF THE
GENERAL MODEL

In this Appendix we solve the general model in which
groups of different size are allowed and the parameter λ

is arbitrary. The strategy that leads to the solution of the
mean-field equation of this dynamics is essentially the same
as in the pairwise model but a new phase transition occurs
when λ < 0.5. The dynamical Eqs. (12) can be solved as
a function of the variables πmn(t) by Eqs. (14) and (16)
assuming self-consistently that that ε(t) = ε̂ in the large time
limit. In order to find the analytic solution of the mean-field
dynamics it therefore important to determine the relations
between the transition rates πmn(t) and the variables Nn(t,t ′).
These relations are given by

π1,0(t) = 2λ
∑

t ′

N1(t,t ′)
N

p1(t,t ′),

πn,0(t) = λ
∑

t ′

Nn(t,t ′)
N

p1(t,t ′), n � 2,

πn+1,n(t) = (n + 1)λ
∑

t ′

Nn+1(t,t ′)
N

p1(t,t ′), i � 1,

(B1)

π0,1(t) = 2
∑

t ′

N0(t,t ′)
N

p0(t,t ′),

π0,n(t) = (1 − λ)
∑

t ′

Nn−1(t,t ′)
N

p1(t,t ′), n � 2,

πn,n+1(t) = (n + 1)(1 − λ)
∑

t ′

Nn(t,t ′)
N

p1(t,t ′), n � 1.

The coupled Eqs. (14), (16), and (B1) can be solved by making
the additional self-consistent assumptions on the transition
rates πmn(t) given by

πmn(y) = Nπ̃mny
−αmn , (B2)

where y = t/N and πmn(y) = Nπmn(t).
Applying the same technique as in Appendix A we can

prove that all the exponents αm,n are equal and given by
αm,n = α. Performing straightforward calculations we get the
following relations:

π̃n,0(n + 1) = λ[π̃n−1,n + π̃n+1,n + π̃0,n] for n � 2,

π̃1,0 = λ[π̃1,0 + π̃2,1],

π̃n,0 = (1 − λ)π̃n−1,0 + λπ̃n+1,0 for n � 3, (B3)

π̃2,0 = 1 − λ

2
π̃1,0 + λπ̃3,0,

π̃1,0 = λπ̃1,0 + 2λπ̃2,0.

Therefore if the self-consistent assumption is valid, the number
of agents Nn(t,t ′) in state n since time t ′ is given at time t by

N0(t,t ′) = π1,0(t ′)
K

(
1 + t − t ′

N

)−b0[2+(1−λ)ε̂]

,

N1(t,t ′) = π1,0(t ′)
λ

(
1 + t − t ′

N

)−2b1

, (B4)

Nn(t,t ′) = (n + 1)πn,0(t ′)
λ

(
1 + t − t0

N

)−(n+1)b1

,

where the variable K is defined by

K = π̃1,0∑
n�1 π̃n,0

. (B5)

Using the relations given by Eqs. (B3) we find

π̃n,0 = 1

2
π̃1,0

(
1 − λ

λ

)n−1

for n � 2. (B6)

Substituting Eq. (B6) in the definition of K [Eq. (B5)] we find
that K is only defined for λ > 0.5. For λ < 0.5 the summation
in Eq. (B5) is in fact divergent and there is a breakdown of
the self-consistent assumption Eq. (B2). For λ > 0.5 we can
perform the summation and we get

K = 2(2λ − 1)

3λ − 1
,

(B7)

ε̂ = 1

2λ − 1
.‘

Finally the value of α and π̃1,0 are found by enforcing the
conservation law of the number of agent N ,

t∑
t ′=1

∑
n

Nn(t,t ′) = N. (B8)

Therefore, in the large y limit y 
 1 we get the solution

α = max

(
0,1 − b0

3λ − 1

2λ − 1
,1 − 2b1

)
. (B9)

The value of π̃1,0 depends on the value assumed by α.
(1) For α = 0 the value of π̃1,0 is given by

π̃1,0 =
[

1

2
(
b0 − 2λ−1

3λ−1

)
+ 1

2λ

∑
n�1

n + 1

(n + 1)b1 − 1

(
1 − λ

λ

)n−1 ]−1

. (B10)

(2) For α = 1 − b0
3λ−1
2λ−1 the value of π̃1,0 is given by

π̃1,0 = 2(2λ − 1)

3λ − 1

1

B
(
1 − b0

3λ−1
2λ−1 ,b0

3λ−1
2λ−1

) , (B11)

where B(a,b) indicates the β function.
(3) For α = 1 − 2b1 the value of π̃1,0 is given by

π̃1,0 = λ

B(1 − 2b1,2b1)
, (B12)

where B(a,b) indicates the β function.
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The average coordination number is defined by

〈n〉 =
t∑
t ′

N∑
n=0

nNn(t,t ′). (B13)

Substituting Eqs. (B4) to the definition of 〈n〉 [Eq. (B13)] and
applying the same transformation in Eq. (A2) to evaluate the
integral over t , we get

〈n〉 =
N∑

n=1

π̃n0

λ
(n + 1 − δn,1)y−αf [α,(n + 1)b1,y], (B14)

where y = t/N and f (a,b,y) is defined in Eq. (A3). Substi-
tuting the asymptotic expansion Eq. (A4) into (B14) we get

〈n〉 =
N∑

n=1

π̃n0

λ
(n + 1 − δn,1)y−α

[
1

(n + 1)b1 − 1

+B(1 − (n + 1)b1,1 − α)y1−(n+1)b1

]
. (B15)

where B(a,b) indicates the β function. In the asymtotic limit
y → ∞, using Eqs. (B6), (B10)–(B12), and counting only the
leading terms in Eq. (B15) to compute 〈n〉 for different value
of α, we can recover Eqs. (20)–(22).

APPENDIX C : SELF-CONSISTENT SOLUTION OF THE
HETEROGENEOUS MODEL FOR λ = 1

In this Appendix we show the self-consistent calculations
that solve analytically the heterogeneous model with pairwise
interactions.

We assume self-consistently that the transition rate π
η

10(t)

and π
η,η′
01 decay in time as a power law, that is, we assume

π
η

10(t) = 	ηπ̃
η

10

( t

N

)−α(η)
,

(C1)

π
ηη′
01 (t) = 	η	η′π̃ ηη′

01

( t

N

)−α(η,η′)
.

Inserting this self-consistent assumption and the structure of
the solution given by Eqs. (25) in Eqs. (26) we can evaluate
π̃ η,η′

in the limit N → ∞. Therefore we get

π̃
ηη′
01 y−α(η,η′) = 2N

C(y)
ηπ̃

η

10y
−α(η)f [α(η),2η + 1,y]

× η′π̃ η′
10y

−α(η′)f [α(η′),2η′ + 1,y]. (C2)

where f (a,b,y) is given by

f (a,b,y) = y−(b−1)
∫ 1

0
x−a(1 + y−1 − x)−bdx. (C3)

The asymptotic expansion to f (a,b,y) for y 
 1 is given by

f (a,b,y) = 1

b − 1
+ B(1 − b,1 − a)y1 − b + O

(
1

y
+ y−b

)
,

(C4)

where B is the β function. Inserting (C4) into (C2) we get in
the limit y 
 1

π̃
ηη′
01 y−α(η,η′) = N

2C(y)
π̃

η

10y
−α0(η)π̃

η′
10y

−α(η′). (C5)

Similarly, inserting (C1) into the definition of C(y) given by
Eq. (27) we get, in the limit y 
 1,

C(y) = N

2

∫ 1

0
y−α(η)π̃

η

10dη, (C6)

where we make use of the asymptotic expansion (C4). In the
limit y 
 1 the integral above can be calculated approximately
by the saddle point method if π̃

η

10 changes with η much slower
than y−α(η). Therefore we have

2C(y)

N
= π̃

η�

10y−γ , (C7)

where γ and η� are given by

γ = min
η

α(η),
(C8)

η� = argminηα(η).

By comparing both sides of Eq. (C5) and using Eq. (C7) we
get

π̃
ηη′
01 = 1

π̃
η�

10

π̃
η

10π̃
η′
10,

(C9)
α(η,η′) = α(η) + α(η′) + γ.

Finally, in order to fully solve the problem we impose the
conservation laws of this heterogeneous model. In particular,
the total number of agent with value ηi ∈ (η,η + 	η) is given
by the following relation:∑

t ′

[
N0(t,t ′,η) +

∑
η′

N1(t,t ′,η,η′)
]

= N	(η). (C10)

Inserting the self-consistent anzatz Eq. (C1) for π01(t) and
Eq. (C5) into Eq. (C10) we get, in the continuous limit
approximation valid for N 
 1,

π̃
η

10y
−α(η) =

{
θ (2η − 1)

2η − 1
+ θ (1 − 2η)

×B[1 − 2η,1 − α(η)]y1−2η + I (η)

}−1

, (C11)

where

I (η) = N

2C(y)

∫ 1

0

{
θ (1 − η − η′)

1 − η − η′ + θ (η + η′ − 1)

×B[η + η′ − 1,1 − α(η′)]yη+η′−1

}

×π
η′
10y

−α(η′)dη′. (C12)

We compute I (η) defined in Eq. (C12) by counting the leading
term only. Therefore we find

α(η) = max(0,1 − 2η,η − 1 + γ + D) (C13)

with D given by
D = max

η
[η − α(η)]. (C14)

Solving the Eqs. (C13) and (C14) we get γ = 0 and D = 1
2

and η� = 1/2. Therefore we can determine the exponent α(η)
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and α(η,η′) that are given by

α(η) = max

(
1 − 2η,η − 1

2

)
,

(C15)
α(η,η′) = α(η) + α(η′).

Moreover the constants π̃
η

10 are given, in the limit N 
 1 and
y 
 1, by

π̃
η

10 =
{

ρ(η)
B(1−2η,2η) η � 1

2
ρ(η)

B(η− 1
2 ,1)

η � 1
2 .

(C16)

Solving equation (C18), let γ + D � 1
2 , then

α(η) =
⎧⎨
⎩

1 − 2η η � 1
2

0 1
2 � η � 1 − γ − D

η − 1 + γ + D η � 1 − γ − D

(C17)

and

η − α(η) =
⎧⎨
⎩

3η − 1 η � 1
2

η 1
2 � η � 1 − γ − D

1 − γ − D η � 1 − γ − D

(C18)

obviously γ = 0 and D is reached either at η = 1
2 or η =

1 − γ − D, so

D = max

(
1

2
,1 − D

)
. (C19)

The only solution to the above expression is D = 1
2 . Similarly,

for γ + D � 1
2 ,

α(η) =
{

1 − 2η η � 2−γ−D

3

η − 1 + γ + D η � 2−γ−D

3 ,
(C20)

η − α(η) =
{

3η − 1 η � 2−γ−D

3

1 − γ − D η � 2−γ−D

3 .
(C21)

Both γ and D are reached at η = 2−γ−D

3 , so

γ = 1 − 2(2−γ−D)
3 ,

D = (2 − γ − D) − 1.
(C22)
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[31] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani,
Proc. Natl. Acad. Sci. USA 101, 3747 (2004).

056109-17

http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1103/RevModPhys.80.1275
http://dx.doi.org/10.1103/RevModPhys.80.1275
http://dx.doi.org/10.1016/S0375-9601(02)01232-X
http://dx.doi.org/10.1103/PhysRevLett.104.218701
http://dx.doi.org/10.1103/PhysRevLett.104.218701
http://dx.doi.org/10.1103/PhysRevLett.88.128701
http://dx.doi.org/10.1103/PhysRevLett.88.128701
http://dx.doi.org/10.1073/pnas.0305684101
http://dx.doi.org/10.1073/pnas.0305684101
http://dx.doi.org/10.1103/PhysRevE.74.056108
http://dx.doi.org/10.1103/PhysRevLett.100.108702
http://dx.doi.org/10.1103/PhysRevLett.100.108702
http://dx.doi.org/10.1103/PhysRevLett.100.158701
http://dx.doi.org/10.1103/PhysRevLett.100.158701
http://dx.doi.org/10.1103/PhysRevE.77.016102
http://dx.doi.org/10.1016/j.comnet.2008.06.007
http://dx.doi.org/10.1073/pnas.0811113106
http://dx.doi.org/10.1073/pnas.0811113106
http://www.sociopatterns.org
http://dx.doi.org/10.1371/journal.pone.0011596
http://dx.doi.org/10.1016/j.jtbi.2010.11.033
http://dx.doi.org/10.1086/225469
http://dx.doi.org/10.1103/PhysRevLett.99.228701
http://dx.doi.org/10.1103/PhysRevE.79.066117
http://dx.doi.org/10.1038/nature05670
http://dx.doi.org/10.1038/nature05670
http://dx.doi.org/10.1103/PhysRevE.68.066102
http://dx.doi.org/10.1068/b32128
http://dx.doi.org/10.1073/pnas.0400087101


ZHAO, STEHLÉ, BIANCONI, AND BARRAT PHYSICAL REVIEW E 83, 056109 (2011)

[32] D. Brockmann, L. Hufnagel, and T. Geisel, Nature (London)
439, 462 (2006).

[33] D. Balcan, V. Colizza, B. Gonçalves, H. Hu, J. J. Ramasco,
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