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Scaling mobility patterns and collective movements: Deterministic walks in lattices
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Scaling mobility patterns have been widely observed for animals. In this paper, we propose a deterministic
walk model to understand the scaling mobility patterns, where walkers take the least-action walks on a lattice
landscape and prey. Scaling laws in the displacement distribution emerge when the amount of prey resource
approaches the critical point. Around the critical point, our model generates ordered collective movements of
walkers with a quasiperiodic synchronization of walkers’ directions. These results indicate that the coevolution
of walkers’ least-action behavior and the landscape could be a potential origin of not only the individual scaling
mobility patterns but also the flocks of animals. Our findings provide a bridge to connect the individual scaling
mobility patterns and the ordered collective movements.
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I. INTRODUCTION

Recently, the scaling properties in mobility patterns of
animals have attracted increasing attention [1]. The traditional
scenario about the “nearly random walks” of animals is now
challenged by the cumulated empirical observations, which in-
dicate heavy-tailed displacement distributions approximated to
a power-law form P (l) ∼ l−α . Examples include the foraging
process and daily movements of wandering albatrosses [2],
honeybees [3,4], spider monkeys [5], microzooplanktons [6],
marine predators [7], and so on. These widespread observa-
tions imply some general mechanisms underlying animals’
mobility patterns.

Interpretations of the animals’ mobility patterns can be
divided into two classes. One is the optimal search strategies
[8–11], which indicate that animals can maximize the search-
ing efficiency by using power-law movements. Another is the
deterministic walks (DW) [12–15], where a number of prey are
randomly distributed on a field and a walker will continuously
catch the nearest prey from the current position. Recent studies
introduced many real-life factors into the standard framework
of DW, such as olfactory-driven foraging [16] and complex
environment effects [17]. In addition, Kamimura and Ohira
[18] studied the group chasing-escaping process with active
targets, which displays many complex mobility behaviors,
such as the game of different moving strategies of chasers
and the self-organized spatial structures.

To uncover the origin of scaling properties in animal
mobility, we propose a variant DW model that takes into
account the regeneration of resources in a landscape and the
least-action movements. Our model can reproduce the power-
law distribution of displacements and the scaling behavior in
probability density of having moved a certain distance at a
certain time, agreeing well with the empirical observations.
In addition, our model generates ordered collective move-
ments of walkers with a quasiperiodic synchronization of
walkers’ directions, indicating that the coevolution of walkers’
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least-action behavior and the landscape could be a potential
origin of not only the individual mobility patterns but also the
population of flocks.

II. MODEL

Food resources in the real environment can regenerate
by themselves as the growth and propagation of plants
and prey, until reaching a natural limitation of abundance.
The maximization of foraging benefits and minimization of
costs (e.g., the least-action movements) usually underlie the
animals’ behavior. Our model takes into account these two
fundamental ingredients. The environment is represented by
two-dimensional N × N lattices with nonperiodic boundary
conditions (i.e., walkers cannot go across the boundary),
and each lattice has prey resource V (i,j ) [for the lattice at
coordinate (i,j )]. The maximum prey resource in each lattice
is set as a fixed value Vm. Different from the standard DW,
a more realistic case with multiple walkers (the number of
walkers is denoted by M) is considered in our model. The
updating rules about the landscape and walkers’ positions are
as follows.

(i) At each time step, each walker chooses the nearest lattice
with the maximum prey resource to occupy at the next time
step, and if there is more than one possible choice, the walker
will randomly select one (see Fig. 1). The movement is treated
as instantaneous, namely, the diversity of velocity is ignored.
The displacement (i.e., moving length) l is defined as the
geometric distance from the current occupied lattice to the
next occupied lattice, namely, l =

√
(x1 − x0)2 + (y1 − y0)2,

where the coordinates (x0,y0) and (x1,y1) denote the current
position and the next position of the walker, respectively.

(ii) The resource V in the current occupied lattice of the
walker is exhausted by the walker, namely, V ← 0.

(iii) For each lattice with V < Vm (currently not occupied
by a walker), the resource increases a unit at each time step
until V = Vm, representing the regeneration of prey resources.

(iv) When the number of walkers M > 1, walkers update
their positions with random order asynchronously according
to the above algorithms at each time step.
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FIG. 1. (Color online) Illustration of the movement of a walker
in three successive time steps, where the blue filled circle denotes the
current position of the walker and the white dashed circles denote all
the possible positions in the next time step. The values of V in lattices
are denoted by different shades of gray, with white for V = Vm and
black for V = 0.

Because the resource in each lattice regenerates with a fixed
speed and each walker consumes at most Vm resource at each
time step, we define r = MVm/S to express the ratio between
the total consumption of walkers and the total regeneration
speed of prey resource in the landscape, where S = N × N is
the area of the landscape. When r = 1, the consumption of prey
resource is equal to the regeneration speed, and the resource is
in a critical status. However, if r < 1, the system has redundant
resources. In our simulations, M and r are tunable parameters,
and the value of Vm is determined by Vm = rS/M . Given M

and r , the results of our model do not depend on the value of
Vm and thus are comparable.

Note that the movements in our model are not purely
“deterministic” when r < 1 or M > 1. This probabilistic
property comes from two sources: One is the random order
in updating walkers’ positions when M > 1; the other is that a
walker may have more than one choices for the next position.
Purely deterministic cases appear only when r = 1 and M = 1,
in which the landscape has only one lattice with Vm resource
and the walker has to periodically repeat its earlier trajectories.
In cases when r = 1 and M > 1, although it is possible that

FIG. 2. The trajectories of a walker in 5000 consecutive steps for
different r . Other parameters are M = 100 and N = 500.

FIG. 3. (Color online) (a) Move length distribution P (l) for
different r , where the inset shows the dependence between the
power-law exponent α and r . Other parameters are M = 100 and
N = 500. (b) P (l) for different M , where the inset shows the
dependence between α and M , and the blue line denotes the fitting
line with a slope of −0.192. Other parameters are r = 0.99 and
N = 500. The red dashed lines in the plots represent a power law
with an exponent of −2. All the data points are averaged over 100
independent runs, each of which includes 106 movements. The size
of the error bars in the insets is smaller than the data points.

walkers exchange their trajectories under the treatment with
random order, the visited time on each lattice is still strict
periodic if Vm is an integer.

III. MOVE LENGTH DISTRIBUTION

In our simulations, the size of the landscape is fixed as
N = 500. We assume the prey resource is full before a group
of animals comes into the habitat; thus, we set the initial prey
resource of each lattice to be Vm, and the initial positions
of walkers are randomly distributed in the landscape. Except
for the case of r = 1, our simulations show that the move
length distribution (MLD) becomes stable after the evolution
of S

(1.0−r)M time steps, so our statistics take into account the

walkers’ movement after S
(1.0−r)M time steps. When r = 1,

the number of lattices having maximum resource is equal to
the number of walkers M in the steady state. In this case,
each walker has to repeat its early trajectory or other walkers’
trajectories after the first S/M time steps (after that time, the
consumption equals regeneration), so our statistics take into
account the walkers’ movement after S/M time steps .

Figure 2 shows the trajectories of a walker for different r ,
where abundant long-range movements can be observed when
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FIG. 4. (Color online) (a) MLD in different time stages. Simula-
tions were run for r = 0.99, M = 500, and N = 500, where black
squares, green circles, and blue triangles stand for the stages starting
from initial time tini = 0, 5 × 104, and 2.5 × 105, respectively. The
time duration in each of the stages is 2000 steps. The parallel red
dashed lines denote the power law with a slope of −2.04, which
corresponds to the fitting value of the curve tini = 5 × 104. (b) MLD
for different landscape sizes N . Simulations were run for r = 0.99,
M = 100. The parallel red dashed lines denote the power law with a
slope of −2.18, which corresponds to the fitting value of the curve
N = 500. All the data points are averaged over 100 independent runs.

r approaches 1. The MLD P (l) for different r and M are
shown in Figs. 3(a) and 3(b), respectively. When r approaches
1, a scaling property of the move length distribution, say
P (l) ∼ l−α , can be observed. The analytical result for the MLD
is given in the Appendix, which agrees with the simulations. As
mentioned above, when r = 1, the trajectory is periodic, and
thus, at the last time step of a period, the walker returns to its
origin, corresponding to a generally long displacement with the
same order of the system size. Therefore, as shown in Fig. 3(a),
when r = 1, a peak appears at l ≈ N = 500. The dependence
between the power-law exponent α and the parameters r and
M are shown in the insets of Figs. 3(a) and 3(b), respectively.
Except for r = 1, α decreases monotonously with increasing
r . For example, when M = 100, α decreases from 3.3 to 2.2
when r changes from 0.80 to 0.99. This range of α covers
almost all the known real-world observations of MLD of
animals. This result indicates that the walker is more likely
to take long-range movement when the prey resource is not
rich enough, which is in accordance with the experiment on
the prey behavior of bumblebees [8] and also is supported by

FIG. 5. (Color online) (a) A typical ordered marching band of
walkers generated by our model when t = 60 335 (ψ = 0.60). The
red triangles and black arrows denote the current positions and
directions of walkers, respectively. The parameters are r = 0.99,
M = 500, and N = 500. (b) Enlargement of the front of the marching
band in the blue dashed square in (a).

the recent observation on the movements patterns of marine
predators [19]. Our result suggests that the animals living in
a habitat with abundant prey resource will not display scaling
property in their mobility.

As shown in the inset of Fig. 3(b), the relation between α and
M can be well captured by the logarithmic form α ∼ − ln M .
The case of M = 1 corresponds to a solitary animal living
in a fixed territory, while M > 1 represents the case where
several animals share the prey resource in the same field. This
result indicates that the individuals in a large group are more
likely to make long-range movements when the resource is not
sufficiently rich.
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FIG. 6. The periodic varying of the order parameter ψ(t) at three
time periods with parameters r = 0.99, M = 500, and N = 500.

We also investigate the evolution process of MLD and the
effect of the size of the landscape. Although the collective
movements and varying patterns of the order parameter are
obviously different in the early, middle, and later stages (see,
for example, Fig. 6), the change in MLD is slight. As shown in
Fig. 4(a), the power-law parts of MLD in different time stages
are generally in parallel. After the evolution of S

(1.0−r)M time

steps (for r = 0.99, M = 500, and N = 500, S
(1.0−r)M = 5 × 104),

the MLD tends to be stable and is almost unchanged [see the
green circles and the blue triangles in Fig.4(a)]. Accordingly,
we set the initial time length as S

(1.0−r)M in our simulations.
When r → 1, the landscape size N mainly affects the cutoff
of MLD. As shown in Fig. 4(b), the cutoffs of MLD are close
to N , but the slopes of the power-law parts for different N are
generally the same, suggesting that the size N only limits the
long-range movements but rarely affects the scaling property
in the model.

IV. COLLECTIVE MOVEMENTS

To our surprise, collective movements are observed when
M is large and r is close to 1, where walkers may line up one or
several marching bands and walkers in the same marching band
have similar moving directions (approximately perpendicular
to the band). A typical example is shown in Fig. 5. Sometimes
over half of the walkers are in these marching bands. Marching
bands are not stable. They may suddenly emerge or disappear,
may grow larger or break into pieces.

We define an order parameter ψ(t) to measure the degree
of synchronization of walkers’ directions at time step t as the
following form [20]:

ψ(t) = | ∑ �vi(t)|∑ |�vi(t)| , (1)

where the velocity vector �vi(t) = (xt+1 − xt )x̂ + (yt+1 − yt )ŷ,
the coordinate (x,y) denotes the position of the ith walker, and
x̂ and ŷ denote the unit of velocity on the x axis and y axis,

FIG. 7. (Color online) The average value in each period of the
order parameter 〈ψ〉(t) for different r , i.e., 〈ψ〉(t) is the average value
of ψ in the range [t − S

2M
,t + S

2M
]. Simulations were run with the

parameter setting M = 500 and N = 500. All the data points are
averaged over 20 independent runs.

respectively. Obviously, ψ = 1 if all walkers have the same
direction.

Figure 6 reports three typical examples of the ψ(t) curves
for early, middle, and relatively later stages, where the
quasiperiodic behavior can be observed. The period length
is about S/M . As shown in Fig. 7, when r = 0.99, the order
parameter will exceed 0.5, indicating a strong synchronization
of an individual’s directions. Collective movements can only
be observed when r is close to 1, which is also the condition
for the emergence of scaling mobility patterns, as mentioned
in Sec. III. This property is demonstrated by the simulations
shown in Fig. 7, where one can see that the steady value
of the order parameter is very sensitive to the parameter
r , and when r decreases from 1, the collective movements
sharply disappear. Note that our model does not imply any
direct interaction between walkers. They are driven by the
coevolution of the resource landscape and the least-action
movements. This feature is far different from most known
interpretations on the dynamical mechanisms of animal col-
lective movements [20–25] but is similar to the so-called
active walk process [26,27], where the macroscopic-level
structure emerges from the interplay between walkers and
the landscape. The existence of synchronized motions is very
sensitive to the value of r , suggesting that food shortage
may be responsible for the emergence of animal collective
behaviors, which has been observed for locusts [28]. The
existence of the scaling law in the displacement distribution
and the collective movements are, to our surprise, under the
same condition, r → 1. However, these two phenomena are
not two sides of a coin; actually, they do not straightforwardly
depend on each other. Whether there exists a certain mech-
anism underlying the coexistence is still an open question
for us.

V. CONCLUSIONS AND DISCUSSIONS

Our model mimics the mobility patterns of many least-
action walkers that prey in a landscape with regenerating
ability. The scaling law of MLD emerges when the regen-
eration speed of the prey resource approaches the critical
point at which the amount of resource is just enough. This
result indicates that the mobility patterns of animals are
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sensitive to the environmental context (e.g., food resources),
which is qualitatively supported by real observations [8,19].
Our model indicates that population also highly affects the
mobility patterns [see the inset of Fig. 3(b)], which is
rarely discussed in early DW models. In addition, our model
generates quasiperiodic collective movements with marching
bands when r → 1, indicating that the aggregations of animals
are more likely to appear with food shortage [28,29], which
is far different from many known dynamical interpretations
based on the interaction between individuals [20–25]. One of
the noticeable features in our results is the coexistence of both
scaling mobility patterns at an individual level and collective
movement at the population level. Both phenomena are under
almost the same condition: the amount of prey resource
approaches the critical point, implying that the environment-
driven mechanism may bridge the scaling individual activity
patterns and global ordered behaviors.

Under different parameter settings, our results exhibit a
wide and gradual spectrum of different mobility features:
from scaling movements to the random-walk-like mobility
pattern and from ordered collective movements to uncorrelated
motions. These results are well in agreement with different
types of real-world mobility patterns of animals. However,
not all the results in our model are fully addressed. Some
phenomena, such as the logarithmic relation between α

and M and the microscopic mechanism in the emergence
of such collective movements, are still open questions
for us.

As a minimum model, our model only keeps several of
the most relevant factors and thus cannot mimic every detail
of animal mobility. For example, the prey in our model are
static and distributed in each lattice, and the mobility of prey,
the heterogeneity of the distribution of resources, and the
effect of the irrelevant nature are completely ignored. Some
real situations, such as the extreme food shortage that occurs
when the consumption of the prey resource is higher than
the regeneration speed (r > 1), are not considered. In brief,
although our model is a minimum model that ignores a few
real factors, the results of our model are generally in agreement
with many observations in the wild. Our model could be helpful
in understanding the origin of both scaling mobility patterns
and the ordered collective movements of animals.
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APPENDIX: MEAN-FIELD ANALYSIS

When r → 1, the analysis can be simplified by the periodic
movements. At the critical point, the period length is equal
to S/M , and during a period, each lattice will be visited
exactly once. We introduce a mean-field approximation that,
at any time, the unvisited lattices are evenly distributed in the
space. After τ time steps, the number of unvisited lattices
is m(τ ) = S − Mτ . Defining the normalized move length
l∗ = l/N = lS−1/2, where l is the real geometric length, the
normalized probability density of the distance (move length)

FIG. 8. (Color online) Comparison of the analytical result
[Eq. (A5); red line] and the simulation result (black circles) when
r = 1, M = 1, and N = 500. The term l−1 plays a role only for large
l.

from an unvisited lattice to its nearest unvisited lattice after τ

steps is

p(l∗,τ ) ≈ [m(τ ) − 1] × 2πl∗(1 − πl2
∗)m(τ )−2. (A1)

The MLD P (l∗) during a period is the cumulation of these
p(d,τ ):

P (l∗) ≈ M

S

∫ S/M

0
p(l∗,τ )dτ. (A2)

Substituting m(τ ) = S − Mτ into Eqs. (A1) and (A2), P (l∗)
can be obtained as

P (l∗) ≈ 2πl∗
S

[(ln a)−2 + (ln a)−1]a−2, (A3)

where a = 1 − πl2
∗ . Mostly, l∗ 
 1, and thus, ln(1 − πl2

∗) ≈
πl2

∗ and a−2 ≈ 1. Therefore, P (l∗) can be written as

P (l∗) ≈ 2

S

(
1

π
l−3
∗ + l−1

∗

)
, (A4)

corresponding to the distribution

P (l) ∼
(

S

π
l−3 + l−1

)
. (A5)

The range of l is limited to values from 1 to
√

2S; therefore,
if S is very large, the distribution P (l) is mainly determined
by the first term, S

π
l−3. Figure 8 reports the analytical result,

Eq. (A5), which agrees well with the simulation. Note that the
term l−1 only shows its effect for very large l. The mean-field
analysis agrees well with the simulations for small M . When
M is large, the mean-field approximation will be invalidated
because of the emergence of collective movement.
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