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Cascades on a class of clustered random networks
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We present an analytical approach to determining the expected cascade size in a broad range of dynamical
models on the class of random networks with arbitrary degree distribution and nonzero clustering introduced
previously in [M. E. J. Newman, Phys. Rev. Lett. 103, 058701 (2009)]. A condition for the existence of global
cascades is derived as well as a general criterion that determines whether increasing the level of clustering will
increase, or decrease, the expected cascade size. Applications, examples of which are provided, include site
percolation, bond percolation, and Watts’ threshold model; in all cases analytical results give excellent agreement
with numerical simulations.
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I. INTRODUCTION

The network topologies on which many natural and
synthetic systems are built provide ideal settings for the
emergence of complex phenomena; see the reviews [1–5].
One well-studied manifestation of this, called a cascade or
avalanche, is observed when under certain circumstances
interactions between the components of a system allow an
initially localized effect to propagate globally. For example,
the malfunction of technological systems like email networks
or electrical power grids is often attributable to a cascade of
failures triggered by some isolated event. Similarly, the trans-
mission of infectious diseases and the adoption of innovations
or cultural fads may induce cascades among people in society.

It has been extensively demonstrated [6–17] that the
dynamics of cascades depends sensitively on the patterns
of interaction laid out by the underlying network. One of
the goals of network theory is to provide a solid theoretical
basis for this dependence. In order to do this one must first
construct network models that are both mathematically sound
and capture the salient features of their real-world counterparts.
So far there has been limited success in this direction. Most
existing analytical results derive from the class of random
networks defined by the so-called configuration model [18,19].
The degree distribution of a network, pk , specifies the fraction
of its nodes (vertices) that have k incident edges. In the
configuration model, one generates a network of size n and
given pk by attaching, with appropriate probabilities, k stubs
to each of a set of n nodes, and then randomly connecting pairs
of these stubs to make complete edges. The major shortcoming
of this approach is that in the limit n → ∞ the density of
cycles of length three (triangles) in the resulting network will
vanish. In contrast, it is well established that the presence of
closed interactions in real-world networks engenders signif-
icant numbers of these short cycles. This feature is usually
quantified using some version of the clustering coefficient,
which has been described in a sociological context as the
probability that “the friend of my friend is also my friend” [20].

Recently, Newman [21] and Miller [22] independently
proposed an extension to the classical configuration model
to include nonzero levels of clustering (even as n → ∞),
thus opening the doors to the derivation of new analytical
results for cascade dynamics on somewhat more realistic
network topologies. Newman’s model (which is the primary

focus of our investigation) introduces a joint distribution, pst ,
specifying the fraction of nodes that are each connected to
s single edges and t triangles, thereby directly embedding
triangles of interconnected nodes into a locally tree-like
structure. Since the parameter t controls the density of triangles
it also determines the clustering coefficient. In addition, it was
shown in Ref. [21] how the generating function formalism of
Ref. [23] can be applied to these networks to derive expressions
for some of their fundamental properties.

In this paper we demonstrate an analytical approach to
determining the mean cascade size in a broad range of
dynamical models on the clustered random networks of
Ref. [21]. This approach extends the work of Gleeson and
Cahalane [24] and Gleeson [25] on locally tree-like networks,
which itself was built on methods introduced to study the
zero-temperature random-field Ising model on Bethe lattices
[26–28]. We consider a specific class of models that satisfy
the following properties: (1) each node is assigned a binary
value specifying its current state, active (damaged or infected)
or inactive (undamaged or susceptible); (2) the probability of
a node becoming active (in a synchronous update of all nodes)
depends only on its degree k = s + 2t and the number m of its
neighbors who are already active, a probability that is termed
the neighborhood influence response function F (m,k) [29,30];
(3) for any fixed degree k, F (m,k) is a nondecreasing function
of m; and (4) once active, a node cannot become deactivated.
The list of processes that satisfy these constraints includes, but
is not necessarily limited to, site and bond percolation [31,32],
k-core decomposition [33,34], and Watts’ threshold model [6].
Each process is defined by choosing an appropriate F (m,k),
as detailed in Ref. [25].

As well as determining the expected cascade size we also
provide a cascade condition—that is, a condition specifying
the circumstances under which the number of nodes active
in the cascade will correspond to a nonvanishing fraction of the
total number of nodes in the network n (in the limit n → ∞).
The dependence of such a condition on the prescribed level
of clustering has been the topic of much recent discussion
[22,35–37]. The main question under consideration is “Does
the presence of clustering in pst networks increase or decrease
the expected cascade size relative to its value in a nonclustered
network with the same degree distribution?” We provide a
general criterion to answer this question.
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We restrict our attention throughout to cascades on undi-
rected networks; however, in theory our method should be
extendable to directed networks [38]. We also note that while
the generating function method of Ref. [21] has the added
advantage over our approach that it can be used to calculate
the entire distribution of cascade sizes, such an approach is not
directly generalizable to the wider class of cascade processes
considered here.

The remainder of this paper is structured as follows. In
Sec. II. we describe our generalized approach to cascade
dynamics on Newman’s clustered random networks. An
analytical expression for the mean cascade size and the cascade
condition is derived. We define these in terms of an arbitrary
response function F (m,k). The particular forms that these
results take for various processes are given in Sec. III, and
we discuss in detail the site percolation problem and Watts’
threshold model [6]. We investigate the relationship between
clustering and the cascade condition in Sec. IV.

II. CASCADE PROPAGATION

Our task here is to show how the theory developed in
Ref. [24,25] for cascades on locally tree-like networks can
be modified such that it is applicable to the class of clustered
random networks introduced in Ref. [21].

Let us begin by recalling some of the properties of that class.
First, each network realization is defined by a joint distribution
pst specifying the fraction of nodes connected to s single
edges and t triangles. The conventional degree of each node
is, therefore, k = s + 2t , and the degree distribution is

pk =
∞∑

s,t=0

pst δk,s+2t , (1)

where δi,j is the Kronecker delta. Second, the clustering
coefficient C, following the definition given in Ref. [23], is

C = 3 × (number of triangles in network)

(number of connected triples)
= 3N�

N3
, (2)

where 3N� = n
∑

st tpst and N3 = n
∑

k(k2)pk . Notice that
upon substitution into Eq. (2) the factors of n cancel, allowing
C to remain nonzero even as n → ∞.

Now, turning to the theoretical analysis presented in
Refs. [24,25], we see that this was built entirely on the fact that
the networks being considered were nonclustered, and so could
each be well approximated by a tree in which connections
extended strictly from level to level starting from an arbitrary
root node. This then allowed the propagation of a cascade
to be modeled as a consecutive sequence of activations from
a random child node on one level to its parent node on the
next highest level. From a seed fraction of active nodes, the
expected size of the ensuing cascade was found by iterating a
simple recurrence relation to convergence and then calculating
the probability of activation of the root node [see Eqs. (1)–(3)
of Ref. [24]].

If we are to expand this approach to pst networks we
must first justify the use of the tree approximation in the
presence of nonzero clustering. Observe, however, that in
these networks clustering is generated solely through the
motif of nonoverlapping triangles. Fitting this specific type

FIG. 1. Level-by-level cascade propagation in a pst network using
the tree approximation. Triangle corners are marked in black.

of clustering into the tree-based framework is straightforward;
a triangle exists whenever an edge connects two nodes on
the same level. Therefore, in terms of dynamics, the only
difference from the nonclustered networks dealt with in
Refs. [24,25] is that now we are faced with two distinct ways
in which activations may propagate from one level to the next;
see Fig. 1. They may spread as in Fig. 1(a) from a child (c)
to its parent (p) across a single edge, or as in Fig. 1(b) from
either child at the base of a triangle to the parent at its apex.

A. Expected cascade size

Following the methodology of Refs. [24,25] then, let us
model a generalized cascade as a recursive sequence of
activations from child to parent and set up self-consistent
equations for the probabilities involved.

Considering first Fig. 1(a), let σ1 be the probability that
the child is active conditional on its parent being inactive, and
let σ0 = 1 − σ1 be the corresponding conditional probability
that the child is inactive. For convenience we represent this
set of probabilities with the generating function σ (x) = σ0 +
σ1x. Similarly, in Fig. 1(b), let τ2 be the probability that both
children are active, conditional on their parent being inactive,
let τ1 be the conditional probability that only one child is
active, and let τ0 = 1 − τ1 − τ2 be the conditional probability
that neither child is active. The generating function for these
probabilities is τ (x) = τ0 + τ1x + τ2x

2.
Of course, the node arrangements represented by Figs. 1(a)–

1(b) usually exist in various combinations, and not exclusively
of each other. By definition, in any given network realization a
randomly chosen node will be directly connected to s nodes via
single edges and to 2t nodes via triangle edges, with probability
pst . Therefore, letting �s,t

m be the probability that m of these
neighboring nodes are active, σ (x) and τ (x) are related to that
probability by the generating function

G(x) =
s+2t∑
m=0

�s,t
m xm = [σ (x)]s[τ (x)]t , (3)

defined for each pairing of s and t .
We are now in a position to write an analytical expression

for σ1. In terms of an arbitrary response function F (m,s + 2t),
written Fm for short, we have

σ1 = ρ0 + (1 − ρ0)
∞∑

s,t=0

spst

〈s〉
s+2t−1∑
m=0

�s−1,t
m Fm, (4)
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where ρ0 is the seed fraction and 〈s〉 = ∑
s,t spst is the

average number of single edges per node. Equation (4) is a
self-consistent equation for σ1 since according to Eq. (3), �s,t

m

is itself a function of the coefficients of σ (x) and τ (x). We can
read Eq. (4) as follows: The probability of the child node in a
randomly chosen single edge pair being active, conditional on
its parent being inactive, is equal to the probability that it was
either initially active (ρ0), or that (1 − ρ0) it subsequently
became active by copying the behavior of the m out of
s + 2t − 1 of its own children that were already active. Note
that the term spst/〈s〉 is the probability of reaching a child
with s single edges by traveling along a random single edge
from its parent (see Ref. [1]).

To obtain similar expressions for τ1 and τ2 we must reflect
the fact that in a triangle the state of either child may influence
the state of the other. Referring to Fig. 1(b), the probability
that one child is active regardless of the state of the other is

α = ρ0 + (1 − ρ0)
∞∑

s,t=0

tpst

〈t〉
s+2(t−1)∑

m=0

�s,t−1
m Fm, (5)

the probability that one child is inactive if the other is inactive
but will activate if the other is active is

β = (1 − ρ0)
∞∑

s,t=0

tpst

〈t〉
s+2(t−1)∑

m=0

�s,t−1
m [Fm+1 − Fm], (6)

and finally the probability that one child is inactive even if the
other is active is γ = 1 − α − β. In Eqs. (5)–(6), we use the
fact that following a triangle edge from the parent leads to a
child with t triangles with probability tpst /〈t〉. This child then
has s single edges and t − 1 triangles available to connect to its
own children, giving its maximum number of active children
(for the sum over m) as s + 2(t − 1). Expressed in terms of the
probabilities α and β, self-consistent expressions for τ1 and τ2

are given by

τ1 = 2αγ (7)

and

τ2 = α2 + 2αβ. (8)

The form of Eq. (7) arises from the fact that the probability
of the parent in a triangle of nodes having one active child is
equal to the probability that one child is active regardless of
the state of the other (α), while the other is inactive regardless
of the state of the other (γ ), and there are two different ways
in which this may be the case. Reading Eq. (8) in the same
way, we see that the probability of the parent node in a triangle
having two active children is equal to the probability that both
children are active regardless of each others’ states (α2) plus
the probability that one child is active and the other activates
because of this with probability β; again there are two ways in
which the latter may occur.

The propagation of a cascade through a pst network is
now almost fully defined. Given a seed fraction ρ0, we solve
Eqs. (3)–(8) to find the steady-state values of the coefficients
of the polynomials σ (x) and τ (x), and then, using these,
we determine the expected cascade size by calculating the

probability of activation of the root node. This final probability
is given by

ρ = ρ0 + (1 − ρ0)
∞∑
s,t

pst

s+2t∑
m=0

�s,t
m Fm. (9)

Comparing this equation to Eq. (4) we see that here the root
node, which has s single edges and t triangles with probability
pst , has no parent and so has s + 2t children.

In Sec. IV we show that the analytical approach derived
here is in excellent agreement with the results of numerical
simulations on pst networks.

B. Cascade condition

Having established an analytical expression for the ex-
pected cascade size in Eq. (9), we now turn to the derivation
of a cascade condition. This will determine the circumstances
under which the process of propagating activations described
by Eqs. (3)–(8) can generate a nonvanishing mean cascade size
from an infinitesimally small seed fraction ρ0 → 0.

We begin by observing that Eqs. (3)–(8) can be represented
as the steady state of a nonlinear system of the general form
v(n+1) = H(v(n)), where v(n) = [σ1

(n),τ1
(n),τ2

(n)]. The trivial
solution v = 0 corresponds to an equilibrium state where
cascades do not occur. We can look for other solutions by
applying a small perturbation away from this equilibrium and
then considering the trajectories in a linearized version of the
system.

Applying this method we first linearize the generating
function G(x) of Eq. (3) about v = 0 using a small parameter
ε to measure the magnitude of the perturbation. Scaling the
coefficients of σ (x) and τ (x) as O(ε), that is, σ1 � εσ̃1,
τ1 � ετ̃1, and τ2 � ετ̃2, we expand G(x) as

G(x) � 1 − ε[sσ̃1 + t(τ̃1 + τ̃2) − (sσ̃1 + t τ̃1)x − t τ̃2x
2],

(10)

up to terms of O(ε2).
Our next step will be to substitute the coefficients of G(x)

from Eq. (10) into Eqs. (4)–(8). Before doing this, however,
we further simplify our analysis by assuming F0 = 0. This
implies that a node will never activate if none of its neighbors
are active, and this is true, or a good approximation, in many
cases of interest. With F0 = 0, then, said substitution gives us
a linear system that may be represented in the matrix form
ṽ(n+1) = A · ṽ(n), where

ṽ(n) =
[
σ̃1

(n)

τ̃2
(n)

]
, A =

[
A11 A12

A21 A22

]
, (11)

and the elements of A are

A11 = 〈(s2 − s)F1〉
〈s〉 , A12 = 〈stF2〉

〈s〉 + 〈stF1〉
〈s〉

〈t〉 − 〈tF1〉
〈tF1〉 ,

A21 = 2〈stF1〉〈tF1〉
〈t〉2

, (12)

A22 = 2〈(t2 − t)F1〉
〈t〉 + 2〈(t2 − t)(F2 − F1)〉〈tF1〉

〈t〉2
.

Note that the application of Eq. (10) has allowed us to express
τ̃1

(n) in terms of τ̃2
(n) as τ̃1

(n) = (〈t〉 − 〈tF1〉)τ̃2
(n)/〈tF1〉,
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hence the reduction to the 2 × 2 system of linear equations
represented by Eqs. (11)–(12).

In order for this system to produce trajectories that will
diverge from v = 0, in other words in order to produce
cascades, we require that the larger eigenvalue of A (both
eigenvalues are real) be greater than one, λ+ > 1.1 This
condition is satisfied if

〈t〉{2〈stF1〉2 − [〈(s2 − s)F1〉 − 〈s〉][2〈(t2 − t)F1〉 − 〈t〉]}
− 2〈tF1〉{[〈(s2 − s)F1〉 − 〈s〉]〈(t2 − t)(F2 − F1)〉
− 〈stF1〉〈st(F2 − F1)〉} > 0. (13)

Conversely, if the left-hand side of Eq. (13) is negative, then
λ+ < 1, and the trivial equilibrium is stable, so cascades do not
occur. The boundary between these two regimes, one where
cascades are observed and the other where they are not, is
located precisely at the point where λ+ = 1, or equivalently
where the expression on the left-hand side of Eq. (13) is equal
to zero.

III. RESPONSE FUNCTIONS

In this section we will show how the generalized theory
of Sec. II may be used to model a range of processes on pst

networks. As stated in the introduction each specific process
will be defined by choosing an appropriate response function,
and Eqs. (3)–(9) will then give the expected cascade size. We
consider the examples of site percolation and Watts’ threshold
model [6] in detail.

A. Site and bond percolation

The resilience of random networks in the face of indis-
criminate breakdowns or coordinated attacks is a key concern
across multiple disciplines from epidemiology to telecom-
munications. Modeling these types of events as percolating
processes has proved to be very fruitful, allowing theorists to
uncover formulas for, among other things, the size distribution
of connected components [39,40] and epidemic thresholds
[41]. The two most basic models studied are uniform site
percolation and uniform bond percolation. Here we show
that both models may be considered as special cases of our
generalized approach, corresponding to suitable choices for
the response function F (m,s + 2t).

Following the approach of Ref. [42], we frame our
description in the language of successive activations already
introduced. We define a node as active if it is part of the giant
connected component (GCC) of the network, and our choice of
response function, Eq. (14) or Eq. (18) below, determines the
type of percolation under consideration, either site percolation
or bond percolation, respectively. When this activation process
reaches steady state, all nodes that are labeled as active have
at least one active neighbor to which they are connected. Thus

1In general, the trivial equilibrium v = 0 is unstable when the
matrix A has at least one eigenvalue λ such that |λ| > 1. Our
simplified requirement follows from the fact that A consists of
real positive elements, and thus according to the Perron-Frobenius
theorem at least one of the eigenvalues of A is real and positive, and
is greater than the other in absolute value.

the fraction ρ of active nodes equals the size of the connected
component, expressed as a fraction of the network size n. In
the n → ∞ limit, only the giant connected component size
scales with n, and so ρ gives the fractional size of the GCC.
This can be seen also from the fact that in the limit of zero
clustering, our equations reduce to the standard percolation
equations for GCC size in configuration model networks, as
given in Ref. [39]. This method does not permit the calculation
of finite-size connected components (see Refs. [25,42,43]).

In uniform site percolation, each node is occupied with
independent probability μ, and an occupied node can become
active in the cascade, i.e., form part of the GCC, if it has
one or more active neighbors (who are already in the GCC).
Unoccupied nodes can never become active. The response
function for site percolation is therefore [25]

F (m,s + 2t) =
{

0 if m = 0,

μ if m > 0.
(14)

Using Eq. (14) in the ρ0 → 0 limit of Eqs. (4)–(9), and
noting that with this choice of response function

s+2t∑
m=0

�s,t
m F (m,s + 2t) = μ

[
1 − σ0

sτ0
t
]
, (15)

the expected size of the GCC (as n → ∞) is given by Eq. (9)
and reduces to the simple form

ρ = μ − μ

∞∑
s,t=0

pstσ0
sτ0

t . (16)

Substituting Eq. (14) into our cascade condition Eq. (13) we
derive the following equation for the critical site percolation
occupation probability

(μ〈s2 − s〉 − 〈s〉)(2μ〈t2 − t〉 − 〈t〉) − 2μ2〈st〉2 = 0, (17)

which, with μ = 1, is in agreement with Eq. (22) of Ref. [21].
In uniform bond percolation each edge is occupied with

independent probability ν, and a node can become active only
if it is linked to another active node by an occupied edge. Thus,
a node with m active children has probability 1 − (1 − ν)m of
becoming active itself. The appropriate choice of response
function in this case is therefore [25]

F (m,s + 2t) =
{

0 if m = 0,

1 − (1 − ν)m if m > 0.
(18)

The approach outlined here is also applicable to two
other closely related problems: susceptible-infected-recovered
(SIR) disease transmission [41,44] and k-core decomposition
[33,34]. In fact, it was shown in Ref. [44] that in the steady
state the infected fraction in SIR may be mapped directly to the
bond percolation problem. The latter was discussed in detail
in Ref. [25] and the relevant response function for standard
configuration model networks was provided [see Eq. (10)
of Ref. [25]]. With the introduction of triangles we simply
update that response function F (m,k) by setting k = s + 2t

and continue as above.
Regarding epidemiological studies, the question of how

clustering in networks of human interactions may influence
the size and persistence of outbreaks of infectious diseases
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has been the topic of much recent discussion [45–50]. In fact,
much of the impetus for considering more complex topological
motifs in studies involving networked structures in general has
come from this source [42,45]. We will see in Sec. IV how
the results obtained by us for site and bond percolation echo
(albeit indirectly) a number of recent results from this literature
concerning the effects of clustering.

B. Watts’ Model

In Ref. [6] Watts introduced a model of threshold dynamics
on networks as a simple but plausible mechanism for how
phenomena such as fads or rumors propagate in society. The
most basic formulation of this model is as follows. In an
undirected network of arbitrary degree distribution pk , assign
to each node a random (frozen) threshold r drawn from a
specified distribution. Then, starting from a small seed fraction
of active nodes, ρ0, synchronously update the state of each
node based on the following decision rule: A node will become
active if the fraction of its neighbors that are already active
exceeds r; otherwise it will remain inactive. (We also stipulate
that once active a node can not deactivate.) Repeating this
updating process until a steady state is reached, we call the
final fraction of active nodes the cascade size.

In Ref. [25] Gleeson defined the response function for
Watts’ model in the context of a generalized approach to
cascades on pk networks [see Eq. (2) of Ref. [25]]. We
can extend this definition to pst networks simply by setting
k = s + 2t . From Eq. (2) of Ref. [25] this gives us

F (m,s + 2t) = Cr

(
m

s + 2t

)
, (19)

where m is the number of active neighbors and Cr denotes
the cumulative distribution function (cdf) of the thresholds. If,
for example, we require a Gaussian threshold distribution with
mean R and standard deviation σ , then Eq. (19) becomes

F (m,s + 2t) = 1

2

{
1 + erf

[
m/(s + 2t) − R

σ
√

2

]}
, (20)

where erf(x) is the error function. Note that F (0,s + 2t) > 0
here, meaning some nodes have negative thresholds, and so
will activate even if none of their neighbors are active. It is
possible, therefore, for such nodes to instigate a cascade even
when ρ0 = 0.

In a similar manner as before we obtain the mean cascade
size and the cascade condition by substituting Eq. (19) into the
relevant equations from Sec. II.

IV. EFFECTS OF CLUSTERING ON CASCADES

We now turn to the investigation of how clustering can affect
cascade dynamics on pst networks. This requires first that we
make an appropriate choice for the form of the joint distribution
pst . Considering the question stated in the introduction: “Does
the presence of clustering in pst networks increase or decrease
the expected cascade size relative to its value in a nonclustered
network with the same degree distribution?” we set

pst = pkδk,s+2t [(1 − f )δt,0 + f δt,	(s+2t)/2
], (21)

where f ∈ [0,1], and 	·
 is the floor function.

Applying this definition, we construct pst from a given
degree distribution pk such that a fraction f of the nodes in
our network are attached to the maximum possible number
of triangles t = 	(s + 2t)/2
 while the remaining (1 − f ) are
attached to single edges only (t = 0). Upon substitution of
Eq. (21) into Eq. (2) we find that the clustering coefficient C

can be expressed as

C = f

∑
k k(p2k + p2k+1)∑

k

(
k

2

)
pk

. (22)

This linear relationship between C and f allows us to vary
C continuously from its minimum value at f = 0 to its
maximum possible value obtained at f = 1, while preserving
pk throughout. We cannot guarantee, however, that degree-
degree correlations will be preserved [35].

In Fig. 2 we have used Eq. (21) to verify our theory in
the case of site percolation on pst networks with Poisson
degree distribution pk = zke−z/k!. We plot our result for the
GCC size from Eq. (16) against numerical simulations for
two different values of the mean degree z = ∑

k kpk . In both
cases we consider minimum clustering (f = 0) and maximum
clustering (f = 1). Threshold values defined by Eq. (17) are
also plotted (see caption for details).

Observing the relative positions of the percolation thresh-
olds in Fig. 2 (pentagrams) we note that they lend support in
favor of (or, at least, do not contradict) the argument that adding
triangles decreases the cascade size. We showed in Ref. [35]
that this is unambiguously the case in the bond percolation
problem on z-regular pst networks, i.e., those with pk = δk,z

(all nodes have z neighbors). However, since adding triangles
to a z-regular network cannot affect its correlation structure,
this meant that any effects that may have been introduced

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

μ

ρ

f=0, z=3
f=1, z=3
f=0, z=5
f=1, z=5

FIG. 2. (Color online) Size of GCC ρ as a function of site
occupation probability μ on pst networks of 105 nodes with Poisson
degree distribution pk for two different values of the mean degree,
z = 3 and 5. Numerical simulations averaged over 100 realizations
(symbols) vs theory of Sec. II (solid lines). In both cases we consider
minimum clustering f = 0 and maximum clustering f = 1. In each
of the four parameter settings we calculate the critical site occupation
probability from Eq. (17) and mark its position on the μ axis with a
(yellow) pentagram.
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by allowing correlations to vary were automatically negated.
Furthermore, it was explicitly demonstrated in Ref. [35], and
also Ref. [22], that such effects may significantly complicate
matters. In Fig. 2, on the other hand, degree-degree correlations
are not preserved. Therefore while this figure does validate
the theoretical approach of the preceding sections, it does
not permit us to draw definitive conclusions in regard to the
question of the change in the expected cascade size due to
clustering alone.

In order to do that we will follow the approach of Ref. [35]
(see also Ref. [37]) and focus our investigation on pst networks
with z-regular pk . In particular, we consider the following joint
distribution

pst = δz,s+2t [(1 − g)δt,0 + gδt,1], (23)

where z > 2. This choice shares some similarities with
Eq. (21); however, here we are adding only one triangle to each
of a fraction g of the nodes in a z-regular network. Substituting
Eq. (23) into Eq. (13) we have, as the condition for cascades
to occur (corresponding to λ+ > 1, see Sec. II B),

F1(z2 − z) − z + gSc > 0, (24)

where

Sc = 2 + F1(6 − 4z) + 2F 2
1 (z − 2)2

+ 2F 2
1 F2(z − 2)2 − 2F 3

1 (z − 2)2 (25)

denotes the sum of the terms which introduce clustering into
the network. This expression gives us an insight into how
adding triangles alters the cascade size. Given a specific z

we can determine the qualitative effect of clustering in the
following way. First, set the expression on the left-hand side
of Eq. (24) equal to zero and solve for F1 at g = 0. This
determines the value of F1 at the transition to the cascade
regime in the nonclustered network: the well-known result of
Watts [6], F1 = 1/(z − 1). Next, substitute that F1 into Sc and
observe its sign. If it is negative, we conclude that introducing
triangles will decrease the expected cascade size. If, on the
other hand, Sc is positive, adding triangles will increase the
cascade size.

The justification for these last two statements follows sim-
ply from the fact that if Sc constitutes a negative contribution to
the expression on the left-hand side of Eq. (24), then increasing
g, given that F1 = 1/(z − 1), will break the inequality in
Eq. (24) and take us into the regime where cascades do
not occur. Alternatively, if Sc is shown to be positive, then
increasing the parameter g will ensure the inequality holds
and cascades do occur at these parameter values.

In Fig. 3 we have plotted Sc against z for three of
the processes described in Sec. III: site percolation, bond
percolation, and Watts’ model. In this last case we have chosen
the following parameters: seed fraction ρ0 = 0, and a Gaussian
threshold distribution with mean R fitted to F1 = 1/(z − 1)
and standard deviation σ = 0.1.

This plot indicates that adding triangles will decrease
the expected cascade size in both site percolation and bond
percolation. In other words, the occupation probability needed
for a giant connected component to exist (the percolation
threshold) is increased in the presence of clustering. As
mentioned above, we have already demonstrated in Ref. [35]

2 10 20 30 40 50
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FIG. 3. (Color online) Sum of the clustering terms from Eq. (24),
Sc, vs mean degree z on pst networks with z-regular degree
distribution. Results from site percolation, bond percolation, and
Watts’ model are shown. As in Sec. III, each process is defined
by choosing an appropriate response function. For Watts’ model the
threshold distribution is Gaussian with standard deviation σ = 0.1
and mean R, such that F1 = 1/(z − 1). Note that only integer z values
are realizable as z-regular networks.

that this is the case for the latter of these two processes; to
our knowledge this is the first statement of the corresponding
result for site percolation. While these results are not directly
applicable to models of the spread of disease, in light of
the established connection between SIR epidemics and bond
percolation, we suggest that they may, nonetheless, be of
some interest to researchers in that field. This statement is
vindicated by the fact that analogous results have recently been
established in a number of epidemiological studies that have
shown that clustering can adversely affect the propagation of
a disease [46,48–50].

Also of interest is the behavior of Sc for Watts’ model. As z

increases in Fig. 3, we see Sc vary from negative values for z �
3, through a regime of positivity, and back again to negative
values for z � 29. This tells us that for z � 3 the presence of
clustering will decrease the left-hand side of Eq. (24) below
zero, thereby decreasing the expected cascade size; for 3 <

z < 29 clustering will increase the expected cascade size; and
finally for z � 29 clustering will once more tend to decrease
the expected cascade size. We note that qualitatively similar
results are seen for different values of σ , the standard deviation
of the thresholds.

By way of validation, in Fig. 4 we plot the cascade
size ρ against the mean of the threshold distribution R for
Watts’ model with joint distribution defined by Eq. (21),
and otherwise the same parameter settings as in Fig. 3 (see
caption for details). We inferred from Fig. 3 that at z = 3
cascades become smaller as clustering is increased. This is
what we observe in Fig. 4(a). Contrastingly, at z = 5 cascades
should become larger as clustering increases. This is verified
by Fig. 4(b).

This dependence of the cascade size on the sign of
the sum of the clustering terms in Eq. (24), Sc, may be
expressed succinctly as a condition on the response function
F2, the probability of activation in the presence of two active
neighbors. Specifically, if the value of F2 at the transition
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FIG. 4. (Color online) Expected size of cascade outbreak ρ vs
mean R of a Gaussian threshold distribution with σ = 0.1 for Watts’
model on graphs of 105 nodes with z-regular degree distribution
pk = δk,z and joint distribution pst defined by Eq. (21). Numerical
simulations averaged over 100 realizations (symbols) and theory of
Sec. II (solid lines). (a) z = 3: Here increasing the level of clustering
decreases the expected cascade size at any given R value. (b) z =
5: Increasing the level of clustering increases the expected cascade
size.

point for cascades in nonclustered z-regular networks [i.e., F2

evaluated at the parameters for which F1 = 1/(z − 1)] satisfies
the condition

F2

∣∣∣∣
F1= 1

z−1

>
2z − 3

(z − 2)(z − 1)
, (26)

then adding triangles will increase the expected size of
cascades. Alternatively, if F2 does not satisfy this inequality,
clustering will decrease the expected size of cascades. One
may derive this condition by substituting the zero-clustering
cascade condition F1 = 1/(z − 1) into Eq. (24) and then
solving for F2. Note that by substituting the respective response
functions for site and bond percolation, Eqs. (14) and (18),
into Eq. (26) one may confirm that for z > 2 this inequality
is not satisfied, and thus that clustering decreases cascade
sizes for both of these processes (increases the percolation
threshold). Finally, note that Eq. (26) can also be arrived

at by a simple counting argument that compares the spread
of activations in a clustered random network to that in a
nonclustered random network. We leave this discussion to the
Appendix.

V. CONCLUSIONS

We have shown how the analytical approach to cascade
dynamics on nonclustered configuration model networks first
put forth by Gleeson and Cahalane in Ref. [24] may be
extended to the class of random networks with nonzero
clustering described by Newman in Ref. [21].

By adapting the approach of Ref. [25] we have provided a
general analytical expression for the expected size of a cascade
outbreak and a cascade condition, in these more realistic
network topologies. By the use of the response function
mechanism both of these results may be applied to a range
of processes including, but not necessarily limited to, site
and bond percolation, k-core decomposition, SIR (susceptible-
infected-recovered) disease transmission, and Watts’ threshold
model (see also Ref. [51]).

In addition to this, we have also considered the question of
how the presence of clustering qualitatively affects the cascade
condition. This question is further complicated by the fact
that for heterogeneous degree distributions, adding triangles
will alter the correlation structure of the network [22,35]. We
have therefore focused our investigation on clustered networks
with z-regular degree distributions in which degree-correlation
effects are absent. This enabled us to discover a condition
on the response function of the process [see Eq. (26)] that
determines the change in the expected size of the cascade due
to clustering alone.

For site and bond percolation we found that clustering will
unambiguously decrease the cascade size: a result that bears
analogy to recent results from the epidemiological literature
concerning the effects of clustering on disease outbreaks
[46,48–50]. For Watts’ model, however, matters are not so
clear cut. For certain values of z clustering may increase the
mean cascade size, while for others it will decrease it. The
example of this behavior provided in Fig. 3 corresponds to just
one setting of parameters for Watts’ model, namely, a Gaussian
threshold distribution with standard deviation σ = 0.1 and
no seed nodes. We note, however, that further simulations,
the results of which are not provided, have proved these
observations to be robust against changes in σ . We believe,
therefore, that these observations have significant implications
for studies of the spread of behavior in social networks, such
as, for example, Ref. [37].

Last, we must emphasize that the motif of nonoverlapping
triangles in the model investigated here corresponds to just
one of the many different ways in which nodes may cluster
together in a network. An alternative model based on the idea
of embedding cliques of nodes within a configuration-type
network was developed by Gleeson [43], while Karrer and
Newman have recently proposed an approach that allows for
a much broader range of clustering motifs than just triangles
[52]. The investigation of some of the questions discussed
by us here in the context of these models is of significant
interest.
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FIG. 5. Spread of activation from a single node (colored black)
in (a) a nonclustered network, and (b) a pst network with nonzero
clustering. Note that the clustered pst network may also contain single
edges that are not part of any triangle; however, such edges are also
present in the nonclustered network, and we are interested only in the
differences introduced by adding triangles.
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APPENDIX: COUNTING ARGUMENT FOR
CONDITION ON F2

Here we give an intuitive argument for the effect of
clustering on cascades in z-regular pst networks. This stands
as an alternative derivation of the condition on F2 in the main
body of this paper [see Eq. (26)].

We compare the spread of activation from a single node
[colored black in Fig. 5(a) and 5(b)] to two of its neighbors,
and then further into the network. In configuration (a) the
three nodes considered are not part of a triangle, and up to
2(z − 1) second neighbors may potentially be activated in this
way. In configuration (b), the three nodes form a triangle, and
only 2(z − 2) second neighbors are available for activation.
We proceed to calculate the expected number of edges that
may activate second neighbors in each configuration, and
derive a condition under which clustering [configuration
(b)] gives a larger number of expected activations than the
corresponding nonclustered case [configuration (a)]. First, we

consider configuration (a). Each of the two white nodes will be
activated by the black node with probability F1. If activated,
a white node may in turn activate up to z − 1 of its other
neighbors. So we count the expected number of active edges
(edges that are connected to an active node) on the right-hand
side of Fig. 5(a) as 2F1(z − 1).

In configuration (b), the two neighbors of the active node
are also connected to each other, leaving each with z − 2 edges
to other neighbors. These edges may become active edges in
one of three ways:

(1) Both white nodes are activated directly by their single
active neighbor; this happens with probability F 2

1 and gives
2(z − 2) active edges on the right-hand side of Fig. 5(b).

(2) One white node is activated directly by the active
neighbor; the other white node then becomes active because it
now has two active neighbors. This happens with probability
2F1(F2 − F1) and gives 2(z − 2) active edges.

(3) One white node is activated directly by the active
neighbor; the other white node does not activate even though
it has two active neighbors. This happens with probability
2F1(1 − F2) and gives z − 2 active edges.

The expected number of active edges on the right-hand side
of Fig. 5(b) is therefore

2F 2
1 (z − 2) + 4F1(F2 − F1)(z − 2) + 2F1(1 − F2)(z − 2)

= 2F1(z − 2)(F2 − F1 + 1). (A1)

This is larger than the value 2F1(z − 1) found for configuration
(a) if

F2 − F1 >
1

z − 2
. (A2)

To examine the effect upon the cascade threshold, we substitute
the cascade condition F1 = 1/(z − 1) for the threshold in a
nonclustered z-regular network [6] into Eq. (A2) to obtain
the condition given in Eq. (26). If this condition is satisfied,
cascade propagation is more likely on the clustered z-regular
network than on the nonclustered version.
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Prob. 45, 743 (2008).
[48] J. C. Miller, J. R. Soc. Interface 6, 1121 (2009).
[49] F. Ball, D. Sirl, and P. Trapman, Math. Biosci. 224, 53 (2010).
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