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In this paper we provide a unified framework for quasispecies evolution and stochastic quantization. We map
the biological evolution described by the quasispecies equation to the stochastic dynamics of an ensemble of
particles undergoing a creation-annihilation process. We show that this mapping identifies a natural decomposition
of the probability that an individual has a certain genotype into eigenfunctions of the evolutionary operator. This
alternative approach to study the quasispecies equation allows for a generalization of the Fisher theorem equivalent
to the Price equation. According to this relation the average fitness of an asexual population increases with time
proportional to the variance of the eigenvalues of the evolutionary operator. Moreover, from the present alternative
formulation of stochastic quantization a novel scenario emerges to be compared with existing approaches. The
evolution of an ensemble of particles undergoing diffusion and a creation-annihilation process is parametrized by
a variable β that we call the inverse temperature of the stochastic dynamics. We find that the evolution equation
at high temperatures is simply related to the Schrödinger equation, but at low temperature it strongly deviates
from it. In the presence of additional noise in scattering processes between the particles, the evolution reaches a
steady state described by the Bose-Einstein statistics.
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I. INTRODUCTION

The intriguing relation between evolutionary dynamics
and statistical mechanics [1–4] has attracted the interest of
classical evolutionary theorists. Fisher [1] (see also Ref. [5])
and Kimura [2] have related their results to the second principle
of thermodynamics and to the theory of gases. Interestingly,
the relation between evolutionary theory [6] and quantum
statistical mechanics is emerging from a series of independent
works [7–15] that show a class of phase transitions occurring
in the evolution of haploid populations and other evolving
complex systems described by a Bose-Einstein condensation.
In haploid populations, this transition is the quasispecies phase
transition [6,16–20] in which a finite fraction of an asexual
population ends up having the same genotype if the selective
pressure is higher than a critical value and the mutation rate
is smaller than a critical value. Moreover, in a recent paper
[21] it has been shown that a condensation transition in the
Bose-Einstein universality class occurs also in the evolution
of diploid sexual populations in the presence of epistatic
interactions. When this condensation occurs, a finite fraction
of pairs of genetic loci in epistatic interactions is fixed.

The deep relation between evolutionary theory and quan-
tum mechanics formalisms extends also to the dynamical
description of biological evolution. The quantum spin-chain
formalism [22] and the Schödinger equation in imaginary time
[23–25] have been shown to solve models of asexual evolution.
The role of path integrals in describing the temporal evolution
of populations [26–28] has been highlighted recently.

Biological evolution is essentially a stochastic process.
The relation between quantum mechanics and stochastic
dynamics has been deeply explored over the years [29].
In particular, the existing theory of stochastic processes for
diffusing particles is described by Langevin and Fokker-Planck
equations. Stochastic quantization approaches define stochas-
tic diffusing processes whose probability density converges
to path integrals of some specific quantum system [30,31].

Stochastic quantization has attracted large interest in the
physics community and has been shown to allow for large
numerical simulations of quantum systems [32]. In this paper
we propose a unified framework for quasispecies biological
evolution and stochastic quantization.

In the first part of the paper we describe the evolution
of an asexual population with overlapping generations in
the limit of large populations. We show that it is possible
to describe the evolution of a population in terms of eigen-
functions of the evolutionary dynamics, and this description
allows for a generalization of the Fisher theorem in the
presence of mutations. We show that the variation in time
of the average fitness of the population is proportional to
the variance of the eigenvalues of the evolutionary dynamics.
Therefore the average fitness of the population asymptotically
in time reaches the highest eigenvalue of the evolutionary
dynamics. This relation is very general and applies as well
in the absence of mutations, for a low mutation rate and for a
high mutation rate. Therefore it is not in general related to the
localization of the eigenfunction with maximal fitness on the
fitness landscape. Moreover, in the first part of the paper related
to biological evolution we review the results of the Kingman
model, which are related to the emergence of quantum statistics
in the equation of biological evolution. These results are related
to the quasispecies description of evolutionary dynamics that
neglects genetic drift, which has significant relevance in
the presence of small populations and small mutation rate
μN � 1 or in the cases in which the population is fluctuating
and undergoes population bottlenecks.

In the second part of the paper we consider an ensemble
of elementary particles that do not only diffuse, like in ex-
isting approaches of stochastic quantization, but undergo also
creation and annihilation processes mimicking the dynamics
of biological evolution. The probability density P (x,t) that
a generic particle is at position x at time t follows the
quasispecies equation [6] first proposed by Eigen [16] to
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describe biological evolution. This allows us to define a new
dictionary for a mapping from the evolutionary theory to
the stochastic dynamics of particles undergoing the creation-
annihilation process. The ensemble of particles is subjected
to a stochastic Gaussian noise and a potential energy. The
stochastic noise can be mapped to the mutations of biological
evolution, and the potential energy can be mapped to a Fisher
fitness function. Moreover the stochastic evolution strongly
depends on the parameter β, which we call the inverse
temperature of the system, playing the equivalent role of
selection pressure in the biological evolutionary mapping.
The probability of a certain configuration of the ensemble
of particles satisfies the quasispecies equation and can be
decomposed into eigenfunctions of the evolutionary operator
with a discrete spectrum. For low values of β, β � 1 (i.e.,
low selection pressure), the quasispecies equation is directly
related to the Schrödinger equation, while for β � 1 (i.e.,
high selection pressure) the quasispecies equation strongly
deviates from the Schrödinger equation. In order to solve in
one case the quasispecies equation for all possible values of
the inverse temperature we explicitly solve the case of an
harmonic potential. The evolution turns out to be dissipative,
with a relaxation of the configuration to the fundamental
state. Moreover we investigate the role of genetic drift in
this model, showing that due to the Gaussian nature of
the noise the systems always reach a stationary state. In
particular, asymptotically in time the spatial distribution of
particles fluctuates around the fundamental state predicted
by the solution of the quasispecies equation. The smaller the
number of particles, the stronger the fluctuations around the
mean. Moreover we include an additional noise describing
a scattering process of the particles such that after each
scattering process a particle takes a random position distributed
according to a fixed probability distribution. When we intro-
duce this scattering probability the ensemble of particles is
proven to follow a Bose-Einstein distribution. Interestingly, the
relaxation occurring in the absence of the scattering process
obeys a dynamical equation that has its equivalent in the
generalization of the Fisher theorem found in the mean-field
treatment of the biological evolution presented in the first
part of this paper. In this mapping the ground state of the
ensemble of particles corresponds to the state of the maximal
reproductive rate of the asexual population. Therefore the
relaxation of the ensemble of particles to the ground state
corresponds to the steady increase of the average reproductive
rate in the evolution of an asexual population. Finally, in
the presence of the scattering process the Bose-Einstein
distribution is emerging naturally with similarities to the
Kingman model [7] for the evolution of asexual populations
with an infinite number of genetic loci.

II. EVOLUTION OF ASEXUAL POPULATIONS

A. The quasispecies equation

The genome of an asexual organism is formed by a single
copy of each chromosome. If we indicate by i = 1, . . . ,N a
genetic locus, a given genotype is determined by the allelic
states {σ } = (σ1,σ2, . . . ,σi, . . . σN ) at each genetic locus i.
The allelic state σi at each genetic locus i can take four

values corresponding to adenine, thymine, cytosine, guanine,
i.e., σi = 1, 2, 3, 4. The population evolves under the drive
of selection that favors allelic configurations corresponding
to higher reproduction rate, and mutations that increase the
genetic variation in the population. We assume that the
reproductive rate W ({σ }), also called the Wright fitness of
a genotype {σ }, is given by

W ({σ }) = e−βU ({σ }), (1)

where U ({σ }) is the Fisher fitness and β is the selective
pressure. If β = 0 every genotype has the same reproductive
rate. If β � 1 the difference in the reproductive rate of
genotypes having different U ({σ }) is strongly enhanced.

We assume that at each time there can be a birth or a
death process. We assume that the birth process depends on
the reproductive rate W ({σ }) = exp[−βU ({σ })] and that the
death process is a random drift. If we define the probability
P ({σ },t) that at time t an individual has genome {σ }, the
dynamical equation of evolution of P ({σ },t) is given by the
mean-field equation, valid for large populations or growing
populations, i.e.,

dP ({σ },t)
dt

= M{σ }|{σ ′}

[
e−βU ({σ ′})P ({σ ′},t)

Zt

]
− P ({σ },t),

(2)

where the operator M{σ }|{σ ′} is defined in Eq. (26), and
Q({σ }|{σ ′}) is given by

Q({σ }|{σ ′}) =
∏

i

[
(1 − μ)δ(σi,σ

′
i ) + μ

4

]
, (3)

where μ is the mutation rate. The partition function Zt in
Eq. (2) is given by

Zt =
∑
{σ }

∑
{σ ′}

Q({σ }|{σ ′})e−βU ({σ ′})P ({σ ′},t). (4)

We observe here that Eq. (2) can be reduced to the well-
known quasispecies equation [6,17–20] if we make a change
of variables t → t ′ with dt/Zt = dt ′. Let us now assume to
know the solution of the eigenvalue problem

M{σ }|{σ ′}[e−βU ({σ ′})πn({σ ′})] = λnπn({σ }) (5)

with λn describing the discrete spectrum of this problem and
πn({x}) the normalized eigenfunctions. If we decompose the
function P ({σ },t) on the basis πn({σ }) of eigenfunctions, i.e.,

P ({σ },t) =
∑

n

cn(t)πn({σ }), (6)

and if we make the self-consistent assumption that we know
the function Zt , the dynamical solution of Eq. (2) for the
coefficients cn(t) is given by

cn(t) = exp[λnG(t) − t]cn(0). (7)

In Eq. (7) the function G(t) is defined through the function Zt

according to the equation

G(t) =
∫ t

0
dt ′

1

Zt ′
. (8)
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Using the definition for Zt given by Eq. (4) together with
Eqs. (3) and (7), we can close the self-consistent equations
and uniquely determine the evolutionary dynamics of the
population. Therefore the partition function Zt is given by

Zt =
∑

n

λncn(t) = 〈λ〉, (9)

where the average 〈·〉 is performed over the functions cn(t)
given by (7). Finally, using (7) we can derive the equation
obeyed by the partition function Zt = 〈λ〉,

1

2

d〈λ〉2

dt
= 〈λ2〉 − 〈λ〉2. (10)

This equation generalizes the Fisher theorem of natural
selection [1,27] in the presence of mutations and describes the
fact that evolution is an off-equilibrium process. In fact, 〈λ〉 =
〈W ({σ })〉 is the average reproductive rate of the population.
Equation (10) expresses the fact that this average reproductive
rate, asymptotically in time, evolves toward the fundamental
state λ0, as long as the environment does not change; i.e.,
the Fisher fitness function U ({σ }) and the selective pressure
remain constant in time. The rate at which the average fitness
change is equal to the variance of the eigenvalues λn over the
distribution cn(t). In the Fisher theorem, valid in the absence
of mutations, the average fitness increases proportionally to
the variance of the individual fitnesses. Therefore we see that
the generalization of the Fisher theorem [1], equivalent to the
Price equation [5], can be done substituting the variance of
the individual fitnesses with the variance of the eigenvalues of
the evolutionary dynamics. We note here that since cn(t) sum
up to one, but they are not necessarily positive definite, in the
presence of mutations, the fitness of the population can either
increase or decrease. In any case, asymptotically in time the
population is described by the eigenfunction associated with
the maximal eigenvalue λ0. We observe here that the Price
equation corresponds to the decomposition of Eq. (10) in a
term independent of the mutation rate and a term dependent
on the mutation rate. Moreover we observe that the Fisher
theorem is not only valid in the presence of constant fitness
landscape, considered in this paper, but is also valid in the
presence of fluctuating environments. Indeed, most of the
recent literature on the Fisher theorem relates to fluctuating
environments, where U ({σ }) is not constant. For recent results
in these interesting aspects of biological evolution we refer the
reader to recent papers [27,28].

B. The Bose-Einstein condensation in the Kingman model

The Kingman model [7,8] is one of the most interesting
stylized models of asexual evolution where the quasispecies
transition is observed. In the framework of this model the
quasispecies transition can be exactly mapped to the Bose-
Einstein condensation in a Bose gas. One interesting aspect of
the Kingman model is that the evolutionary dynamics reaches
an equilibrium due to the constant drive of random mutations.
In the Kingman model each individual is assigned a single real
parameter ε � 0 determining its reproductive rate W (ε), i.e.,

W (ε) = e−βε. (11)

Moreover, in this model, after each duplication, a mutation
occurs with probability α, and a new offspring is generated
with random fitness ε drawn from a given distribution ρ(ε).

Therefore instead of writing Eq. (2) for the distribution
P ({σ },t) that an individual of the population has genotype
{σ } at time t , we can write the equation for the probability
density P (ε,t |t0) that a random individual in the population is
associated with a given Fisher fitness ε at time t and had the
last mutation at time t0. The evolution of P (ε,t |t0) is given by

dP (ε,t |t0)

dt
= (1 − α)

e−βεP (ε,t |t0)

Zt

− P (ε,t |t0). (12)

The partition function Zt in Eq. (12) is given by

Zt =
∫ t

0
dt0

∫
dε e−βεP (ε,t |t0). (13)

Asymptotically in time we assume self-consistently that Zt →
Z. Therefore, in this limit the probability P (ε,t |t0) that an
individual has fitness ε at time t under the condition that the
last mutation happened at time t0 is given by the solution of
(12), i.e.,

P (ε,t |t0) = αρ(ε)e
[

exp(−βε)(1−α) 1
Z

−1
]

(t−t0)
. (14)

Finally, integrating over t0, we can evaluate the probability
P (ε,t) that an individual at time t has a given Fisher fitness ε

independently of t0, i.e.,

P (ε,t) =
∫ t

0
dt0αρ(ε)e

[
exp(−βε)(1−α) 1

Z
−1

]
(t−t0)

. (15)

Therefore the steady-state solution for P 

B(ε) reached in the

limit t → ∞ is given by

P 

B(ε) = μρ(ε)

(
1 + 1

eβ(ε−μB ) − 1

)
, (16)

where e−βμB = Z/(1 − α) and the probability that an in-
dividual has fitness ε is determined by the Bose-Einstein
distribution. Finally, using the definition (13), we can find the
self-consistent equation that the constant Z = (1 − α)e−βμB

needs to satisfy, i.e., the normalization condition

1 − α

α
=

∫
dερ(ε)

1

eβ(ε−μB ) − 1
. (17)

If ρ(ε) vanishes for ε → 0, the Bose-Einstein integral in
Eq. (17) can be limited from above. As a result, at high
enough selection pressure and low enough mutation rate the
system might undergo a condensation phase transition in the
Bose-Einstein universality class. Below this phase transition
a finite fraction of the individuals in the population shares
the same genotype corresponding to the maximal fitness.
This is one of the principal examples that show the so-
called quasispecies transition: For low mutation rate and high
selection a finite fraction of the population is found to have
the same genotype. Below this phase transition the system is
not stationary anymore, and the population average fitness is
strongly dependent on the statistic of records related to the
occurrence of the largest fitness. Interestingly a similar phase
transition occurs also in evolving ecologies [14], where the
invasive species might strongly reduce the biodiversity, and
in evolving models of complex networks [9,12], where there
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might be the emergence of superhubs such as Google on the
World Wide Web.

C. The Fermi-Dirac distribution in the presence
of negative selection

The Fermi-Dirac distribution can be obtained in the
presence of negative selection by a similar mechanism that
generates a Bose-Einstein distribution in the Kingman model.
This model is mostly interesting because of the underlying
symmetry between Fermi-Dirac and Bose-Einstein distribu-
tions. We assume that each individual is assigned a parameter
ε describing its adaptability to the environment. The birth rate
is one, and new individuals are generated at each unit of time
t with parameter ε drawn from a given distribution ρ(ε). The
death rate is given by a random drift with probability α and by
a negative selection proportional to exp[βε] with probability
1 − α. Therefore the dynamical evolution of the probability
density P (ε,t |t0) that in the population there is an individual
with parameter ε born at time t0 is given by

dP (ε,t |t0)

dt
= −

[
(1 − α)

eβε

Zt

+ α

]
P (ε,t |t0). (18)

The partition function Zt in Eq. (18) is given by

Zt =
∫ t

0
dt0

∫
dεeβεP (ε,t |t0). (19)

Assuming in the asymptotic limit of large times Zt → Z to
solve Eq. (6), we find that the probability density that an
individual has fitness ε at time t under the condition that it
was born at time t0 is given by

P (ε,t |t0) = ρ(ε)e
[

exp(βε)(1−α) 1
Z

−α

]
(t−t0)

. (20)

The probability density that an individual at time t has Fisher
fitness ε independently of t0 is given by

P (ε,t) =
∫ t

0
dt0ρ(ε)e

[
exp(−βε)(1−α) 1

Z
−α

]
(t−t0)

. (21)

This systems reaches the steady state in the limit t → ∞
with the equilibrium distribution given by the Fermi-Dirac
distribution P 


F (ε), and in particular we have

P 

F (ε) = 1

α
ρ(ε)

1

eβ(ε−μF ) + 1
(22)

with eβμF = Zα/(1 − α). This distribution is the Fermi-
Dirac distribution. The self-consistent argument is closed
by determining self-consistently the equations that Z has to
satisfy, i.e., the normalization condition

α =
∫

dερ(ε)
1

eβ(ε−μF ) + 1
. (23)

The duality between Fermi-Dirac and Bose-Einstein dis-
tribution has been also recognized in the framework of
evolving network models [10,11] and of models for evolving
ecologies [14].

III. EVOLUTION OF AN ENSEMBLE OF PARTICLES

A. Evolution of a large ensemble of particles described
by the quasispecies equation

We now study an ensemble of particles located in a
one-dimensional space that undergoes a creation-annihilation
process. We map the evolution of the particles to biological
evolution. In this mapping, the fitness function corresponds
to the energy of a particle, and mutations correspond to a
stochastic noise. Finally we assume that the probability of
finding a particle at a certain space-time point for a large
ensemble of particles obeys the quasispecies equation. We
simply replace in Eq. (2) the biological population by a large
ensemble of particles and the individual genome by a point in
continuous one-dimensional space.

In the following, we define P (x,t) as the probability density
that a particle is at position x at time t . We assume that this
distribution, in the limit of large number of particles, follows
the stochastic equation inspired by Eq. (2) for biological
evolution

dP (x,t)

dt
= Mx,x ′ [e−βU (x ′)P (x ′,t)]

Zt

− P (x,t), (24)

where the partition function Zt is given by

Zt =
∫

dx ′
∫

dx Q(x,x ′)e−βU (x ′))P (x ′), (25)

and the operator Mx,x ′ , applied to a function e−βU (x)f (x), acts
as

Mx,x ′ [e−βU (x ′)f (x ′)] =
∫

dx ′ Q(x,x ′)e−βU (x ′)f (x ′), (26)

where Q(x,x ′) describes the stochastic noise playing the role
of mutations for the evolution of the ensemble of particles. The
inverse temperature β, with β > 0, plays in this stochastic
dynamics the same role as the selective pressure in the
biological evolutionary dynamics. For simplicity we assume
that the position x at time t + dt is related to the position x ′
at time t by x = x ′ + η, where η is a noise with Gaussian
distribution. Therefore we take

Q(x,x ′) =
√

1

2πβD

∫
dη δ(x ′ − x − η)e− 1

2Dβ
η2

, (27)

where Dβ is the variance of the noise.
Introducing the Fourier representation for the delta function

we get

Mx,x ′ [e−βU (x ′)f (x ′)] = N
∫

dx ′

×
∫

dk e−β[H (x,k)]+ik(x−x ′)f (x ′), (28)

where N = 1
2π

√
1

2πβD
, and the Hamiltonian H (x,k) of this

system is identified as H (x,k) = D
2 k2 + U (x). The action of

the operator Mx,x ′ on a function f (x) for β � 1 is given by

Mx,x ′ [e−βU (x ′)f (x ′)] 	 N
∫

dx ′

×
∫

dk[1 − βH (x,k)]eik(x−x ′)f (x ′).
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Therefore for β � 1 the evolution Eq. (24) can be written as

dP (x,t)

dt
	 −N

Zt

β

[
−D

2

∂2P (x,t)

∂x2
+ U (x)P (x,t)

]

+
(N

Zt

− 1

)
P (x,t). (29)

This equation is particularly interesting since it is linear in
the Hamiltonian H (x,k) and can be put in relation with the
Schrödinger equation in imaginary time. In the next steps of
our calculation we consider this particular limit (β � 1) to
compare the results of our evolutionary dynamics of particles
with the solution of the Schrödinger equation in quantum
mechanics.

In order to derive a specific solution of the stochastic
dynamics described by Eq. (24) we consider the potential
energy U (x) of the harmonic oscillator, i.e.,

U (x) = 1
2m ω2x2. (30)

Assuming that time and space dependence of the probability
density P (x,t) can be factorized, we solve the following
eigenvalue equation for the space-dependent part of this
probability, i.e.,

Mx,x ′ [e−βU (x ′)πn(x ′)] = λnπn(x). (31)

The normalized eigenfunctions are given by

πn(x) = Bn(x)e− 1
2D

εx2
, (32)

where Bn(x) indicates the polynomials of order n that solve
this eigenvalue problem. Two possible values for ε = ε1 and
ε = ε2 solve this eigenvalue problem, i.e.,

ε1,2 = βDmω2

2

(
±

√
1 + 4

Dβ2mω2
− 1

)
. (33)

As the square root is always larger than one, one has ε1 > 0 and
ε2 < 0. The eigenfunctions are only normalizable for positive
ε = ε1. Then one obtains the eigenvalues

λn = 1

(1 − βε2)n+1/2
. (34)

Since the eigenvalues λn are always positive we define the
energy spectrum of the system as the set of values En

given by

λn = e−βEn . (35)

Therefore, using Eqs. (34) and (35) we can calculate the
spectrum En, given by

βEn =
(

n + 1

2

)
log(1 − βε2). (36)

For β � 1, using Eq. (33), we find

ε1 =
√

mω2D + O(β); ε2 = −
√

mω2D + O(β). (37)

Finally, we can calculate the spectrum En of Eq. (36), at the
first order in β, which is given by

En =
√

mD ω

(
n + 1

2

)
. (38)

This spectrum coincides with the spectrum of the quantum
mechanical harmonic oscillator if we put D proportional to
h̄2/m. Let us continue to study the stochastic evolution of every
possible value of β. If we decompose the function P (x,t) in
the basis πn(x),

P (x,t) =
∑

n

cn(t) πn(x), (39)

we obtain the self-consistent dynamical solution

cn(t) = exp[λnG(t) − t]cn(0). (40)

where the function G(t) is defined by the function Zt according
to the equation

G(t) =
∫ t

0
dt ′

1

Zt ′
. (41)

The solution of our evolutionary equation is given by the
definition for Zt in Eq. (25), the eigenvalues (31), and the
structure of the solution of the probability density P (x,t) given
by Eq. (39); we find

Zt =
∑

n

λncn(t) = 〈λ〉, (42)

where cn(t) are given by Eq. (40). Finally using Eqs. (40)
and (41) it is easy to prove that

1

2

d〈λ〉2

dt
= (〈λ2〉 − 〈λ〉2). (43)

The partition function Zt = 〈λ〉 therefore describes off-
equilibrium dynamics. From the dynamical solution Eq. (40)
for the coefficient cn(t) it is easy to prove that the probability
distribution P (x,t) converges asymptotically in time to the
fundamental state π0(x) associated with the largest eigenvalue
λ0. This phenomenon has a biological equivalent in Eq. (10)
according to which a population of asexual individuals has
a fitness that reaches the highest eigenvalue of the evolution
operator.

We observe that for the ensemble of particles the maximal
eigenvalue λ = λ0 corresponds to the ground-state energy E0

according to Eq. (36). Therefore, with time the particle system
relaxes to this ground state.

Finally, asymptotically in time, the average energy 〈U (x)〉
of the particles is given by the average of U (x) defined in
Eq. (30) on the fundamental eigenfunction given by Eq. (32).
Therefore we find

〈U (x)〉 = 1

2

mω2D

ε
. (44)

In the limit β � 1 we find that the average energy 〈U (x)〉 is
given by

〈U (x)〉 = 1
2h̄ω. (45)

In the limit β � 1, instead, we find that 〈U (x)〉 is given by a
classical type of expression, i.e.,

〈U (x)〉 = 1
2β(h̄ω)2, (46)

where we have put D = h̄2/m.
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B. Stochastic effects

The analytical treatment we have presented in the previous
paragraph focus on the quasispecies equation. It is therefore a
mean-field treatment that neglects the stochastic fluctuations
present in the dynamics that we are proposing to study. In
biological evolution these effects are known as genetic drift.
Typically these effects are important for small populations N

and small mutation rates μ, i.e., Nμ � 1. For example in
the Kingman model we might have that the fixation time of
the fittest mutant can be smaller than the typical time needed
for new mutations to occur. When this occurs, the evolutionary
dynamics strongly depends on the statistics of records at which
the fittest mutants arise in the population.

In this section we study the stochastic effects in the model of
evolution of the ensemble of particles under the influence of an
harmonic potential U (x). In order to simulate the evolution of
particle we adopt the Moran process [6]. We assume to have
an ensemble of N particles. Each particle i = 1,2, . . . ,N is
assigned a position xi . Starting from random initial conditions,
at each time step we choose a particle i to generate a
new particle. The particle i is chosen according to the
probability

�i = e−βU (xi )∑N
r=1 e−βU (xr )

. (47)

The new particle will have a position xnew chosen with
probability

Q(xnew,xi) = 1√
2πβD

e
− 1

2βD
(xi−xnew)2

. (48)

Finally we choose a random particle j to be annihilated, and
we put

xj → xnew. (49)

In Fig. 1 we show the asymptotic distribution for the ensemble
of particles as a function of the noise amplitude D and the
number of particles N in the ensemble. The fluctuations of
these distributions are stronger for small ensemble of particles
(N small) and high values of D. Nevertheless always the
quasispecies solution well captures the average of the dis-
tribution. In fact the asymptotic distribution fluctuates around
the eigenfunction π0(x) [given by Eq. (32)] corresponding
to the fundamental states of energy E0. The surprisingly
good agreement of the quasispecies approach relies on the
fact that this stochastic process is defined over a continuous
variable x and is described by a Gaussian noise. Therefore
the diffusion can be arbitrary small but is always present as
long as D �= 0. This is at odds with genetic mutations that
might not occur over a finite time frame if the mutation rate is
small enough, giving rise to a separation of time scales in the
system.

C. Evolution in the presence of a scattering process

In the following we study the change in the evolution of
the particles in the presence of a scattering process occurring
with probability α where at any time there is a creation
process. In order to mimic this process we assume that when
a particle undergoes a scattering process it takes a random
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FIG. 1. (Color online) The asymptotic distribution of an ensemble
of N particles undergoing a Moran process driven by an harmonic
potential U (x) = 1

2 mω2x2 with m = 1 and ω = 1 and selective
pressure β = 10. The distribution are collected after equilibration
of the system for a time window of 400N time steps. The solid
lines indicate the theoretical expectations based on the quasispecies
equation given by Eq. (32). The smaller the population the larger are
the stochastic fluctuations around the mean behavior described by the
quasispecies equation.

position distributed according to a probability distribution
g(x), which does not depend on time. In order to study the
stochastic evolution of this interacting system of particles we
describe the evolution of the ensemble of particles that have
not scattered since time t0. The evolution for the probability
density P (x,t |t0) that a particle is at position x at time t under
the condition that the last scattering happened at time t0 is
given by

dP (x,t |t0)

dt
= (1 − α)

Mx,x ′e−βU (x ′)P (x ′,t |t0)

Zt

− P (x,t |t0),

(50)

where Mx,x ′ is given by Eq. (26) and Q(x,x ′) is given
by Eq. (27). The partition function Zt in Eq. (50) is
given by

Zt =
∫ t

0
dt0

∫
dx ′

∫
dx Q(x,x ′)e−βU (x ′)P (x ′,t |t0) (51)

with Q(x,x ′) given by Eq. (27). In order to solve Eq. (50) we
have to solve the eigenvalue Eq. (31) for the interacting case.
The eigenvalues and the eigenfunctions remain unchanged and
are given by Eqs. (36) and (32). If we decompose the function
g(x) in the basis of eigenfunctions of Mx,x ′ we get g(x) =∑

n gnπn(x). Asymptotically in time, the dynamics will reach
a stationary state determined by a constant limit value Zt → Z.
We assume self-consistently to know the value of Z. With this
assumption, at large times t we solve the dynamical Eq. (50)
to find the probability density P (x,t |t0) that a particle is at
position x at time t under the condition that the last scattering
happened at t0, i.e.,

P (x,t |t0) =
∑

n

α gne
[λn(1−α) 1

Z
−1](t−t0)πn(x). (52)
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Finally, integrating P (x,t |t0) over t0 we get the probability
P (x,t) that a particle is at time t at position x independently
of t0, i.e.,

P (x,t) =
∫ t

0
dt0

∑
n

α gne
[λn(1−α) 1

Z
−1](t−t0)πn(x). (53)

Using Eq. (53) and neglecting the terms vanishing in the limit
t → ∞ we obtain that the probability p(n) of an eigenstate n

is expressed in terms of the Bose-Einstein distribution

p(n) = gnα

[
1 + 1

eβ(En−μB ) − 1

]
, (54)

which takes the form of a Bose-Einstein distribution with
e−βμB = Z/(1 − α). Finally the constant Z = (1 − α)e−βμB

is fixed by the normalization condition

1 − α =
∑

n

gn

1

eβ(En−μB ) − 1
. (55)

This demonstrates that in this context it is possible to explain
the emergence of the Bose-Einstein distribution by purely
dynamical considerations. In particular this mechanism has
its parallel in the Kingman model [7] for the evolution of
asexual populations with an infinite number of genetic loci.

IV. CONCLUSIONS

In this paper we have proposed a unified framework to study
biological quasispecies evolution and stochastic quantization.
We have shown that the dynamics of biological evolution of
nonoverlapping generations and large populations is naturally
expressed in terms of eigenvalues and eigenfunctions of the

evolutionary dynamics. This approach allows for a generaliza-
tion of the Fisher theorem in the presence of mutations. In this
framework the average fitness of the population increases in
time proportionally to the variance of the eigenvalues instead
of the variance of the fitness of the individuals.

Moreover we have shown that the quasispecies equation
describing the evolution of a large ensemble of particles
provides an alternative path to stochastic quantization with
respect to existing approaches. The probability distribution of
the ensemble of particles can be decomposed into the eigen-
functions of the evolution operator. In the low-temperature
limit the quasispecies equation is related to the Schrödinger
equation. Therefore, in this limit the spectrum coincides with
the spectrum of the associated quantum dynamics. Interest-
ingly, in the presence of a noise-mimicking random scattering
process the Bose-Einstein distribution can be reached.

Direct relations between biological evolution and quantum
mechanics were proposed in the book What Is Life? [33]
by Schrödinger. Since that time this idea has continued to
fascinate biologists and physicists, and it has gained momen-
tum in the last few years [34–37]. The relations between
quasispecies evolution and quantum mechanics pointed out
here are of formal nature. We believe that this paper opens new
perspectives on the relation between quasispecies evolution,
stochastic processes, and stochastic quantization that will
stimulate further research at the intersection of these fields.
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