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Electric double-layer supercapacitors are a fast-rising class of high-power energy storage devices based on
porous electrodes immersed in a concentrated electrolyte or ionic liquid. As yet there is no microscopic theory
to describe their surprisingly large capacitance per unit volume (volumetric capacitance) of ∼100 F/cm3, nor
is there a good understanding of the fundamental limits on volumetric capacitance. In this paper we present a
non-mean-field theory of the volumetric capacitance of a supercapacitor that captures the discrete nature of the
ions and the exponential screening of their repulsive interaction by the electrode. We consider analytically and
via Monte Carlo simulations the case of an electrode made from a good metal and show that in this case the
volumetric capacitance can reach the record values. We also study how the capacitance is reduced when the
electrode is an imperfect metal characterized by some finite screening radius. Finally, we argue that a carbon
electrode, despite its relatively large linear screening radius, can be approximated as a perfect metal because of
its strong nonlinear screening. In this way the experimentally measured capacitance values of ∼100 F/cm3 may
be understood.
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I. INTRODUCTION

The present energy crisis has created a growing demand
for efficient, portable, and high-power energy storage devices.
Electric double-layer (EDL) supercapacitors are fast emerging
as a promising potential solution to this problem [1]. In an
EDL supercapacitor, energy is stored at the interface between
an electron-conducting (metallic) electrode and an electrolyte
or ionic liquid via the reversible adsorption of ions onto the
electrode surface. In this way, counterions adsorbed onto the
charged electrode effectively comprise the second half of a
parallel-plane capacitor whose thickness is equal to the radius
a/2 of the ions. If the charge of these ions is described as a
uniformly charged plane, as in the mean-field approach, then
one arrives at a capacitance C which is equal to

CH = 2ε0εA/a, (1)

a result first envisioned by Helmholtz in 1853 [2]. Here, ε0

is the vacuum permittivity, ε is the dielectric constant of the
ionic solution, and A is the total surface area of the electrode.
In mean-field theories of the EDL, CH/A plays the role of a
maximum possible capacitance per unit area. As an example,
for ε = 2 and a = 1 nm Eq. (1) gives CH/A ≈ 3 μF/cm2.

For practical applications, a supercapacitor is best charac-
terized not by its capacitance per unit area, C/A, but by its
capacitance per unit mass or per unit volume (“volumetric
capacitance”). For this reason, there has been much emphasis
on the development of conducting materials with very high
specific surface area that can be used as electrodes. Among
the more promising candidates are highly porous carbons [3–5]
and carbon nanotube “forests” [6]. In such devices the specific
surface area S can be as high as S = 1000 m2/cm3. To
understand how this is possible, one can imagine an electrode
with slitlike pores of width d = 1 nm separated by conducting
walls with thickness b = 1 nm (Fig. 1). For the sake of
argument, we take this electrode to be the anode; one can
imagine that the cathode is its mirror reflection to the right. In
a supercapacitor device, the anode and cathode are electrically
isolated by a membrane that is penetrable to the ions, so

that the well-conducting ionic liquid between them forms
EDLs on the tortuous surfaces of both electrodes. In this way
the supercapacitor consists of two double-layer capacitors in
series; in this paper we are concerned with calculating the
anode capacitance.

If the electrode in Fig. 1 is placed in contact with an ionic so-
lution with ε = 2 and a = 1 nm, then the Helmholtz expression
of Eq. (1) predicts a volumetric capacitance C ≈ 30 F/cm3.
In fact, capacitance values as large as C = 100 F/cm3 have
been reported for such devices [3,7]. How is this possible?

In order to resolve this puzzle, let us briefly return to the
problem of a planar, nonporous double-layer capacitor. It has
been shown recently [8] that the capacitance per unit area of an
EDL is not necessarily limited by the Helmholtz value. When
the charge on a planar electrode is small enough that adsorbed
ions are separated from each other by a distance much larger
than their diameter a, the mean-field approach fails and the
effects of electronic polarization of the electrode surface must
be taken into account. In particular, when the electrode is made
from a good metal, each ion forms an image charge in the
electrode surface. The ion and its image charge together make
an electric dipole which repels adjacent ions by a screened
1/r3 interaction rather than the normal 1/r interaction. Such
a reduced interaction, along with the positional correlations
between adsorbed ions, allows the capacitance of a single
interface to be as much as three times larger than CH in
practical situations. The crucial importance of image forces for
the structure and capacitance of the EDL has been recognized
by a number of previous authors (see, for example, Refs. [9–11]
and the very recent publication of Ref. [12]).

The notion of a double-layer comprised of ion-image
dipoles is also relevant for describing porous, metallic
supercapacitor electrodes (Fig. 1), provided that the width
d of the pores is much larger than the ion diameter a, so
that opposite walls of a pore have independent, noninteracting
EDLs [see Fig. 2(a)]. For electrodes with such wide pores,
enhanced capacitance can be explained using the theory of
Ref. [8]. However, in supercapacitors where d is comparable

056102-11539-3755/2011/83(5)/056102(10) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.056102


SKINNER, CHEN, LOTH, AND SHKLOVSKII PHYSICAL REVIEW E 83, 056102 (2011)

FIG. 1. A schematic picture of the cross section of a highly porous
supercapacitor electrode. The solid, metallic electrode (gray area) has
deep, planar pores of width d , separated by walls of thickness b. The
electrode is open on one side to an ionic liquid (IL) or a concentrated
electrolyte.

to a, EDLs on opposite walls of a nanopore merge and new
physics should emerge. Indeed, recent experiments by Gogotsi
and co-workers have demonstrated a surprising increase in
the capacitance per unit area as the width of pores in a
carbon-based electrode is made comparable to the diameter of
bare ions in an organic electrolyte [13] or in an ionic liquid [7].

In order to explain these results, one can try to extend the
Helmholtz mean-field approach to the case of a narrow pore
by replacing the charge of ions in the pore by two identical,
coinciding, uniformly charged planes located midway between
the pore’s two walls (see the result of a similar approach for
cylindrical pores in Ref. [14]). In this picture, each of the
charged planes forms a Helmholtz capacitor with one of the
pore’s metal walls, so that the total capacitance is 2CH , as it
would be for a much wider pore. Thus, the mean-field approach
cannot capture the unique effect of narrow pores.

Going beyond the mean-field level, however, one can recall
that charges confined within a narrow nanopore create an
infinite series of image charges in the two conducting electrode
walls [Fig. 2(b)]. This leads to an interaction between ions
which decays exponentially with the distance between them
[15].

In a recent paper, Kondrat and Kornyshev [16] recognized
that such an exponentially suppressed interaction can lead
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FIG. 2. Schematic depiction of anions (black circles) neutralizing
a positively charged nanopore in a metallic anode (solid gray area).
(a) When the pore width is large compared to the ion diameter,
opposite walls of the pore have independent EDLs and every anion
can be said to have a single positive image charge (white circles with
dashed outline). (b) When the pore width is comparable to the anion
radius, anions form a two-dimensional (2D) charged layer within the
pore. Each anion has an infinite series of image charges (white and
dark gray circles with dashed outlines), which produce an exponential
interaction between neighboring anions. For clarity of illustration,
image charges are shown for one anion only.

to large capacitance C > CH in the nanopore for reasons
similar to those discussed in Ref. [8]. However, in calculating
the capacitance, the authors of Ref. [16] imagined that the
pore is filled with many anions and cations and they used
a description where the small net charge is spread equally
among all ions in the pore. The total electrostatic energy was
then calculated using the exponential interaction evaluated at
the average distance between all ions. Such an approach can
be called a semi-mean-field approximation and does not lead
to quantitatively correct results, as we will show below.

In the present paper, as in Ref. [8], we completely abandon
the mean-field approach in order to address a fundamental
question: How large can the volumetric capacitance of an
EDL supercapacitor be? We construct a theory which takes
into account correlations between discrete anions and the
screening of the Coulomb interaction by the conducting
electrode surface. We consider explicitly two cases for the
electrode material. First, we examine the case where the
electrode can be considered a perfect metal (Sec. II) and
we verify our theoretical predictions with a simple Monte
Carlo (MC) simulation (Sec. III). We find that under realistic
circumstances the capacitance per unit area can be up to ten
times the Helmholtz value, with the corresponding volumetric
capacitance as large as 150 F/cm2. Second, we analyze
the case where the electrode is an imperfect metal with a
screening radius comparable to the pore width (Sec. IV). The
crossover between this theory and that of Sec. II is carefully
discussed. In Sec. V we consider how our theory applies to
supercapacitors made with graphitic carbon electrodes, and
we argue that at not-too-small voltages the graphite is well
approximated as a good metal due to the strong effect of
nonlinear screening. We close in Sec. VI by briefly examining a
different model of a porous supercapacitor, where the electrode
is made from a random assembly of conducting spheres that
are three-dimensionally connected, and show that very large
volumetric capacitance can result in this situation as well.

II. CAPACITANCE OF A SINGLE 2D METAL PORE

In this section we consider an electrode made from a
perfect metal which has deep, planar pores of width d (Fig. 1).
Such pores are assumed to be in contact with an ionic liquid
described by the restricted primitive model: a neutral mixture
of hard-core monovalent ions with the same diameter a. We
assume that a � d, so that ions can enter the pores. We
also assume that d − a � a, so that ions in the pore can
be described as a 2D liquid. A voltage source provides the
positive potential difference V between the electrode and the
bulk of the ionic liquid that attracts anions into the pore. If
Q is the amount of electronic charge that has moved through
the voltage source onto the electrode relative to the state at
V = 0, then the differential capacitance of the EDL is defined
as C = dQ/dV .

In principle, at V = 0 the pore may already contain some
finite and equal number of anions and cations. In this case, a
reliable analytical calculation of the total electrostatic energy
U (Q), which is necessary for calculating the capacitance, is
very difficult. Therefore, the effect of allowing both ionic
species to simultaneously enter the pore is examined only
numerically at the end of Sec. III.
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This paper concentrates instead on the case when the pore
is empty at V = 0. This situation results when the chemical
potential of ions in the ionic liquid is lower than the free
energy per ion in a filled, neutral pore. Such a difference in
chemical potential can arise from two sources. First, ions in
a three-dimensional (3D) ionic liquid are surrounded by a
larger number of oppositely charged neighbors, which lowers
the interaction part of the chemical potential outside the
pore. Second, when the width d of the pore is close to the
ion diameter a, the entropic contribution to the chemical
potential inside the pore increases sharply. For the case of
electrolyte solutions, there is also a positive contribution to the
chemical potential associated with the necessity of stripping
the solvation shell from each ion that enters the pore.

We therefore assume that the pores are empty at V = 0.
As the voltage is increased from zero, the pores remain empty
until some finite voltage V = Vt . At V > Vt the pores of the
anode begin to fill with anions, while cations remain away
from the anode. This picture allows us to formulate a simple
analytical calculation of the total energy U , presented below,
based on the repulsion between anions in the pore.

Our general approach to calculating the capacitance is as
follows. We first describe the total electrostatic energy U (n)
associated with the lowest energy configuration of n anions per
unit area in the pore. If entropic effects are ignored, then the
value of the charge Q of the pore is that which minimizes
the system’s total energy U − QV , where the term −QV

represents the work done by the voltage source. Using the
equilibrium condition d(U − QV )/dQ = 0 along with Q =
eAn gives

V = dU

dQ
= 1

eA

dU

dn
. (2)

The differential capacitance of the pore C = (dV/dQ)−1 can
therefore be written

C = e2A2

(
d2U

dn2

)−1

. (3)

The capacitance can be expressed as a function of voltage,
C(V ), by combining Eqs. (2) and (3).

In the remainder of this section we first calculate the
capacitance of the pore in the zero temperature limit and then
estimate the effect of the ions’ finite thermal energy.

We begin our theoretical description by noting that a point
charge e located in the plane halfway between two metal walls
creates an electric potential within that plane equal to [17]

φ(r) = e

πε0εd

∞∑
n=1

K0[π (2n − 1)r/d]. (4)

Here, r is the radial distance from the point charge, d is the
distance between the metal walls (the pore width), and K0(x) is
the zeroth-order modified Bessel function of the second kind.
At distances r > d, Eq. (4) can be expanded to lowest order
to give

φ(r) � 2
√

2 exp[−πr/d]√
r/d

e

4πε0εd
. (5)

Since the sub-leading-order term of Eq. (4) is exponentially
smaller than that of Eq. (5), this approximation has a negligible

effect on the capacitance and we use Eq. (5) everywhere in
further calculations.

When a given area density n of anions is inside the metal
pore, the repulsive interaction between anions induces strong
positional correlations. In their lowest energy configuration,
the anions form a strongly correlated liquid, reminiscent of
a 2D Wigner crystal, where anions are separated from their
nearest neighbors by a well-defined spacing ∼n−1/2. In such
an arrangement the total repulsive energy among anions is
minimized while maintaining the area density required to
neutralize the electrode.

If we postulate a crystalline arrangement of the anions,
then the electrostatic energy U of this state can be calculated
exactly by making use of the interaction potential in Eq. (5).
Due to the short-ranged nature of the interaction, this energy
is well approximated by considering only nearest-neighbor
interactions in a square lattice of anions. Such an approach
gives

U (n) = 2nAeφ(n−1/2) − (μ − u)nA

= 4
√

2
A

d2
(nd2)5/4 exp[−π/

√
nd2]

× e2

4πε0εd
− (μ − u) nA. (6)

The term −(μ − u)nA takes into account the voltage-
independent energy associated with bringing each anion from
the bulk of the ionic liquid into the pore; μ is the chemical
potential of ions in the bulk of the ion liquid and u is the
self-energy of an anion in the pore. The term −(μ − u)nA

is linear in n and therefore, by Eq. (3), disappears from the
capacitance. Its only effect is to produce a finite threshold
voltage Vt = −(μ − u)/e required to bring anions into the
metal pore, as discussed above. Our theory assumes that
−(μ − u) > 0, so that Vt is positive.

Taking the derivative dU/dQ as in Eq. (2), we find an
expression for the voltage in terms of the ion density:

V − Vt � 2π
√

2 exp[−π/
√

nd2]

(nd2)1/4

e

4πε0εd
. (7)

Similarly, the capacitance can be evaluated by Eq. (3), which
gives

C �
√

2a

πd
(nd2)7/4 exp[π/

√
nd2]CH . (8)

In the limit n � 1/d2, Eqs. (7) and (8) can be combined to
give an analytical expression for the capacitance as a function
of voltage at small V − Vt :

C � 32π3

(
e/4πε0εd

V − Vt

)
ln−3

[
8π2

(
e/4πε0εd

V − Vt

)2
]

a

d
CH .

(9)

For larger voltages corresponding to (V − Vt )/(e/4πε0εd) �
0.1 the capacitance is well described by the power-law relation

C � 3.5

(
V − Vt

e/4πε0εd

)−0.4
a

d
CH . (10)

Equations (8) and (9) suggest that at low ion density (or
small V − Vt ) the capacitance can be much larger than the
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Helmholtz value. This result can be understood physically by
noting that at such low ion densities the fractional coverage
of excess ions on the electrode surface na2 � 1, so that it
is incorrect to think of the EDL in the mean-field way: as
a uniform layer of surface charge. Rather, the neutralizing
ionic charge consists of discrete ions whose interaction is
exponentially small due to the aggressive screening by the
metal pore. Positional correlations among these ions help them
to avoid each other, resulting in a lower energy than what is
possible in mean-field descriptions of the EDL and therefore in
larger capacitance that is not limited by the physical distance
a/2 between the electrode and its countercharge. With growing
ion density, the capacitance decreases, until at some finite
voltage Vmax the density of ions in the pore reaches its steric
limit: n � 1/a2. By Eq. (7),

Vmax � 2π

√
2a

d
exp[−πa/d]

e

4πε0εd
. (11)

Figure 3 shows the capacitance as a function of voltage, C(V ),
plotted for the cases d = a,1.5a,2a.

If the width of pores in the electrode is increased, the
capacitance decreases, as shown in Fig. 3. In the limit where
the pore thickness d � a, as in Fig. 2(a), the capacitance can
be described using a theory of independent EDLs composed
of ion-image dipoles. Such an approach gives C ≈ 1.3CH per
interface [8] at na2 = 1 (the relatively flat tail of the C–V

curve) and Cmax ≈ 3CH per interface at n → 0, so that the
total capacitance per pore is smaller than the result shown
in Fig. 3 by more than two times. As mentioned above, this
“anomalous” increase in the capacitance for narrow pores is
the result of the strong, exponential screening that results from
the presence of two close metal walls [Fig. 2(b)].

Formally, Eq. (8) diverges as the density of ions vanishes
(V − Vt goes to zero). Of course, this expression neglects
entropic effects among the ions, which are important in the
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FIG. 3. (Color online) The capacitance in units of CH of a 2D
metal nanopore with width d , plotted as a function of dimensionless
voltage (lower axis) according to Eqs. (7) and (8). Different curves
are labeled by their corresponding value of d/a and are truncated
at their corresponding value of Cmax as given by Eq. (18); here,
T ∗a/d = 0.04. Vmax is shown for d/a = 1, and the top axis shows
the ion concentration for this same case.

limit where ions in the pore are so sparse that their typical
interaction energy is smaller than the thermal energy kBT . At
such low densities the correlated, lattice-type structure of ions
in the pore disappears and we obtain a finite capacitance at
(V − Vt ) → 0.

In order to estimate the value of this capacitance maximum,
we note that when eφ(n−1/2) � kBT the total free energy F

can be written using a truncated virial expansion:

F � Fid + An2kBT B(T ) − eAn(V − Vt ). (12)

Here, Fid = AnkBT ln(na2) is the free energy of a two-
dimensional ideal gas and B(T ) is the second virial coefficient.
B(T ) is calculated from the interaction energy eφ(r) between
two ions [Eq. (5)] as

B(T ) = 1

2

∫ ∞

0

(
1 − exp

[
−eφ(r)

kBT

])
2πr dr (13)

� d2

8π
ln2

[
16π

(T ∗)2

]
. (14)

Here, T ∗ is defined as the dimensionless temperature

T ∗ = kBT

e2/4πε0εd
. (15)

As an example, room temperature corresponds to T ∗ ≈ 0.04
for an ionic solution with dielectric constant ε = 2 in a pore
with d = 1 nm. At temperatures that are not very large, T ∗ �
0.5, the virial coefficient B(T ) is larger than the physical area
πa2/4 occupied by each ion, so that the hard-core interaction
between ions is unimportant for the virial expansion.

As before, we can use the equilibrium condition ∂F/∂n = 0
to give a relation between the voltage and the ion density n:

e(V − Vt ) = kBT [2nB(T ) − ln(1/na2)]. (16)

The capacitance can also be related to n according to C =
e2A2(∂2F/∂n2)−1, which gives

C = nd2

T ∗[1 + 2nB(T )]

a

d
CH . (17)

According to Eq. (16), in the limit (V − Vt ) = 0 the ion
density approaches n = W0[2B(T )/a2]/2B(T ), where W0[x]
is the principle branch of the Lambert W function (W0[x] ≈
ln x for x � 1). Over the experimentally relevant range of
temperature 0.03 < T ∗ < 1, the value of W0[2B(T )/a2] ≈ 1,
so that Eqs. (16) and (17) can be combined to give the
following approximate relation for the capacitance at V = Vt

as a function of temperature:

Cmax(T ) = γ

T ∗ ln2[16π/(T ∗)2]

a

d
CH . (18)

Here γ is a numerical constant; Eq. (14) suggests γ = 4π2 ≈
39, while MC simulations (see Fig. 4) give γ = 34 ± 1. This
is a surprisingly good agreement, considering that Cmax is
determined by a relatively large ion density n ∼ 1/B(T ),
which is at the limit of applicability of the truncated virial
expansion of Eq. (12). Indeed, Eq. (12) is applicable only in the
“gas phase” corresponding to nB(T ) � 1, which is realized
at V < Vt . On the other hand, Eq. (12) fails completely in the
high-density correlated liquid phase, where nB(T ) � 1 and

056102-4



THEORY OF VOLUMETRIC CAPACITANCE OF AN . . . PHYSICAL REVIEW E 83, 056102 (2011)

the potential energy of repulsion between anions [see Eq. (6)]
dominates the entropic contribution to the free energy. A
more complete theory of the capacitance at finite temperature
and large ion density would require a theory of the free
energy of ions in the liquid state and cannot be captured
by the truncated virial expansion presented here. The zero
temperature analytical result of Eq. (10), however, should be
accurate in the limit where the thermal energy kBT is small
compared to the typical interaction energy eφ(n−1/2). At room
temperature and for d = 1 nm and ε = 2, this corresponds to
moderately large ion density nd2 � 0.3.

The above results for the capacitance of a single metal
pore can be used to calculate the total capacitance of the
electrode by multiplying by the number of pores in the
electrode. Thus, the total volumetric capacitance C is given
by C = (ε0εS/a)(C/CH ). As an example we can consider
the electrode depicted in Fig. 1, with d = b = 1 nm, in
contact with an ionic liquid with ε = 2 and a = d. For such
a capacitor the mostly flat tail of the C-V curve of Fig. 3,
where C/CH ≈ 4.5, corresponds to C ≈ 90 F/cm3. If the
electrode can be treated as a perfect metal, then such a capacitor
would demonstrate a peak in the differential capacitance at a
particular voltage Vt , as in Fig. 3. For T ∗ = 0.04, Cmax ≈
150 F/cm3.

III. MONTE CARLO SIMULATION OF A 2D METAL PORE

In order to verify the theoretical predictions of the previous
section, we perform MC simulations of a 2D metal pore open
to a reservoir of positive and negative hard-sphere ions. Our
general approach is to use the grand canonical Monte Carlo
(GCMC) method to impose a difference in chemical potential
between positive and negative ions in the system, thereby
simulating an applied voltage V . Specifically, the chemical
potential of each ion type is specified according to

μ± = μ ∓ eV, (19)

where μ is the chemical potential of the reservoir. The number
of each ion species is allowed to fluctuate with time. We use
our simulation to measure the resulting equilibrium number of
positive and negative charges in the pore at a given V , which
defines the net charge Q(V ). The capacitance of the pore is
calculated by the discrete derivative dQ/dV .

The details of our simulation method are as follows. We
begin each simulation by randomly placing 100 of each type
of ion on a square 2D plane of area A = 20 × 20 d2 and
stipulating the dimensionless temperature T ∗ [see Eq. (15)]
and the dimensionless voltage V ∗ = V/(e/4πε0εd). The ion
diameter a is taken to be equal to the pore width d. Before
any data are taken, ions are allowed to take 105 GCMC steps
to reach equilibrium. The number of positive and negative
ions, M+ and M−, respectively, are then averaged over
the following 30 to 50 × 106 GCMC steps. The charge of the
electrode is defined as Q = e(M− − M+) and the capacitance
is given by the discrete derivative C(V ) ≈ [Q(V + �V/2) −
Q(V − �V/2)]/�V . Care is taken to ensure that all results
are independent of the initial ion configuration.

Following the standard GCMC procedure [18], one GCMC
step consists of either an attempted move by a randomly chosen
ion or the attempted addition or removal of an ion from the

system. Attempted moves occur more often than attempted
addition/removal at a ratio of 9 : 1. We give the simulation area
periodic boundaries, so that an ion leaving one edge enters at
the opposite edge. The total electrostatic energy Utot of a given
configuration of ions is calculated as

Utot = 1

2

∑
i,j

qiqj eφ(ri,j ), (20)

where rij is the distance between ions i and j (found using
the minimum image convention [19]), qi = ±1 is the sign
of ion i, and φ(r) is the interaction law given by Eq. (5).
Attempted moves and addition/removal events are accepted
and rejected based on the corresponding change in Utot,
as given by the traditional acceptance rules for GCMC
[18]. The ions are treated as hard spheres, so that only
those moves/additions resulting in non-overlapping ions are
accepted. For a more detailed discussion of the GCMC method
see Refs. [19,20].

Figure 4 shows the capacitance measured by our GCMC
simulation as a function of voltage for a system with
V ∗

t = Vt/(e/4πε0εd) = −(μ∗ − u∗) = 0.3, calculated at four
different dimensionless temperatures. In this situation, the pore
is essentially empty of ions at V = 0 and at positive voltages
contains only one ionic species, so that its capacitance is well
described by the analytical theory of Sec. II. Both the voltage
and temperature dependence of the capacitance correspond
closely to analytical predictions. Larger voltages could not be
examined by our simulation since these correspond to large
ion fillings na2 ∼ 1 (see the top axis of Fig. 3), at which the
simulation fails to reach equilibrium in a reasonable amount
of time.

So far we have dealt only with pores that are empty at V =
0. In the remainder of this section we use the GCMC simulation
to qualitatively examine a pore containing a substantial, neutral
concentration of both anions and cations at V = 0. To arrive
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FIG. 4. (Color online) MC results for the capacitance C, in units
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t = 0.3, plotted as a function
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the prediction of our analytical theory. For each temperature, the
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FIG. 5. (Color online) MC results for the capacitance of a 2D
metal pore with T ∗ = 0.04 at μ∗ − u∗ = 0 (triangles) and −(μ∗ −
u∗) = 0.3 (circles). The thick line is the prediction of Eq. (10) with
V ∗

t = −(μ∗ − u∗) = 0.

at such a situation, one should increase the chemical potential
μ, causing the value of Vt to decline [21].

Figure 5 shows, as an example, the capacitance of a pore
with μ∗ − u∗ = 0, which corresponds to moderately large ion
filling at V = 0. We also show a system with V ∗

t = 0.3 for
comparison. The pore with μ∗ − u∗ = 0 (triangles) is more
than half-filled at zero voltage: (M+ + M−)a2/L2 ≈ 0.63. As
the voltage is increased from zero, cations are driven out of the
pore and anions are attracted to the pore until at V ∗ � 0.35 only
anions remain in the pore and the capacitance is reasonably
well described by our analytic treatment of the previous section
(as shown by the solid line). At V ∗ < 0.35, on the other hand,
the strong attraction between cations and anions affects the
capacitance.

As a rough approach to explaining this data, one may
imagine that at small voltage the net ionic charge consists of
a small number Q/e of “excess anions” on the background
of a large number of neutral, tightly bound cation-anion
pairs. These excess anions seek to maximize their distance
from each other by forming a correlated, Wigner-crystal-like
arrangement in a way that is similar to the description of
the previous section. Under this description, one may expect
the same analytical theory to hold as for large negative
μ∗, since the neutral pairs are essentially noninteracting and
therefore play only a small role in determining the capacitance.
Figure 5 suggests that this approach gives a reasonably
accurate description of the finite temperature truncation of the
capacitance divergence. Indeed, the capacitance in the limit
V ∗ + (μ∗ − u∗) = 0 is very similar for the two C-V curves.
However, this approach does not explain the weak capacitance
maximum at V ∗ ≈ 0.2 in the C-V curve corresponding to
μ∗ − u∗ = 0, which remains a puzzle.

This qualitative explanation of the filled pore data is similar
to that of Ref. [8], but is fundamentally different from the
approach of Ref. [16]. These authors assumed that the charge
of excess anions is spread equally over all ions in the pore,
with each ion getting a small fraction δe of the electron
charge e. They further assumed [see their Eq. (3)] that every
ion interacts with its nearest neighbors via the exponential
interaction [φ(r)/e](δe)2, where φ(r) is given by Eq. (5). Such
a semi-mean-field approximation makes the total repulsive

energy of excess anions larger than in our description of Sec. II,
since the distance between interacting charges is smaller and
this changes the exponential factor of φ(r). Therefore, it seems
reasonable that the pore capacitance evaluated in Ref. [16] is
three times smaller than in our Fig. 5.

IV. CAPACITANCE OF A POROUS IMPERFECT METAL

Thus far we have calculated the capacitance in situations
where the electrode can be considered a perfect metal, or in
other words where the electrode has a vanishing electronic
screening radius. In this section we examine what happens to
the capacitance when the electrode is not a perfect metal, but
instead has a finite screening linear radius rs , given by

rs =
√

ε0ε

e2ν(μF )
, (21)

where ν(μF ) is the electron density of states at the Fermi
energy μF of the electrode.

Below we consider separately two limiting cases for rs :
(i) where rs � b, the typical thickness of the wall separating
adjacent pores, so that adjacent pores can be considered
noninteracting, and (ii) where rs > b, so that adsorbed ions
interact three-dimensionally.

In the case where rs � b, there is no interaction between
adjacent pores and the volumetric capacitance can still be
calculated as in the previous section, by considering the
capacitance of a single pore. In this case the effect of finite
screening radius is to shift the position of the reflection
plane for image charges by a distance rs beyond the surface
of the pore wall [22]. This reflection plane coincides with
the “electrostatic surface” of the pore, at which the center of
gravity of the surface charge is effectively located. That is, a
charge in the center of the pore becomes separated from its
image charge by a distance d + 2rs , as shown in Fig. 6. In this
way the interaction between neighboring ions is stronger than
what is given by Eq. (5) and the capacitance of the pore is
reduced as compared to the results in Sec. II. One can easily
calculate the effect this has on the capacitance by replacing d

-

+

-

-

+

deffd

rs

FIG. 6. A schematic portrayal of the effect of finite screening
radius rs � b in a conducting electrode (solid gray area). The
reflection plane for image charges (black and white circles with
dashed outlines) of an adsorbed cation (black circle) is shifted by
a distance rs from the wall of the pore (hatched area). Compare to
Fig. 2(b).
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with deff = d + 2rs in Eqs. (4)–(18). In other words, allowing
for finite screening radius rs � b in the electrodes has the
same effect as increasing the pore width (which is examined
in Fig. 3). For example, a pore with width d = 1 nm and
rs = 0.25 nm would have deff/d ≈ 1.5, and the capacitance
would correspond to the middle (blue) curve in Fig. 3.

In the opposite limit, rs > b, the wall of the pore does not
completely screen the charge of an adsorbed cation and ions
in adjacent pores interact with each other. In this limit ions
interact three-dimensionally via a Yukawa-like potential

φ(r) = e

4πε0εr
exp

[
− r

Rs

]
, (22)

where Rs is the three-dimensional (3D) screening radius,
determined from the volume-averaged density of states
ν(μF )b/(b + d):

Rs =
√

ε0ε

e2ν(μF )

(
1 + d

b

)
= rs

√
1 + d

b
. (23)

For d = b (as in Fig. 1), we get Rs = √
2rs .

In the limit of Rs � N−1/3, where N is the three-
dimensional concentration of ions inside the electrode, the
electric potential 
 is uniform throughout the volume of the
electrode and is given by


 = eN

∫ ∞

0
φ(r)4πr2dr = eNR2

s

ε0ε
. (24)

This gives a constant value of the volumetric capacitance

C = ε0ε

R2
s

. (25)

This result was first derived as the volumetric capacitance of
charged DNA condensates with cationic polyelectrolytes in
salty water [23–25].

At smaller Rs < N−1/3, the discreteness of the ions plays
an important role. In their lowest energy state, the ions form a
correlated, 3D liquid in which they maximize their separation
from each other while neutralizing the bulk charge of the
electrode, as shown in Fig. 7. As in the previous section,
we can calculate the capacitance by postulating a crystalline
arrangement of the ions (a 3D Wigner crystal) and calculating
the total electrostatic energy U . The capacitance can then be

- - -

- -

- - -

FIG. 7. A schematic depiction of anions (black circles) arranging
themselves within a porous supercapacitor electrode (solid gray area)
in the limit rs > b. Here, ions interact three-dimensionally, leading
to a 3D Wigner-crystal-like arrangement of ions in the ground state.
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1
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(V−V
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)/(e/4πε

0
εR

s
)

C
/(

ε 0ε/
R

s2 ) C
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FIG. 8. The volumetric capacitance C, in units of ε0ε/R
2
s , for the

case where ionic charges obey the interaction law of Eq. (22), plotted
as a function of dimensionless voltage. The curve is truncated at Cmax

as given by Eq. (38).

found using the 3D analog of Eqs. (2) and (3), namely

V = dU

dQ
= 1

eV

dU

dN
, (26)

C = e2V 2

(
d2U

dN2

)−1

, (27)

where V is the electrode volume.
This approach allows one to calculate C as a function of

ion density N and as a function of voltage V . Using a numeric
evaluation of the total energy U gives a capacitance that can
be accurately fitted to the following power-law form at (V −
Vt )/(e/4πε0εRs) > 0.01:

C(V ) =
[

1 + 0.22

(
V − Vt

e/4πε0εRs

)−0.58 ]
ε0ε

R2
s

. (28)

This expression is plotted in Fig. 8.
Equation (28) suggests that the capacitance diverges at

small V − Vt , as in the case of 2D pores. To understand why
this is the case, we can consider the limit where ions are
sufficiently sparse that their separation is much larger than Rs .
In this limit only the interactions between nearest neighbors
of the 3D Wigner crystal contribute significantly to the total
energy. If we imagine a cubic lattice arrangement of ions, then
we arrive at an energy

U � 3V
e2N4/3

4πε0ε
exp

[
− 1

N1/3Rs

]
. (29)

By Eqs. (26) and (27), this gives a voltage

V − Vt � e

4πε0εRs

exp

[
− 1

N1/3Rs

]
(30)

and a capacitance

C(N ) � 12πε0εVN4/3R2
s exp

[
1

N1/3Rs

]
. (31)

Combining these two relations gives an expression for the
volumetric capacitance as a function of voltage, applicable at
very small V − Vt :

C(V ) � 3

R3
s

e

V − Vt

ln−4

[
e/4πε0εRs

V − Vt

]
. (32)

Equation (32) implies that at small V − Vt , where ions are
sparse, the capacitance can be much larger than the mean-field
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result of Eq. (25). This growth in the capacitance is driven
by the vanishing interaction [Eq. (22)] between discrete,
correlated ions. The maximum value of the capacitance occurs
at (V − Vt ) → 0 and is determined by thermal effects. This
maximum can be estimated, as in the previous section, by
making a virial expansion of the free energy

F � Fid + VN2kBT B(T ) − Q(V − Vt ). (33)

The value of the capacitance in this limit, as in Eqs. (17)–(18),
is inversely related to the virial coefficient B(T ). At not too
small Rs , such that Rs � a/2,

Cmax(T ) � 2πε0εRs

T̃ B(T )
. (34)

Here, T̃ is a dimensionless temperature normalized to the
interaction between two charges at a distance Rs :

T̃ = kBT

e2/4πε0εRs

= Rs

d
T ∗. (35)

The virial coefficient B(T ) is calculated as

B(T ) = 1

2

∫ ∞

0

(
1 − exp

[
−eφ(r)

kBT

])
4πr2dr (36)

� 2πR3
s

(
1 + ln[1/T̃ ] + 1

3
ln3[1/T̃ ]

)
, (37)

so that Eq. (34) can be written

Cmax(T ) ≈ 1

T̃
(
1 + ln[1/T̃ ] + 1

3 ln3[1/T̃ ]
) ε0ε

R2
s

. (38)

If one wishes to formulate an approximate prediction for the
capacitance at arbitrary values of screening radius, including
values of rs that are comparable to b, then one may evaluate
separately the capacitance based on approach (i), where the
2D pore thickness is renormalized as d → deff , and approach
(ii), where ions interact three-dimensionally, and then take the
smaller value. Since intra- and interpore interactions contribute
additively to the total energy, these create series contributions
to the capacitance, so that as a zero-order approximation one
can take the smaller of the two capacitances. The result of this
process is shown in Fig. 9, which constitutes a prediction for
the volumetric capacitanceC at arbitrary voltage and electrode
screening radius.

V. NONLINEAR SCREENING IN GRAPHITE (CARBON)
SUPERCAPACITORS

The preceding sections outline a general theory for the vol-
umetric capacitance of a supercapacitor made with electrodes
that can either be considered metallic or be characterized by
some linear screening radius rs . In this section we discuss
specifically the case of electrodes of graphite, which is among
the most commonly studied materials for supercapacitor
devices [3,5,7,13].

In graphite, the Fermi level density of states ν(μF ) is
actually relatively small, so that the linear screening radius
rs ≈ 0.8 nm cannot be considered much smaller than the
spacing between pores [26]. For example, if d = b = 1 nm,
then Fig. 9 would seem to imply a capacitance on the order
of ε0ε/d

2 ≈ 18 F/cm3. Experiments with graphite electrodes,
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FIG. 9. (Color online) A contour plot of the volumetric ca-
pacitance C as a function of voltage V and electrode screening
radius rs for charges in an electrode with planar pores of width d

separated by walls of thickness b = d at room temperature. Contours
are labeled by their values of C in units of ε0ε/d

2. The dashed line
separates the regions of validity of the two theories presented in this
section: (i) where pores are noninteracting and the pore width can be
renormalized according to d → deff = d + 2rs (lower region), and
(ii) where charges interact three-dimensionally with the interaction
law of Eq. (22) (upper region). For ε = 2 and d = 1 nm, the unit of
volumetric capacitance ε0ε/d

2 = 18 F/cm3 and the unit of voltage
e/4πε0εd = 0.7 V.

however, yield a capacitance five times larger than this value
[3,7], suggesting that graphite screens over a much smaller
distance than rs and effectively behaves as a good metal.

This apparent discrepancy can be resolved if one recalls
that the density of states in graphite is close to ν(μF ) only
in a narrow range of energies, beyond which it increases
linearly with energy on both sides of the Fermi level [26].
Such variation of the density of states suggests that screening
by graphite is nonlinear even when a relatively small electric
field is applied to the surface of the pore, and that therefore
the screening properties of the electrode material cannot be
characterized by a constant linear screening radius rs .

In order to estimate the distance over which the ions’
potential is screened, one can consider the problem of a
uniform applied electric field �E0 orthogonal to the basal plane
of graphite. It has been shown [27] that in this case the
magnitude of the electric field E(z) decays with the distance z

beyond the graphite interface as

E(z) = E0

(1 + z/2z0)3
, (39)

where

z0 =
3
√

3

2
c

(
e

4πε0εα2c2E0

)1/3

(40)

is the centroid location of the countercharge in the graphite
(the nonlinear screening radius), c ≈ 0.34 nm is the distance
between graphite planes (graphene sheets), and α ≈ 2.2/ε is
the effective fine-structure constant of graphene. (See also
recent discussions of screening in graphene multilayers in
Refs. [28,29].)
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The implications of this result for the problem of screening
of adsorbed ions in a graphite pore can be seen as follows.
When the area density of ions inside a pore is large enough
that na2 � 1, these ions can be said to produce a roughly
uniform electric field at the wall of the pore whose strength
is E0 � e/2ε0εa

2. Inserting this relation into Eq. (40) yields
a screening distance z0 � 0.75c, which suggests that the field
is entirely screened within the first graphene layer. In other
words, at dense ion filling the electric field between ions in
the pore does not penetrate beyond the first graphene layer.
Therefore, despite its relatively low density of states ν(μF ),
graphite may be treated as a metal at not-too-small ion densities
na2 � 0.5 (note that na2 > 0.5 occupies the majority of the
voltage range in Fig. 3).

We can also discuss what happens with the volumetric
capacitance when the density of ions is smaller (V − Vt

decreases), so that the electric field E0 produced by the ions
becomes weaker. When V − Vt is made moderately small, the
effective density of states decreases, the nonlinear screening
radius z0 grows, and the nonlinear capacitance decreases. One
can show using Eq. (40) that the capacitance C ∝ (V − Vt )1/2.
Eventually, at small V − Vt , the effective density of states
saturates at the level of ν(μF ), so that the screening radius
becomes constant and equal to the linear screening radius
rs ≈ 0.8 nm. In this limit, the volumetric capacitance is
relatively small and is given by the theory of Sec. IV, as was
already discussed in the beginning of this section.

VI. CAPACITANCE OF A CRYSTALLINE ASSEMBLY OF
METALLIC SPHERES

So far we have restricted our discussion to the electrode
geometry shown in Fig. 1. In practice, such electrodes with
parallel planar pores are difficult to make. In many cases
supercapacitor electrodes are simply a random assembly of
conducting particles, arranged so that the particles form an infi-
nite, conducting cluster through which electrons can percolate
while the pores in this cluster form a separate percolating space
through which the ionic liquid can freely pass. For such cases
the model of Fig. 1 is a strong idealization. In this section
we would like to briefly discuss another idealized electrode
structure which captures the three-dimensional character of
pores.

Consider an assembly of metallic nanospheres, each with
the same radius R, arranged so that they form a cubic lattice
with nearest-neighbor spheres touching each other. As in
previous sections, we imagine that this crystalline film is

deposited onto a metallic contact plate, connected to a voltage
source, and immersed in an ionic liquid. A voltage V is
applied between the contact plate and the bulk of the ionic
liquid. If the diameter of the ions within the ionic liquid is
small enough, then this arrangement produces an effective
supercapacitor electrode, where ions may percolate through
the spaces between conducting spheres and neutralize the
electronic charge provided by the voltage source.

In order to calculate the capacitance of this electrode, we
first analyze the interaction between two ions that enter into
the bulk of the electrode. This can be done by calculating the
potential as a function of distance produced by a single ion in
the center of a pore deep inside the electrode bulk. We calculate
this potential numerically using the relaxation method for
solving the Laplace equation, where each of the conducting
spheres is held at zero potential. We find that potential
decays exponentially with radial distance from the ion with a
characteristic screening length Rs = R × (0.26 ± 0.01). The
reason for this sharp decay is the same as for the decay of
the potential in 2D, slitlike pores [Eq. (5)]: Electric field lines
emanating from the ion are adsorbed by the surface of nearby
conducting spheres, and the number of these field lines that
survive by passing through the narrow, tortuous pores between
spheres decays exponentially with distance.

Once the interaction law is known, one can calculate the
capacitance in a way similar to the analysis of Sec. IV. We
arrive then at a relation C(V ) which has the maximum given
by Eq. (38). For R = 4 nm, T = 300 K, and ε = 2 this
relation gives a volumetric capacitance Cmax = 1.7ε0ε/R

2
s =

25ε0ε/R
2 ≈ 28 F/cm3. Remarkably, in this arrangement the

capacitance per sphere is roughly 16 times larger than the
capacitance of a single, isolated sphere in a medium with
dielectric constant ε.

One can reach even larger volumetric capacitance if the
spheres are densely packed rather than arranged in a cubic
lattice. Reducing the radius R of the spheres also sharply
increases the capacitance. In our next publication we will
explore these mechanisms for increasing the capacitance
by combining MC modeling with the analytical estimates
presented in Sec. IV.
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