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Subdiffusion on a fractal comb
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Subdiffusion on a fractal comb is considered. A mechanism of subdiffusion with a transport exponent different
from 1/2 is suggested. It is shown that the transport exponent is determined by the fractal geometry of the comb.

DOI: 10.1103/PhysRevE.83.052106 PACS number(s): 05.40.Fb, 05.45.Df

A comb model was introduced for understanding anoma-
lous transport in percolating clusters [1,2] and it was consid-
ered as a toy model for a porous medium used for exploration
of low-dimensional percolation clusters [1,3], as well. It is a
particular example of a non-Markovian phenomenon, which
was explained in the framework of continuous time random
walks [2,4–7]. In the last decade the comb model has been
extensively studied for understanding of different realizations
of non-Markovian random walks, both continuous [8–10] and
discrete [11].

Anomalous diffusion on the comb is usually described
by the 2D distribution function P = P (x,y,t), and a special
behavior is that the displacement in the x direction is possible
only along the structure axis (x axis at y = 0). Therefore,
diffusion in the x direction is highly inhomogeneous; namely
the diffusion coefficient is Dxx = D̃δ(y), while the diffusion
coefficient in the y direction (along fingers) is a constant
Dyy = D. Therefore, this inhomogeneous diffusion is de-
scribed by the Fokker-Planck equation in the dimensionless
time and coordinates

L̂FPP (x,y,t) ≡ ∂tP − δ(y)∂2
xP − ∂2

yP = 0 . (1)

It is obtained by the rescaling with relevant combinations
of the comb parameters D and D̃, such that the dimen-
sionless time and coordinates are D3t/D̃2 → t Dx/D̃ → x,
Dy/D̃ → y, correspondingly [12].

The fractional transport along the structure x axis
is described by the transporting contaminant distribution
p(x,t) = ∫ ∞

−∞ P (x,y,t)dy. It was shown [12] that Eq. (1) is
equivalent to the fractional Fokker-Planck equation

∂
1
2
t p(x,t) − 1

2
∂2
xp(x,t) = 0, (2)

from where subdiffusion can be immediately obtained:∫
x2p(x,t)dx ∼ √

t . Here ∂
1
2
t is a fractional time derivative,

which is a formal notation of an integral with a power law
memory kernel. For 0 < α < 1 it reads

∂α
t f (t) =

∫ t

0

(t − τ )−α−1

�(1 − α)
∂τf (τ )dτ. (3)

Subdiffusive mechanism with an arbitrary transport exponent
was also suggested by either changing the boundary conditions
for diffusion in the fingers [13–16] or introducing a dependence
of the diffusion coefficient on time and space [17]. In this
paper we consider a fractal comb (see Fig. 1), when diffusion
is highly inhomogeneous along the y fingers, as well; namely,
it takes place for those coordinates of the x axis, which
belong to a fractal set Sν(x) and is defined by a characteristic

function χ (x), such that Dyy = Dχ (x), where χ (x) = 1, if
x ∈ Sν(x) and χ (x) = 0, if x /∈ Sν(x). The fractal set Sν(x)
is a random fractal with a fractal dimension 0 < ν < 1
embedded in the 1D Euclidian space (of the x axis). Such
generalization of the comb model to a discrete (fractal) comb
model for consideration of fractional transport in discrete
systems is more realistic situation for theoretical studies of
transport properties in discrete systems with complicated
topology including fractal ones like porous discrete media
[18], electronic transport in semiconductors with a discrete
distribution of traps, cancer development with definitely fractal
structure of the spreading front (see, e.g., Refs. [7,19]),
and infiltration of diffusing particles from one material to
another [20].

Hence, we study the following dimensionless equation:

∂tP − δ(y)∂2
xP − χ (x)∂2

yP = 0. (4)

The initial condition is P(x,y,0) = δ(x)δ(y), and the
boundary conditions on infinities have the form P(±∞,

± ∞,t) = 0 and the same for the first derivatives with respect
to x and y P ′

x(±∞, ± ∞,t) = P ′
y(±∞, ± ∞,t) = 0.

Our main purpose is to evaluate the second moment

〈x2〉(t) =
∫

x2P(x,y,t)dxdy (5)

as a function of time. Therefore, the forthcoming analysis of
Eq. (4) is supposed to be carried out under the integration sign.
Using properties of the characteristic function

χ2(x) = χ (x) and ∂xχ (x) = 0, (6)

a solution of Eq. (4) can be presented in the form

P(x,y,t) = χ (x)P (x,y,t), (7)

where P (x,y,t) is a solution of the continuous comb model
and we shall show that an equation for this function coincides
with Eq. (1). But first, one should understand a physical
meaning of the distribution P(x,y,t) based on properties of
the characteristic function χ (x). While the first property in
Eq. (6) is obvious and follows from the definition of χ (x), the
second expression deserves an explanation. To show this, let
us consider the N th step of the fractal set Sν construction. It is
a union of disjoint intervals 	xN . In general case of a random
fractal, these are random intervals. In the limiting case one
obtains Sν = limN→∞

⋃
	xN . Therefore, the characteristic

function on every interval 	xj = [xj ,xj + 	xN ] is χ (	xN ) =

(x − xj ) − 
(x − xj − 	xN ). Differentiation of the char-
acteristic function on every interval yields ∂

∂x
χ (	xN ) =

δ(x − xj ) − δ(x − xj − 	xN ). In the limit N → ∞ it tends to
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FIG. 1. Comb structures. The upper strip corresponds to the
continuous comb model. The lower strip is a sketch of the fractal
comb with a specific distribution of fingers, which corresponds to the
one-third Cantor set (at the forth step of the construction). Notably,
one should recognize that this construction is not representative.
Therefore, the fractal set Fν can be considered as a random fractal dis-
tribution of the fingers without any specifically defined construction
algorithm. It is worth admitting that the fractal distribution of teeth, in
general case, is multifractal, and the uncertainty of this construction
should be stressed as well.

zero (under the integration), since P (x,y,t) and its derivatives
are continuous functions.

Now we can return to the continuity property of P(x,y,t)
that can be understood from the calculation of the second
moment 〈x2〉(t) in Eq. (5). The presence of the character-
istic function in this expression means that the integration
is performed over the fractal volume [21]. It means that∫

χ (x)dx → 1
�(ν)

∫ |x|ν−1dx ∼ 1
�(ν+1) |x|ν , where �(ν) is the

� function. This yields the expression for 〈x2〉(t)

〈x2〉(t) = 1

�(ν)

∫ ∞

−∞
x2|x|ν−1P (x,y,t)dxdy. (8)

Using this smoothing procedure, we can show that an equation
for the distribution function P (x,y,t) is Eq. (1). We have from

Eqs. (4) and properties (6) of the characteristic function χ (x)
that for any arbitrary function f (x)∫ ∞

−∞
|x|ν−1f (x)L̂FPP (x,y,t)dx = 0. (9)

Therefore, we have equation L̂FPP (x,y,t) = 0, which exactly
coincides with Eq. (1) and is valid for all x.

Now we at a position to determine 〈x2〉(t). Taking into
account Eq. (8), one obtains the following from the integration
of Eq. (9) over y with f (x) = x2:

∂t 〈x2〉(t) = 1

�(ν)

∫ ∞

−∞
|x|ν−1x2∂2

xP (x,0,t)dx. (10)

Here we take into account that
∫ ∞
−∞ ∂2

yP (x,y,t) = 0 due to
the boundary conditions. A relation between P (x,0,t) and
P (x,y,t) can be established in the Laplace domain. Performing
the Laplace transform L̂P (x,y,t) = P̃ (x,y,s) in Eq. (1), it
is readily seen that P̃ (x,y,s) = P̃ (x,0,s)e−√

s|y| satisfies the
equation. After integrating over y, it yields

P̃ (x,0,s) = 1

2

√
s

∫ ∞

−∞
P̃ (x,y,s)dy = 1

2

√
sp̃(x,s) . (11)

This result can be taken into account after the Laplace
transform in Eq. (10), which yields an expression for the
second moment in the Laplace domain L̂[〈x2〉(t)] = 〈̃x2〉(s).
It reads

s 〈̃x2〉(s) = 1

�(ν)

∫ ∞

−∞
|x|1+ν∂2

x p̃(x,s)dx, (12)

where p̃(x,s) = 1√
2s3/2

exp(−
√

2s1/2|x|) can be obtained from
Eq. (2). After the Laplace inversion one obtains the second
moment

〈x2〉(t) = Kνt
1+ν

4 , (13)

where Kν = �(2 + ν)/�( 5
4 + ν

4 )�(ν)
√

21+ν is a generalized
diffusion coefficient. Finally, we obtain subdiffusion on the
comb 〈x2〉(t) ∼ tμ with the transport exponent 1

4 < μ < 1
2 .

When ν = 1, one observes subdiffusion with μ = 1/2. To
obtain subdiffusion with 1

2 < μ < 1, one considers advection
along the structure x axis instead of diffusion. This yields
μ = 1+ν

2 for the transport exponent.
The main deficiency of the obtained result in Eq. (13)

is that it is based on the presentation of the probability
distribution function as a product of a continuous function and
the characteristic function in Eq. (7). Although the inferring of
Eq. (13) is correct, this presentation can leads to wrong result,
because the probability distribution function P(x,y,t) must
be continuous at every point. To overcome this deficiency,
we refuse the locality property. To this end, the following
procedure of coarse graining of the Fokker-Planck equation (4)
is suggested. First, we apply the Fourier transform to Eq. (4)
with respect to the x coordinate. To apply this transformation
to the last term in Eq. (4), we use the following auxiliary
identity

χ (x)f (x) = ∂x

∫ x

0
χ (y)f (y)dy.
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Here for brevity we define f (x) ≡ P(x,y,t). This integration
with the characteristic function can be carried out by means of
a convolution [22]. Note that∫ x

0
χ (y)f (y)dy =

∑
xj ∈Sν [0,x]

∫ ∞

−∞
f (y)δ(y − xj )dy, (14)

where we use that∑
xj ∈Sν

δ(y − xj ) = μ′(x) ∼ xν−1

is a fractal density, such that on the finite interval (0,x), the
integral

∫ x

0 dμ(y) ∼ xν corresponds to the fractal volume.
Therefore, Eq. (14) reads∫ x

0
χ (y)f (y)dy =

∫ x

0
f (y)dμ(y).

The last expression can be rewritten as a convolution integral.
Due to Theorem 3.1 in Ref. [23], we have∫ x

0
f (y)dμ(y) � Aν

�(ν)

∫ x

0
(x − y)ν−1f (y)dy, (15)

where Aν is a constant, defined by the conditions of the
theorem. In sequel we disregard this parameter, putting
Aν = 1. This integration is a Riemann-Liouville integral (see,
e.g., Refs. [5,24])

∂x0I
ν
x f (x) ≡ 1

�(ν)
∂x

∫ x

0
(x − y)ν−1f (y)dy.

Here we use a standard notation 0I
ν
x f (x) to define integration

with a power law kernel; see Eq. (3). The integration can
be presented in the form of the inverse Laplace transform
L̂f (x) = f̃ (s), which reads

0I
ν
x f (x) = L̂−1L̂[0I

ν
x f (x)] = L̂−1s−ν f̃ (s).

Therefore, after the variable change s = iz, the Fourier
transform of the last term in Eq. (4) yields

F̂x[χ (x)P(x,y,t)] = (ik)1−νP̂(k,y,t), (16)

where F̂xf (x) = P̂(k,y,t) = f̃ (ik). One takes into account
that the result should be symmetrical with respect to the
negative x < 0. Therefore, the Fourier transform of Eq. (4)
yields

∂t P̂(k,y,t) = −δ(y)k2P̂(k,y,t) + |k|1−ν∂2
y P̂(k,y,t) . (17)

Now we perform the Laplace transform with respect to time

L̂P̂(k,y,t) = ˆ̃P(k,y,s) ≡ G(k,y,s). This yields

sG = −δ(y)k2G + |k|1−ν∂2
yG + δ(y) (18)

with the solution

G(k,y,s) = exp(−|y|
√

s|k|ν−1)g(k,s), (19)

where g(k,s) = G(k,0,s) is the Fourier-Laplace image on the
structure axis at y = 0. Again, we are interesting in dynamics
along the structure axis by studying the probability distribution
function P1 [see Eq. (11)]:

P1(x,t) =
∫ ∞

−∞
P(x,y,t)dy. (20)

Integrating Eq. (19) over y one obtains

G(k,0,s) =
√

s|k|ν−1

2

∫ ∞

−∞
G(k,y,s)dy. (21)

Therefore, integrating Eq. (18) over y yields the Montrall-
Weiss equation that, after the Fourier and the Laplace inver-
sions, reduces to the fractional Fokker-Planck equation. It is a
particular case of a general equation

∂α
t P1(x,t) = 1

2
∇β

x P1(x,t) , 0 � α � 1, (22)

where β = 3
2 + ν

2 . It describes a competition between long
rests and long flights. We stress that when α = 1/2, it
corresponds to the comb model; see Eq. (2). Here we
use the formal definition for the Riesz-Weyl fractional
space derivative in form of the Fourier inversion (see, e.g.,
Refs. [5,25]):

∇ν
x f (x) = F̂−1[|k|ν f̂ (k)]. (23)

This equation was studied in Refs. [26,27] (see also
Ref. [5]). The correct form of the mean-squared displacement,
which estimates the competition of “laminar motion events”
(flights) and “localization” (waiting) events in the Lévy walk
picture, was obtained through the relation [26] valid for
Eq. (22)

〈x2(t)〉 ∼ tμ = t1− ν
2 . (24)

One easily checks that this result with μ = 1 − ν/2 has a
correct limit for ν = 1, when it corresponds to the continuous
comb model with μ = 1/2.

In conclusion, we presented two approaches to study subd-
iffusion on the fractal comb, when the fractal trap distribution
is determined by the characteristic function χ (x). In this case, it
is tempting to look for a solution in the multiplicative form of
Eq. (7). Thus the forthcoming analysis, based on this pre-
sentation of the probability distribution function is rigorous.
The main deficiency of this approach is that it violates the
continuity property of the probability distribution function. To
overcome this deficiency, a coarse graining procedure of the
Fokker-Planck equation (4) is suggested. It is based on the
possibility of performing the Fourier transform for Eq. (4)
exactly. We obtained that inhomogeneous, fractal distribution
of traps in the comb model leads to Lévy jumps that compli-
cates fractal diffusion and leads to the competition between
long jumps and localization inside traps. This phenomenon is
described by the fractional Fokker-Planck equation (22). As a
result of this competition, subdiffusion, which is the dominant
process, is realized.

We admit that the results of the either approach of Eqs. (13)
or (24) have correct limits for ν = 1. A specific property of
Eq. (24) is that for ν = 0, it corresponds to normal diffusion
with μ = 1. While the first limit with ν = 1 is well understood,
the second one is not so obvious. Indeed, when the Hausdorff
dimension is ν = 0, there are no traps, and normal diffusion
is anticipated. Nevertheless, this behavior results from the
fractional Fokker-Planck equation (22) with 3/2 fractional
space derivative and 1/2 fractional time derivative. This is a
special point of a transition from subdiffusion to superdiffusion
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[5,26]. For the comb model subdiffusion is the dominant
process, there is no superdiffusion, and μ = 1 is the boundary
point.
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