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Generalized Eden model with a screening effect

Yan-Bo Xie
Department of Modern Physics, University of Science and Technology of China, 230026 Hefei, China

Yu-Jian Li*

Department of Modern Physics, University of Science and Technology of China, 230026 Hefei, China and
Department of Satellite Measurement and Control on the Sea of China, 214400 Jiangyin, China

Bing-Hong Wang†

Department of Satellite Measurement and Control on the Sea of China, 214400 Jiangyin, China and
Research Center for Complex System Science, University of Shanghai for Science and Technology and

Shanghai Academy of System Science, 200093 Shanghai, China
(Received 29 November 2010; revised manuscript received 15 March 2011; published 10 May 2011)

We generalize the Eden model to take into account the screening effect, i.e., the end point grows much faster
than the interior points do. Highly anisotropic clusters are obtained in our generalized Eden model. It is found
that the length in the long direction scales differently than that in the short direction does as the number of sites
increases.
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I. INTRODUCTION

The diffusion-limited aggregation (DLA) model has at-
tracted a lot of attention since proposed by Witten and Sander
[1–9]. It has been recognized that the screening effect [1,5],
i.e., the end points have much more chance of growing in
DLA, plays an important role in giving rising to the fractal
dimensionality. On the other hand, the Eden model [10,11],
in which an adjacent site to the occupied site is randomly
selected among all possible adjacent sites in each step, gives
only a compact structure in the large size limit. This may be
easily understood (see Sec. III), because no screening effect is
present in the Eden model. However, the algorithm to simulate
the Eden model can be very efficient and proportional to
the number of particles in the system. Therefore, it may be
desirable to introduce the screening effect into the Eden model,
and see how the compact structure varies as the screening
parameter varies. In this paper, we shall study a generalized
Eden model in which the screening effect is taken into account.
At the same time, the algorithmic efficiency, depending on the
screening parameter, is still much higher than the algorithmic
efficiency for the DLA model. Although our generalized Eden
model cannot be used to substitute for the DLA model, its
study allows us to understand the screening effect more clearly.
As we shall see, introducing the screening effect into the
Eden model changes the two-dimensional compact object
into the highly anisotropic object which actually resembles
a one-dimensional object in the large size limit. This paper is
organized as follows: In Sec. II, the model is defined and the
numerical simulation results are presented. In Sec. III, some
analytic results, which become exact in the large size limit,
are presented. Finally in Sec. IV, we shall briefly discuss the
relation between the DLA model and our generalized Eden
model.
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II. MODEL AND THE NUMERICAL RESULTS

Our model is defined as follows. First, we have a square
lattice. At time step 1, a seed particle occupies the lattice point
(0,0). At time step N , there are N occupied sites which are
connected. Those N occupied sites have Q adjacent empty
sites. Calculate the distance between those Q adjacent sites
and the (0,0) site. Find out the maximum value and denote it
as rQmax. Then, select one of the Q adjacent sites according
to the probability proportional to 1

(rQmax+1−rq )β , where rq is the
distance between the selected adjacent site and the (0,0) site,
and 0 < β < 1 is the screening parameter which is adjustable
in our model. Then, it goes to the time step N + 1. Repeat until
a large cluster grows. It may be helpful to mention that the Eden
model just corresponds to the case β = 0 [10]. At first sight,
one sees that the far-most site, usually just the end point, grows
much faster than the interior sites. Therefore, one may expect
a different scaling behavior for the β > 0 case than the Eden
model (β = 0 case) in which the growing cluster is a nearly
homogeneously compact structure. Figure 1 plots a typical
cluster having N = 30 000 sites with β = 0.5. One sees that
the cluster is an anisotropic object with the long axis along the
radial direction and the short axis along the azimuthal angle di-
rection. Although the cluster appears to be a two-dimensional
object when N = 30 000, the long axis and the short axis scale
differently as the number of particles N increases. Table I
shows the dependence of rmax, the distance between the far-
most occupied site and the (0,0) site, and Q, the number of ad-
jacent sites, on the number of occupied sites N . The exponents
are defined as N ∼ rα

max and Q ∼ r
η
max. From Table I, one may

find that η ≈ 1 and α ≈ 2 − β. The width of our anisotropic
object W ∼ rδ

maxwith the scaling relation δ = α − 1 = 1 − β.
These results will be explained in the subsequent section.

III. ANALYTIC RESULTS

Our generalized Eden model can be solved analytically
in the large size limit. For our generalized Eden model in
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FIG. 1. Simulation pattern of our generalized Eden model.
N = 30000, β = 0.5.

D dimensions, similar results can be also obtained and will
be published in another paper. Denote R(N ) to be the average
distance between the far-most occupied sites and the (0,0)
sites, and Q(N ) to be the average number of adjacent sites
as function of N . Since the increase in the rate of R(N ) is
directly proportional to the probability of the far-most site
being selected, which is equal to 1∑Q(N)

i=1
1

[R(N)+1−ri ]β

, we have, up

to a numerical factor,

dR(N )

dN
≈ O(1)∑Q(N)

i=1
1

[R(N)+1−ri ]β

, (1)

where ri is the distance between the ith adjacent site and the
(0,0) site. For almost all adjacent sites, we have R + 1 − ri as
the order of R because our cluster is highly anisotropic and
almost all ri ∼ λiR for λi < 1, and we obtain

dR(N )

dN
∼ R(N )β

Q(N )
. (2)

Assume that our giant cluster only has the anisotropic
property, but does not have the fractal property; we then have
the approximate relation

Q(N ) ∼ R(N ). (3)

Therefore, we have

dR(N )

dN
∼ R(N )β−1, (4)

TABLE I. Some exponents in our generalized Eden model.

β 0.25 0.50 0.75
N 106 106 3 × 105

α + β − 2a −0.085 ± 0.018b −0.017 ± 0.010 0.067 ± 0.009
η 0.914 ± 0.010 0.962 ± 0.007 1.001 ± 0.007

aThe exponents α and η are obtained by the linear fit in the log-log
plot for N from N/2 to N .
bThis table lists the average values (±statistical error only) of α and
η over 10 clusters for β = 0.25, 0.50, and 0.75, respectively.

FIG. 2. (Color online) Illustration of various variables in the text.

which implies

N ∼ R2−β, (5)

or

α = 2 − β. (6)

In the large size limit as N → ∞, the cluster approaches
a definite shape (the stochastic fluctuation becomes insignif-

icant) which scales as N
1

(2−β) in the long direction because
R ∼ N1/(2−β). The width W in the perpendicular direction
is much less than R and is expected to be proportional to
N (1−β)/(2−β) so that the number of total points can be correctly
obtained, i.e., N ∼ RW . To find out the shape function, denote
W (r,R) as the width of the long bar at the distance r from the
(0,0) site when the maximum distance is R (see Fig. 2). Since
a site with the distance r is selected with the probability

1/(R − r)β

2
∫ R

0 du1/(R − u)β
= 1 − β

2

Rβ−1

(R − r)β
, (7)

W (r,R) satisfies the differential equation

dW (r,R)

dN
= 2

(1 − β)Rβ−1

2(R − r)β
, (8)

with the initial condition

W (r,r) = 0. (9)

Note that in the above equation, we have used the fact that
the normal direction of the surface of the long bar is almost
perpendicular to the long axis in the large size limit when
β > 0, because the width W (r,R) � R when R → ∞. [β = 0
is a special case, and the above equation is invalid in the large
size limit because W (r,R) ∼ R.] Notice that

dR

dN
= CRβ−1. (10)

So we obtain

dW

dR
= 1 − β

C(R − r)β
. (11)

Direct integration yields

W (r,R) = 1

C
(R − r)1−β = R1−β

C

(
1 − r

R

)1−β

, (12)
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which indeed scales as R1−β . It may be interesting to point out
that the long bar grows not necessarily along a straight line
but slightly fluctuates around it. Since the fluctuation is very
small, Eq. (12) still holds in the large size limit. To conclude
this section, we would like to discuss the finite size effect in
the numerical simulation results. From Table I, one sees that
when β = 0.25, α < 2 − β up to N = 106. The deviation of
α from 2 − β must be due to the finite size effect. The reason
is that η < 1 for β = 0.25 and N = 106; this is definitely
impossible in the large size N → ∞ limit because of the
inequality Q(N ) > R(N ). Our results strongly suggest that the
finite size effect can be still very significant to the correction
of α even for N = 106.

IV. DISCUSSIONS

From the above two sections, we see that the Eden model
(β = 0) can only produce a two-dimensional homogeneous
cluster. On the other hand, when β > 0, our model produces a
quite anisotropic cluster which scales differently than the sim-
ple two-dimensional object. Also, in the DLA model, the end
point should grow much faster than other points because of the
screening effect. For example, consider the Possion equation
�2u = 0 with u |�= 0, where the boundary � is an ellipse with

the long axis R and the short axis Rδ , with R � 1 and δ < 1.
Then, ∂u

∂n
|� is much larger at the long end than on the short side.

This ratio is R1−δ � 1. This is an illustration of the screening
effect in the DLA model and is effectively taken into account in
our generalized model (i.e., the end points grow much faster).

We would like to point out since the growth rate of only
one end point is greatly enhanced in our model, we only
obtain a highly anisotropic cluster which scales differently
along different directions as the number of occupied sites N

increases. The fractal structure is absent in our model. Only
when the growth rate of many end points of the big trunks is
greatly enhanced, can one observe the fractal structure as seen
in the DLA model.
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