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Double negative differential thermal resistance induced by nonlinear on-site potentials
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We study heat conduction through one-dimensional homogeneous lattices in the presence of the nonlinear
on-site potentials containing the bounded and unbounded parts, and the harmonic interaction potential. We
observe the occurrence of double negative differential thermal resistance (NDTR); namely, there exist two
regions of temperature difference, where the heat flux decreases as the applied temperature difference increases.
The nonlinearity of the bounded part contributes to NDTR at low temperatures and NDTR at high temperatures
is induced by the nonlinearity of the unbounded part. The nonlinearity of the on-site potentials is necessary to
obtain NDTR for the harmonic interaction homogeneous lattices. However, for the anharmonic homogeneous
lattices, NDTR even occurs in the absence of the on-site potentials, for example, the rotator model.
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Heat conduction in low-dimensional systems has become
the subject of a large number of theoretical and experimental
studies in recent years [1]. The theoretical interest in this field
lies in the rapid progress in probing and manipulating thermal
properties of nanoscale systems, which presents the possibility
of designing thermal devices with optimized performance
at the atomic scale. As we all know, devices that control
the transport of electrons, such as the electrical diode and
transistor, have been extensively studied and have led to
widespread applications in modern electronics. However, it is
far less studied for their thermal counterparts as to control the
transport of phonons (heat flux), possibly because controlling
phonons is more difficult than controlling electrons. Recently,
it has been revealed by theoretical studies in model systems,
such as electrons and photons, that phonons can also perform
interesting functions [2], which sheds light on the possible
designs of thermal devices. For example, heat conduction in
asymmetric nonlinear lattices demonstrates rectification phe-
nomenon; namely, the heat flux can flow preferably in a certain
direction [3–10]. Remarkably, a thermal rectifier has been
experimentally realized by using gradual mass-loaded carbon
and boron nitride nanotubes [11]. The nonlinear systems with
structural asymmetry can exhibit thermal rectification, which
has triggered model designs of various types of thermal devices
such as thermal transistors [8], thermal logic gates [12], and
thermal memory [13]. It is worth pointing out that most of
these studies are relevant to heat conduction in the nonlinear
response regime, where the counterintuitive phenomenon of
double negative differential thermal resistance (NDTR) may
be observed and plays an important role in the operation of
those devices.

NDTR refers to the phenomenon where the resulting
heat flux decreases as the applied temperature difference
(or gradient) increases. It can be seen that a comprehensive
understanding of the phenomenon of NDTR, which is lacking
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at the moment, would be conducive to further developments
in the designing and fabrication of thermal devices. The
existing studies on NDTR have been on models with structural
inhomogeneity, such as the two-segment Frenkel-Kontorova
model [8,14], the weakly coupled two-segment φ4 model
[15], and the anharmonic graded mass model [6]. However,
structural asymmetry is not a necessary condition for NDTR. In
the nonlinear response regime, NDTR can occur in absolutely
symmetric structures where there exists nonlinearity in the
on-site potential of the lattice model [16]. However, it is still
not clear whether multiple NDTR can occur in symmetric
structures. In this Brief Report, we study the exhibition of
double NDTR in the absolutely symmetric structures and find
the occurrence of double NDTR. Furthermore, we also find
that NDTR can also occur in the coupled rotator model where
the on-site potential is absent.

In this study, the homogeneous lattice models are each
described by a Hamiltonian of the form

H =
N∑

i=1

p2
i

2m
+ V (xi − xi+1) + U (xi), (1)

where pi is the momentum of the ith particle and xi its
displacement from equilibrium position. m is the mass of the
particles. V (x) is the nearest-neighbor interaction potential,
and the harmonic potential is used,

V (x) = 1
2kx2, (2)

where k is the coupling constant. As for the on-site potential
U (x), we consider two cases shown in Fig. 1. For case A (φ4

model) [1],

U (x) = −α

2
x2 + λ

4
x4, (3)

and for case B,

U (x) = − U0

(2π )2
cos(2πx) + λ

4
x4, (4)
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FIG. 1. (Color online) The shape of on-site potential. (a) Case A, U (x) = − α

2 x2 + λ

4 x4 (α > 0); (b) case B, U (x) = U0
(2π )2 cos(2πx) + λ

4 x4.

where α, U0, and λ are the parameters that control the shape of
the potential. The on-site potential contains the bounded and
unbounded parts.

To obtain a stationary heat flux, the chain is connected to
two heat baths at temperatures T+ and T−, respectively. Fixed
boundary conditions are taken x0 = xN+1 = 0. For each of the
one-dimensional lattice models, the equation of motion takes
the form

mẍi = −∂H

∂xi

− γi ẋi + ξi, (5)

where γi = γ (δi,1 + δi,N ) and ξi = ξ+δi,1 + ξ−δi,N . The noise
terms ξ±(t) denote a Gaussian white noise that has a zero
mean and a variance of 2γ kBT±, where γ is the the friction
coefficient and kB is Boltzmann’s constant. The dot stands
for the derivative operator with respect to time t . The local
heat flux is given by ji = 〈ẋiF (xi − xi−1)〉, where F = − ∂V

∂x

and the notation 〈· · ·〉 denotes a steady-state average. The
local temperature is defined as Ti = 〈mẋi

2〉. After the system
reaches a stationary state, ji is independent of site position i,
so that the flux can be denoted as j . In our simulations, the
equations (5) of motion are integrated by using a second-order
stochastic Runge-Kutta algorithm [17] with a small time step
(h = 0.001). The simulations are performed long enough to
allow the system to reach a nonequilibrium steady state in
which the local heat flux is a constant along the chain.

Figure 2(a) shows the dependence of the heat flux j on
temperature difference 
T for φ4 model with α > 0 (case A).
It is found that there exist two regions of 
T , in which
the larger the temperature difference the less heat flux there
is through the system; namely, double NDTR occurs. The
presence of the nonlinear on-site potential facilitates the occur-
rence of phonon-lattice scattering, which generally becomes
more significant for increasing temperature and can therefore
contribute to a decrease in the thermal conductivity. For low
temperatures (small temperature difference), the bounded part
of the on-site potential dominates the system. For this case,
the phonon-lattice scattering is important only at sufficiently
low temperatures where the dynamics of the particles is much
influenced by the bounded on-site potential. As the applied
temperature difference 
T increases from zero with T− being
fixed, the increase in the thermodynamic driving force will
drive an increase in the heat flux. For higher values of 
T ,
however, the effect of phonon-lattice scattering becomes so
significant that the first NDTR occurs. However, with a further

increase in 
T , the average temperature of the system has
become sufficiently high that the particles can overcome the
bounded part of the on-site potential, the phonon-lattice scat-
tering becomes not significant, and the first NDTR disappears.

FIG. 2. (Color online) Heat flux j as a function of temperature
difference 
T for cases A and B. (a) For case A, α = 10, λ = 2.0,
and T− = 0.01; (b) for case B, U0 = 10.0, λ = 0.2, T− = 0.001, and
N = 32. The insets in (b) give enlarged views of the NDTR. The
other parameters are k = 1.0, N = 32, and T+ = T− + 
T .
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FIG. 3. (Color online) (a) Heat flux j as a function of 
T for different values of U0 at k = 1.0, λ = 0.2, and N = 32. (b) Heat flux j as a
function of 
T for different values of λ at k = 1.0, U0 = 10.0, and N = 32. (c) The total heat flux Nj as a function of 
T for N = 32, 256,
and 512 at U0 = 10.0, k = 1.0, and λ = 0.2. (d) κ(
T ), 
T , and heat flux j as a function of 
T at U0 = 10.0, k = 1.0, λ = 0.2, and N = 32.
The other parameters are T− = 0.001 and T+ = T− + 
T .

At the same time, the dynamics of the particles is dominated by
the unbounded part of the on-site potential. As the temperature
increases, the increase in phonon-lattice scattering is reflected
by the power-law decrease of the thermal conductivity and the
second NDTR occurs. Therefore, we can obverse the double
NDTR as the temperature difference increases from zero with
T− being fixed. From Fig. 2(b), we can see that the similar
double NDTR can also occur for case B.

Since the results for case A are similar to those for case
B, we only focus on case B for investigating the parameter
dependence of double NDTR. The on-site potential of case B
is composed of two parts: the bounded part − U0

(2π)2 cos(2πx)

and unbounded part λ
4 x4.

Figure 3(a) shows the heat flux j as a function of 
T for
different values of U0 with λ being fixed. For decreasing U0,
the first NDTR region becomes smaller and finally disappears.
Therefore, the bounded part of the on-site potential contributes
to the occurrence of the first NDTR. From Fig. 3(b), one can
find that the occurrence of the second NDTR is induced by the
unbounded part of the on-site potential. Figure 3(c) shows that
the two NDTR regimes generally become smaller as the system
size N increases and eventually vanishes in the thermodynamic
limit.

Figure 3(d) shows the effective thermal conductivity
κ(
T ), heat flux j , and 
T as a function of 
T at U0 = 10.0,
k = 1.0, λ = 0.2, and N = 32. As we know, j = κ(
T )
T .
It is found that κ(
T ) ∝ 
T −1.17 for the first NDTR region
and κ(
T ) ∝ 
T −1.15 for the second NDTR region, resulting
in j ∝ T −0.17 for the first NDTR region and j ∝ T −0.15 for
the second NDTR region.

Note that there is no definite relation between the shape
of the on-site potentials and the occurrence of NDTR. For
example, if the term x4 in case B is replaced by the harmonic
term (linear potential) x2, the shape of the on-site potentials
does not change essentially, while NDTR at high temperatures
will disappear. Therefore, it is the nonlinearity, not the shape of
the on-site potentials, that determines the occurrence of NDTR.
The nonlinearity in the on-site potentials is necessary to obtain
NDTR for the harmonic interaction homogeneous systems.
Now we return to the anharmonic homogenous systems and
check if NDTR can occur in the absence of the on-site
potentials. From the previous work [16], one can find that
NDTR cannot occur in pure harmonic and Fermi-Pasta-Ulam
model. However, in that work, the rotator model was not
considered. The simplest example of rotator model with
nearest-neighbor interactions lies in the class (1): V (x) =

052102-3



BRIEF REPORTS PHYSICAL REVIEW E 83, 052102 (2011)

0.4

FIG. 4. (Color online) The total heat flux Nj as a function of
temperature difference 
T . The other parameters are T− = 0.1 and
T+ = T− + 
T .

1 − cos(x) and U (x) = 0. From Fig. 4, we can see that NDTR
occurs in the rotator model, which is related to excitation
of nonlinear localized rotational modes of the chain [18]. In
addition, NDTR can also occur in the anharmonic graded mass
lattices [6]. Therefore, for the anharmonic systems, the on-site
potential is not a necessary condition for NDTR.

In conclusion, we study heat conduction through the
one-dimensional homogeneous lattices with the nonlinear
on-site potentials. The on-site potentials are composed of two
parts: the bounded and unbounded parts. From nonequilibrium
molecular dynamics simulations, it is found that double NDTR
occurs as the temperature difference increases. The occurrence
of NDTR at low temperatures is caused by the nonlinearity of
the bounded part, while the nonlinearity of the unbounded
part induces the occurrence of NDTR at high temperatures. In
addition, we also find that NDTR even occurs in anharmonic
homogenous lattices without on-site potentials, for example,
the rotator model. Therefore, the on-site potential is not
necessary to obtain NDTR for the anharmonic lattices. It
is also found that the regime of NDTR becomes smaller
as the system size increases and eventually vanishes in the
thermodynamic limit. The observation of double NDTR in
homogeneous systems shows that the nonlinearity of the
on-site potentials is very important for designing NDTR
devices. It is possible to design the thermal devices with the
more complex functions by using the occurrence of double
NDTR.
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