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In the exclusion-process literature, mean-field models are often derived by assuming that the occupancy
status of lattice sites is independent. Although this assumption is questionable, it is the foundation of many
mean-field models. In this work we develop methods to relax the independence assumption for a range of discrete
exclusion-process-based mechanisms motivated by applications from cell biology. Previous investigations that
focused on relaxing the independence assumption have been limited to studying initially uniform populations and
ignored any spatial variations. By ignoring spatial variations these previous studies were greatly simplified due to
translational invariance of the lattice. These previous corrected mean-field models could not be applied to many
important problems in cell biology such as invasion waves of cells that are characterized by moving fronts. Here
we propose generalized methods that relax the independence assumption for spatially inhomogeneous problems,
leading to corrected mean-field descriptions of a range of exclusion-process-based models that incorporate
(1) unbiased motility, (ii) biased motility, and (iii) unbiased motility with agent birth and death processes. The
corrected mean-field models derived here are applicable to spatially variable processes including invasion wave-
type problems. We show that there can be large deviations between simulation data and traditional mean-field
models based on invoking the independence assumption. Furthermore, we show that the corrected mean-field

models give an improved match to the simulation data in all cases considered.
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I. INTRODUCTION

Deriving accurate mean-field models corresponding to
particular discrete reactive transport phenomena is important
in many disciplines including fluid mechanics [1,2], ecology
[3-5], and cell biology [6-14]. In particular, cell biology
demands that mathematical models be formulated to describe
the behavior of individual cells, including events such as
motility, proliferation, and death. This is important because
modern time-lapse data and other imaging techniques typically
focus on describing and measuring stochastic, cell-level
events and properties [11]. Understanding the relationship
between particular discrete mechanisms and their associated
mean-field descriptions is essential for our comprehension of
how particular changes in cell-level properties manifest in
population-level descriptions of the system.

To derive an appropriate mean-field description of a particu-
lar stochastic system, a number of simplifying assumptions are
usually made. We will describe these simplifying assumptions
with reference to Fig. 1. Suppose that the one-dimensional
lattice in Fig. 1 represents a snapshot of an unbiased exclusion
process. Each lattice site is indexed [, where [ € Z*, and the
lattice spacing is A, so that each site has position [A.

The dynamics of the system will evolve according to the
following mechanism. Each agent will attempt to step to a
nearest neighbor lattice site with the probability of movement
per unit time P,,. The direction of movement will be unbiased
so that a motile agent will attempt to move left and right with
equal probability of 1/2. Motility events will be successful if
the target site is unoccupied. If the target site is occupied then
that particular motility event will be aborted. For example, in
Fig. 1 the agent at site / 4+ 3 is able to move to either of its
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neighboring sites, whereas the agent at site / is only able to
move to the right since site / — 1 is occupied. One way to
simulate this procedure is to implement the algorithm with
constant time steps of length 7 so that each computational
time step advances time from ¢ to ¢t + 7 [8,9]. To obtain a
mean-field description of this mechanism we introduce C;
to represent the occupancy of the [th lattice site. In any
single realization of the stochastic model C; = 1 when the
[th lattice site is occupied, while C; = 0 when the /th lattice
site is vacant. By averaging the occupancy of each site over
many identically prepared realizations we obtain (C/) = C; €
[0,1] which is the average occupancy of the /th lattice site.
To develop a macroscopic description of the microscopic
mechanism, we consider the continuous-time limit as t — 0
and form a conservation statement describing the rate of
change of C;:

dc, P,
e 7[C171(1 -+ Cn(1-C)—C(—-Cpy)

-G =Gyl (D

Positive terms on the right of Eq. (1) represent motility events
that increase the average occupancy of site / and negative terms
represent events that decrease the average occupancy of site
[. Each term on the right of Eq. (1) has three factors which
have a straightforward physical interpretation. The factors in
the first term on the right of Eq. (1) consist of: (i) P, /2, the
probability per unit time that an agent attempts to step from
site [ — 1 to site /; (ii) C;_;, the probability that site [ — 1 is
occupied at time ¢; and (iii) (1 — C;), the probability that site /
is vacant at time ¢. We interpret the product P, C;—1(1 — C;)/2
as the net probability of a movement from site / — 1 to site / per
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FIG. 1. (Color online) Exclusion process schematic. The exclu-
sion process takes place on a one-dimensional lattice and each site can
be occupied by, at most, one agent. At the particular instant shown,
occupied sites are denoted with a dot while vacant sites are empty.
Agents move with probability P,, per unit time. Attempted motility
events that would place an agent on an already occupied site are
aborted.

unit time. Given that we interpret the product of probabilities
as a net transition probability implies that we are assuming
that the occupancy status of site / — 1 is independent of the
occupancy status of site /. This assumption is also required
to arrive at the remaining three terms on the right of Eq. (1).
Although this assumption appears questionable [15], it is the
foundation of many mean-field models in the exclusion process
literature [6,8—11,13]. Proceeding with this assumption we see
that Eq. (1) simplifies to

% = %[Cl—l —2C + Cry1], (2)
which is a semidiscrete linear diffusion equation. This is a well-
known result [8,9,15]. Previous computational studies have
confirmed that simulation data from an unbiased exclusion
process matches the solution of the linear diffusion equation
extremely well for a wide range of initial conditions [8,9,11].
Although computational simulations appear to confirm the
validity of Eq. (2), the arguments leading to Eq. (2) are
approximate only and rely on invoking the independence
assumption. Liggett emphasised the approximate nature of
these arguments, referring to this level of analysis as heuristic
[15], pp. 222-223.

As we have pointed out, many computational simulations
support the validity of Eq. (2). However, several other studies
have considered extensions to the unbiased motility mech-
anism, namely biased motility [6,11] and unbiased motility
with proliferation [10,16], and have shown that traditional
mean-field models based on similar independence assumptions
do not always match the discrete data. At present we have no
formal method of understanding why certain discrete models
are insensitive to the independence assumption, whereas others
appear to be affected in some way by the independence
assumption.

The aim of this work is to develop computationally tractable
methods that relax the independence assumptions underlying
the mean-field descriptions of a range of discrete exclusion-
process-based mechanisms. This work will provide a platform
to test whether or not the independence assumption is valid.
In situations where the independence assumption is invalid,
our analysis allows us to determine the magnitude of various
correlation functions, thereby giving a quantitative measure of
how poor the independence assumption is for that particular
situation. To achieve this we study the k-point distribution
functions p® (k = 1,2,3,...) [17,18] for various exclusion
process models. This procedure leads to a system of coupled
nonlinear equations describing the evolution of the k-point
distribution functions for each site on the lattice and avoids the
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need for any independence assumptions. To solve this system
of equations in general we must truncate the system using
a moment closure approximation. For this study we use a
standard moment closure approximation called the Kirkwood
superposition approximation (KSA) [3-5,14,17-20].

Previous investigations using this approach have been
limited to studying initially uniform populations [5,14,17,18].
By focusing only on initially uniform problems, these pre-
vious studies were greatly simplified due to translational
invariance of the lattice. These previous uniform population
studies focused on modeling the evolution of the total size
of the population only, without any regard to the spatial
distribution of the population, and could not be applied
to many important problems in cell biology. For example,
invasion wave phenomena involves a population of cells
that are motile and proliferative. Invasion waves of cells
are typically characterized by constant-speed fronts which
move into uninvaded tissues [21,22]. The previous studies
that focused on spatially uniform populations could not be
applied to study invasion wave phenomena. Here we introduce
generalized techniques that deal with spatially variable reactive
transport processes including invasion wave-type problems.
We show how to use k-point distribution functions and the
KSA closure approximation to develop improved mean-field
models of these processes.

In summary, we prove that the mean-field model for
unbiased motility is governed exactly by Eq. (1) which means
that the independence assumption leads to an exact result
by coincidence. This explains why simulation data always
matches up with a solution of the linear diffusion equation
for simple unbiased motility. For biased motility we show
that small deviations between the standard mean-field model
and discrete data are corrected using an improved KSA-
based model. These new results show that the independence
assumption is inappropriate for biased motility. For unbiased
motility with agent proliferation and death, we show that there
can be very large deviations between the standard mean-field
model and discrete data, indicating that the independence
assumption is grossly inadequate for agent proliferation and
death processes. In all cases the KSA-based mean-field result
gives an improved match to the simulation data relative to
the traditional mean-field result. All of these new results
are relevant to situations where the agent density varies
spatially across the lattice. This means that our new results are
applicable to a much wider range of problems than previous
studies which have ignored spatial effects [5,14,17,18].

II. ANALYSIS

To make progress we define the k-point distribution
functions p(k) (k =1,2,3,...) for several different kinds of
motility, birth and death events on a one-dimensional lattice in
the context of an exclusion process. The k-point distribution
functions are multivariate probability distribution functions
describing the occupancy of k-tuplets of lattice sites. We will
use / and m to refer to the /th and mth lattice sites and we
define the lattice variable o; € {0,A} to represent the state of
the /th lattice site, so that o; = 0 indicates that site / is vacant
and o; = A indicates that site / is occupied.
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For k = 1 the distribution function is a univariate distribu-
tion describing the total density of agents on site /,

oA =G, pPO)=1-0C, 3)

where C; is the average occupancy of site /. This simply means
that pV(A,) is the probability of finding an agent at site /.

For k = 2 the distribution function is a bivariate distribu-
tion. To define this distribution we make use of correlation
functions that can be written as

PP (01,0m)
pV(a)pM (o)’

for [ # m, with A and p denoting the state of sites / and m,
respectively [14,17,18]. These correlation functions provide
the key ingredient allowing us to relax the independence
assumptions that underpin the traditional mean-field approach
demonstrated in Sec. I. By setting F) ,(/,m)=1 we are
assuming the occupancy status of sites [ and m to be
independent which is consistent with the traditional mean-
field approach. Instead, our approach allows us to formulate
an improved mean-field model by allowing the correlation
functions to evolve as part of the model solution. This approach
inherently relaxes the independence assumption and gives us
a quantitative measure of the importance of correlation effects
in various exclusion process models.

We now define a relationship between different kinds of
correlation functions, F; ,(I,m), for different states A and p.
By summing over the states of lattice sites we can write down
relationships between p® and p1, given by

> pP01.0m) = pM(o). )

Om

Fy(lm) = @)

dp(A) P,
dr
Pm
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For example, we see that

PP (AL, A + pP(A1,0,) = pV(A)). (6)

Combining Eqgs. (4) and (6) we obtain a relationship between
F4o(,m)and Fa 4(l,m) given by

1 — p(A,)Fa al,m)
1- p(l)(Am)

By following the same procedure and considering the sum
PP (A1, AR + pP(0,4,,) = pP(4,,), we obtain a relation-
ship between Fy 4(l,m) and F4 4(l,m) given by

1 — pD(A)Fa all,m)
FoA(l,m) = .
ol = pM(Ap

With these definitions we can construct the systems of
master equations for particular motility, proliferation, and
death mechanisms. We will now consider several different
cases separately to understand how the correlation analysis
extends and informs the previous heuristic analysis obtained
by invoking the independence assumptions.

Fpoll,m) =

)

(®)

III. RESULTS
A. Unbiased motility

We first consider the most straightforward case where an
isolated agent at site / attempts to step to sites [ £ 1 with
equal probability of 1/2. The probability per unit time of a
motility event is P,,, and attempted motility events that would
place an agent on an occupied site are aborted. Incorporating
this mechanism we can write down the evolution equation for
pW(A)) as follows:

= T[p@)(A,,l,o,) + 0201, A1) — pP(AL01) — 001, A,

= —[C-i(1 = CNFoal,l = 1) + Cr(1 = CFo, a1+ 1)]

2

P,
- T[Cz(l —C_)Fa0l,l = 1)+ Ci(1 = Crp1)Fa ol + D] )

Written in terms of the correlation functions, we can see
that the right-hand side of Eq. (9) reflects the presence of
correlations in the unbiased system. By setting F; ,(I,m) = 1,
we see that Eq. (9) relaxes directly to Eq. (1) which confirms
that the simple mean-field model, given by Egs. (1) and (2),
amounts to ignoring correlation effects. This is the same
as assuming that the occupancy status of lattice sites is
independent.

To simplify the corrected mean-field equation, we substitute
Egs. (7) and (8) into Eq. (9) to find that all terms involving
F4 a(l,m) cancel to give

dpV(A)  dC; P,
——— = — = —[Ci_1 =2C; + Ci41]. 10
" ” > [Ci 1+ Crl (10)

This confirms that the heuristic mean-field result given by
Eq. (2) is indeed exact since correlation effects cancel. This
means that, fortuitously, the approximate mean-field result
(which relied on invoking the independence assumption) turns
out to be exact and thereby provides a rigorous explanation
of why several previous computational studies have indicated
that density data extracted from an unbiased exclusion process
model is exactly matched with the solution of a linear diffusion
equation [8,9,11]. In Sec. Il B we will show that this fortuitous
cancellation of correlation functions does not always occur for
other discrete mechanisms.

We will now explain, by means of an example, how the
spatially dependent problems considered in this paper differ
from our earlier work [14]. In our previous work we used
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the same approach outlined here but limited our analysis to
systems where the initial distribution of agents was spatially
uniform. To demonstrate how the spatially uniform initial
condition simplifies the analysis, we will briefly consider the
unbiased motility mechanism in the case where the distribution
of agents is spatially uniform so that C; = C for all lattice sites
[. Under these conditions Eq. (9) becomes

doM(A) P,
TI - 7[/0(2)(141—1,01) + 020, Ar41)

— pP(AL0141) — P01, AD],

Pnl
7[,0(2)(141,014-1) + pP(0, A1)

— p@(A1,0141) — PP(01, Ar1)]
=0. (11)

Here we see that the mean-field description of the spatially
uniform problem with unbiased motility states that the time
rate of change of occupancy of any lattice site is zero. This
major simplification arises because the terms in the evolution
equation describing the motility process are independent of
location because the agent distribution is uniform. This means
that we have p@(A;-1,0,) = p®(A;,0141) and p@ (0, A1) =
p@(0;_1,A;). Given that our previous work only dealt with
uniformly populated lattices, our previous analysis and com-
putational algorithms were greatly simplified because of
the cancellation of these spatial terms [14]. As they are
documented, the corrected mean-field models reported in our
previous study cannot be applied directly to spatially variable
processes. The aim of the current paper is to use the same
approach as the previous work, however we use this approach
in a far more general framework enabling us to analyze and
provide new insight into spatially variable processes. As a
consequence of relaxing this major assumption, the corrected
mean-field models and algorithms reported here are far more
detailed than those considered in our previous work [14]. The
benefit of dealing with this additional complexity is that the
corrected mean-field models presented here provide us with
new and important insight beyond what was demonstrated in
our previous work.

B. Biased motility

We now consider the case where an isolated agent at site /
attempts to step to sites / £ 1 with unequal probability of
(1 £a)/2. Here |a| < 1 is a bias parameter. Setting a =0
means that there is no bias and the model relaxes to the
unbiased motility model discussed in Sec. Il A. Setting a > 0
means that an isolated agent is more likely to move to the right
than the left, while setting @ < 0 means that an isolated agent
is more likely to move to the left than the right. The probability
of motility per unit time is P,,, and attempted motility events
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that would place an agent on an occupied site are aborted.
Incorporating this mechanism we can write down the evolution
equation for p‘V(A;) as follows:

doM(A P,(1
- dt( D _ Ind 2+ a)[p(z)(Az—l,Ol) — pP(A1,0141)]

P, (1 —a)
+ [P0, A1) — p‘2)<0,,1,A1211.

2 2)
To make progress, we rewrite the right-hand side of Eq. (12)
as the sum of two terms. The first term represents the
unbiased component of the motility and the second term,
which is proportional to a, represents the biased component
of the motility. Expanding the p® terms into their correlation
functions and rewriting all correlation functions in terms of
F4 4(l,m) we obtain

dpM(A)  dC P
D S Ve 7[C,,l —2C; + Ciyq]

dr dr
P]n
+617[CZ—1 — Cip1 + 2C,Crq1 Fy a1+ 1)
—2C,Ci1 Fy a1 - D). (13)

Written in this form, we see that Eq. (13) reflects the
effects of correlations in the bias terms, whereas there are no
correlation effects in the unbiased component of motility. This
is consistent with the results in Sec. III A since if we seta = 0
then the biased motility model reduces to the unbiased motility
model which does not involve any correlation functions. In
order to solve Eq. (13) we must now also develop a model
that describes the evolution of the F4 4(I,/ = 1) terms. This
is achieved by writing down evolution equations for the
appropriate p® terms. First we consider the evolution of
p@ (A1, Ar41) given by

do®(A, A1) Pu(l4a)

dr 2
Py(l1—a)
- :0(3)(AlyAl+1»Ol+2)] + T

X [0 (ALO 1, Ay2) — pP (01, A AL
(14)

[0 (A1_1,01, A1)

By rewriting Eq. (14) in terms of correlation functions and
making use of the summation rule to reduce some of the p©
terms into p® terms, it is possible to rewrite Eq. (14) in terms
of an evolution equation for F4 4(/,/ 4 1). The details of this
algebraic manipulation, including the use of the KSA, are given
in Appendix A2. The full evolution equation for Fs (I, + 1)
also depends on the values of F4 4(/,/ 4+ 2) and we account
for these terms by considering the evolution of p®(A;,A,,)
for |l — m| > 1, which can be expressed as

dpP(A;,Ap)  Pu(l+a) Py(1+a)
dt’ == [P (A1-1,00,Am) — PD(ALO1, Ap)] + T[p“kA,,Am,l,om) — 0P (AL A0, 41)]
P,(1 —a) P,(1 —a)
+ T[p‘”(OI,AM,A,,,) — 001,41, A)] + T[M(Az,om,Amm — p(A1,0,-1,A)].

5)
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FIG. 2. (Color online) (a) and (b) show snapshots of 20 identically
prepared realizations where the motility of agents is moderately
biased with P, = A=t =1 and a = —0.5. At t =0 the ini-
tial occupancy of the /th lattice site was given by C(l) = 0.1 +
0.9 exp [—(I — 200)*/400]. Simulation results are shown at (a) = 0
and (b) = 100 where we see that the peak in density that was initially
located at x = 200 has moved in the negative x direction owing to the
motility bias. Results in (c) and (d) characterize the system at t = 0
with the average agent density (blue, medium gray), mean-field (red,
dark gray), and corrected KSA mean-field (green, light gray) shown in
(c) and the initial value of F4 4(/,/ 4+ 1) givenin (d). Results in (e) and
(f) characterize the system at + = 100 with the average agent density
(blue, medium gray), mean-field (red, dark gray), and corrected KSA
mean-field (green, light gray) shown in (e) and the corresponding
profile of F4 4(l,l + 1) in (f). The RMSE for the mean-field and the
corrected mean-field profiles are given as an inset in (e).

By writing all the p® terms in terms of the correlation
functions and invoking the summation rule, we can express
Eq. (15) in terms of an evolution equation for F4 4(/,m) for
|l —m| > 1. The details of this algebraic manipulation and
resulting equations are shown in Appendix A2.

1. Numerical results

The corrected mean-field model can now be solved and the
solution compared with averaged simulation data. To achieve
this we generated simulation data shown in Figs. 2(a) and 2(b)
for a = —0.5 and Figs. 3(a) and 3(b) fora = —1.0.

(a) Discrete simulations. Simulations were performed on
a one-dimensional lattice with 1 </ < 400 and periodic
boundary conditions imposed at/ = 1 and / = 400. A random
sequential update method, described elsewhere [8,9], was used
to generate the simulation data using a standard intrinsic ran-
dom number generator. Many identically prepared realizations
were considered and in each case the /th lattice site was initially
occupied with probability

(16)
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400
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0.1 ,‘/" \ 1
()" = (d)
1 X 400 1 X 400
0.8 > 2
E=2.86x10 t=100 t=100
<C>
C /'\ Faalll1)
J
y
p ‘
0.1 ..4..,// L_...M.‘.‘ 1
e f
(©) 1 X 400 ® 1 X 400

FIG. 3. (Color online) (a) and (b) show snapshots of 20 identically
prepared realizations where the motility of agents is strongly
biased with P, = A=t =1 and a = —1. At t =0 the initial
occupancy of the Ith lattice site was given by C(l) =0.1+
0.9 exp [—(I — 200)*/400]. Simulation results are shown at (a) = 0
and (b) = 100 where we see that the peak in density that was initially
located at x = 200 has moved in the negative x direction owing to the
motility bias. Results in (c) and (d) characterize the system at t = 0
with the average agent density (blue, medium gray), mean-field (red,
dark gray), and corrected KSA mean-field (green, light gray) shown in
(c) and the initial value of F4 4(/,/ 4+ 1) givenin (d). Results in (e) and
(f) characterize the system at + = 100 with the average agent density
(blue, medium gray), mean-field (red, dark gray), and corrected KSA
mean-field (green, light gray) shown in (e) and the corresponding
profile of F4 4(I,l 4+ 1) in (f). The RMSE for the mean-field and the
corrected mean-field profiles are given as an inset in (e).

giving, on average, a Gaussian-shaped initial profile of agents
in each realization. Two sets of simulations were performed.
The first set of simulations was for a moderately left-biased
motility mechanism with a = —0.5, and the second set
of simulations were performed with maximally left-biased
motility by setting a = —1. To visualise the simulation data
we present 20 realizations of the model in the 20 rows of
the lattice shown in Figs. 2(a) and 2(b) for a = —0.5, and in
Figs. 3(a) and 3(b) for a = —1.0. The snapshots in each row
of Figs. 2(a), 2(b), 3(a), and 3(b) are independent realizations
of the same stochastic process. Presenting these snapshots
side-by-side conveniently illustrates the stochastic nature of
the algorithm since the distribution of agents in each row can
be quite different. To quantify the density profiles we average
the occupancy of each corresponding lattice site using 400
identically prepared realizations to give a reliable estimate
of C; for 1 <1 < 400. These realizations are equivalent to
the results shown in Figs. 2(a), 2(b), 3(a), and 3(b) except
we considered 400 rows instead of 20. The averaged density
profiles extracted from these 400 realizations are presented
in Figs. 2(c) and 2(e) at + =0 and ¢ = 100, respectively,
for a —0.5. Equivalent results for a = —1.0 are shown in
Figs. 3(c) and 3(e) at r = 0 and ¢ = 100, respectively.
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We will now make a brief comment about choosing to
present averaged simulation data based on 400 identically
prepared realizations. This choice was made to balance
two competing interests. Had we chosen to present aver-
aged density profiles constructed from a smaller number of
identically prepared realizations, these profiles would have
contained large fluctuations and it would have been difficult
to visually interpret the meaning of these density profiles
[12]. Alternatively, we could have presented averaged density
profiles constructed from a much larger number of identically
prepared realizations and these profiles would have contained
very small fluctuations leading to very smooth profiles [12].
We chose to use 400 identically prepared realizations as a
balance between these two competing effects. We wish to
present profiles that contain relatively small fluctuations so
that they represent a reliable approximation to the true average
distribution, however we still wish to maintain sufficient
fluctuations that the visual appearance of the profiles makes it
clear that they are stochastic.

(b) Mean-field model. To compare the simulation data with
the mean-field model we also solve a simplified version of
Eq. (13) obtained by setting Fs 4(/, = 1) = 1:

dC’—P’"[C 2C; + Crii]
dl — 2 -1 1 1+1

P,
—i—a?[szl — Cip1 +2C,Cryq —2C,C1], (A7)

which is a semidiscrete equation comprising of a diffusive
term describing the unbiased component of the motility and
a nonlinear term describing the biased component of the
motility. The solution of the mean-field model is obtained
numerically (Appendix A4) for the same initial condition
and boundary conditions used in the stochastic simulations.
The resulting profiles are superimposed in Figs. 2(c) and
2(e) at t =0 and ¢ = 100, respectively, for a = —0.5, and
in Figs. 3(c) and 3(e) at r = 0 and ¢t = 100, respectively, for
a = —1.0. We observe that the mean-field profile captures the
main features of the simulation data with the exception that
the mean-field profile overpredicts the peak density and the
sharpness of the profile at + = 100. Comparing the profiles
in Figs. 2(e) and 3(e) we see the effect of changing the bias
parameter since the peak profile moves further in the negative
x direction as a is reduced. We will now make a quantitative
comparison between the mean-field results and the simulation
data. Throughout this manuscript we will make use of the root
mean square error (RMSE) to quantify the match between
density profiles constructed from simulation data and certain
mean-field results. For the context of our work the RMSE can
be written as

I=N 2

b \/Z,zl (C) = ME s
N

where N is the number of lattice sites used to compare
the profiles, (C;) is the average density of the Ith lattice
site constructed from the simulation data, and MF, is the
density of the /th lattice site predicted by some mean-field
approximation. In our work MF; will correspond to either
the traditional mean-field model or the corrected mean-field
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model. The RMSE for the mean-field result profiles in Fig. 2(e)
is E =2.10 x 1072, whereas the RMSE for the mean-field
result profiles in Fig. 3(e) is E = 2.86 x 1072, This difference
in the RMSE indicates that the traditional mean-field result is
less satisfactory as the amount of bias increases.

(c) Corrected mean-field model. We now solve the system
of correlation equations to obtain an improved mean-field
result which provides insight into the significance of making
the independence assumptions that lead to the traditional
mean-field model for biased motility. To achieve this we solve
Eqgs. (13)-(15) and obtain C;, F4 (I, + 1) and F4 4(l,m) for
m=14+2,1+3,l4+4,.... While is it possible, in principle,
to solve for F4 4(I,m) for all values of m to cover the periodic
domain, it is more practical and computationally tractable to
solve a truncated system Fy 4(I,m) form =14+ 1,1 4+2,1 +
3,...,l + M with the assumption that Fs o(l,l + M + 1) =1
[14]. To determine an appropriate value of M we solved the
system iteratively for increasing values of M and examined
how the distributions of C; and F4 4(I,m) converged as M
increased. Results presented in Figs. 2(c)-2(f) for a = —0.5,
and in Figs. 3(c)-3(f) for a = —1.0 both correspond to
M =5. We found that solving the systems of equations
for larger values of M produced results that were visually
indistinguishable from those in Figs. 2(c)-2(f) and Figs. 3(c)—
3().

Comparing the corrected mean-field profile with the simu-
lation data shows that the corrected mean-field model faithfully
captures all the details of the simulation data. Unlike the
traditional mean-field model, the corrected mean-field model
predicts both the peak density and the shape of the simulation
data accurately. Comparing the corrected mean-field profile
and the simulation data in Figs. 2(e) and 3(e) shows that the
RMSE for the corrected profile is less than the RMSE for
the traditional mean-field result illustrating that the corrected
mean-field model provides a better match to the simulation
data. In addition to producing a corrected distribution for C;,
the solution of the corrected system also provides us with
profiles of Fy s(I,m) for m =1+ 1,0 +2,014+3,14+4,1+5.
The distribution of F4 4(I,/ 4+ 1) is shown in Figs. 2(d) and
2(f) for a = —0.5 and in Figs. 3(d) and 3(f) for a = —1.0.
These profiles give us a quantitative measure of the importance
of the correlations between occupancies of lattice sites. At
t =0 we have Fy 4(l,l+1)=1 at all lattice sites since
the average occupancies of all sites are independent of the
average occupancies of the neighboring sites. By t = 100 we
see that F4 4(/,l + 1) has evolved so that Fs 4(/,l + 1) # 1
in certain locations on the lattice. For example, the large
spike in F4 4(l,l + 1) at = 100 occurs in the same location
as the sharp change in C; indicating that the occupancy
status of lattice sites in this region are not independent.
This explains why the solution of the corrected model is
identical to the standard mean-field result in some areas
of the lattice [where F4 a(l,m) = 1], whereas the density
predicted by the corrected model is different to the density
predicted by the standard mean-field result in other areas of
the lattice [where F4 a(/,m) # 1]. Comparing the profiles of
Fa a(l,l + 1) in Figs. 2(f) and 3(f) show that the maximum
value of F4 4(l,l + 1) is approximately 1.50 for a = —0.5
while the maximum value of F4 4(/,/ 4+ 1) is approximately
1.85 for a = —1.0. This confirms that the correlation effects
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are more pronounced as the motion becomes increasingly
biased.

Although the corrected mean-field model for the biased
motility problem provides an improved match to the simulation
data compared to the traditional mean-field result, it is true that
the discrepancy between the traditional mean-field result and
the simulation data in Figs. 2 and 3 is relatively small. We will
now consider the effects of agent proliferation and agent death
and show that large deviations between the simulation data
and the traditional mean-field model can result in this case.

C. Unbiased motility with agent proliferation and agent death

For this model we implement an unbiased agent motility
mechanism where, during a motility event, an isolated agent
at site [ attempts to step to sites / == 1 with equal probability
of 1/2. The probability of motility per unit time is P, and
attempted motility events that would place an agent on an
occupied site are aborted. To incorporate proliferation, an
agent at site / is given the opportunity to proliferate, with
proliferation events taking place at rate P, per unit time. If
successful, the daughter agent is placed at sites / £ 1 with
equal probability 1/2. Potential proliferation events that would
place a daughter agent on an occupied site are aborted. To
incorporate death, an agent at site / is removed at rate P; per

dpP(A;, A1) P
dr 2
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unit time. Combining these three mechanisms we can write
down the evolution equation for pV(A;) as follows:

dp(A) _ Py
=5 PP A0+ 020 A — pP(ALO)

P
— pP(O0-1,A)] + TP[,O(Z)(AFI»OI)

+ 0201, A1 1)1 — PapV(A)). (19)

Rewriting the system in terms of the correlation functions we
obtain

dp(4) dc, P,
=l T[lel —2C + Gyl — PG

dr dr
Py,
+ T{Cl—l[l — CiFpal,l —=1)]
+Crl1 = CF4 41+ D]} (20)

Here we see that the unbiased motility component and the
agent death component do not engender any correlation effects
directly since there are no correlation functions appearing in
the evolution of the p!) equation associated with these mecha-
nisms. The correlation effects appear through the proliferation
terms and so we need to develop evolution equations for the
p? distributions. For nearest neighbor terms we obtain

P
(PP (A1-1,00, Arp) — P01, Al A )] + %[9(3)(A1,01+1,A1+2) — p9(A;, A141,052)]

P
+7p[,0(3)(141—1 00 A ) 4+ PP (AL, A)] — 2Pip@ (AL Arpy). 21

For arbitrarily spaced lattice sites, with |/ — m| > 1, we obtain

do®(A,A,) P
dt o

{[p<3><A1,1,01,Am> + (A, An_1,0,) — pP(AL,0141,A) — PP (AL, A,0pi1)]

Pm
+ 7[p<3><oz,Al+l Am) + 0P(AL0,, A1) — 02011, AL AR) — 0P (A1, 0,-1,4,)]

P
+ {[p@(m_] 0, 4,) + 0201, A1, An) + 02 (A0, Ai) + pP(A1,0m, A1)l — 2Pap@ (A1, Ap).

1. Numerical results

We are now in a position to solve the corrected mean-field
model and compare the solution with averaged simulation data.
To achieve this we generated four sets of simulation data shown
in Figs. 4(a)—4(c) through 7(a)-7(c).

(a) Discrete model. Simulations were performed on a
one-dimensional lattice with 1 </ < 200, where in each
realization the [th lattice site was initially occupied with
probability

(23)

—(l — 100)?
C(l)=0.1+0.9 exp [%} ,

and periodic boundary conditions were imposed at [ = 1
and [ = 200. At first we considered two proliferation-only
cases. Both proliferation-only cases correspond to P, = 1.0

(22)

and P; = 0.0. The first proliferation-only case involved a
relatively slow proliferation rate (P, = 0.0025, Fig. 4) while
the second proliferation-only case involved a relatively fast
proliferation rate (P, = 0.025, Fig. 5). To visualise the
simulation data we present 20 realizations of the model
in Figs. 4(a)—4(c) at r = 0, 1000, 2000, respectively, and in
Figs. 5(a)-5(c) at + = 0, 100, 200, respectively. To quantify
the density profiles we averaged the occupancy of each lattice
site using 400 identically prepared realizations to give reliable
estimates of C; for 1 < I < 200. These profiles are presented
in Figs. 4(d), 4(f), and 4(h) atr = 0, 1000, 2000, respectively,
andin Figs. 5(d), 5(f),and 5(h) att = 0, 100, 200, respectively.
During the simulations we see the effect of agent proliferation
as the lattice sites become uniformly occupied so that the entire
lattice is almost completely occupied by end of the simulation
periods shown in Figs. 4 and 5.
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FIG. 4. (Color online) (a)-(c) show snapshots of 20 identically
prepared realizations where the motility of agents is unbiased with
P, =A=1=1, and agents proliferate with a relatively slow
proliferate rate, P, = 0.0025, and no agent death, P; = 0. Atz =0
the initial occupancy of the /th lattice site was given by C(l) =
0.140.9 exp [—(l — 100)? /400]. Simulation results are shown at
(a) t =0, (b) t = 1000, and (c) t = 2000 where we can see that
the peak in density that was initially located at x = 100 becomes
indistinguishable from the surrounding region of the lattice as ¢
increases. Results in (d) and (e), (f) and (g), and (h) and (i) characterize
the system at t = 0, ¢+ = 1000, and ¢t = 2000, respectively. In each
case the average agent density (blue, medium gray), mean-field (red,
dark gray), and corrected KSA mean-field (green, light gray) are
shown together, and the corresponding profiles of F4 4(l,l + 1) are
shown separately as indicated. The RMSE for the mean-field and
corrected mean-field profiles are given as an inset in (f) and (h).

(b) Mean-field model. To compare the simulation data with

a mean-field model we also solve a simplified version of
Eq. (20) obtained by setting Fa 4(/, £1) = 1:

d¢, P,

P
T = [Ci-1 —2C + Cr] + Tp[cl—l(l -C)
+ Cr1(1 = C)] = PyCy. 24

This semidiscrete equation reflects linear diffusion, with births
and deaths as “reaction” terms. The solution of the mean-field
model is obtained numerically (Appendix A4) for the same
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FIG. 5. (Color online) (a)-(c) show snapshots of 20 identically
prepared realizations where the motility of agents is unbiased with
P, =A =1 =1, and agents proliferate with a relatively faster
proliferation rate, P, = 0.025, and no agent death, P; = 0. Atz =0
the initial occupancy of the /th lattice site was given by C(l) =
0.140.9 exp [—(l — 100)? /400]. Simulation results are shown at
(a) t =0, (b) t =100, and (c) t =200 where we can see that
the peak in density that was initially located at x = 100 becomes
indistinguishable from the surrounding region of the lattice as ¢
increases. Results in (d) and (e), (f) and (g), and (h) and (i) characterize
the system at r = 0, t = 100, and r = 200, respectively. In each case
the average agent density (blue, medium gray), mean-field (red, dark
gray), and corrected KSA mean-field (green, light gray) are shown
together, and the corresponding profiles of F4 4(/,/ + 1) are shown
separately as indicated. The RMSE for the mean-field and corrected
mean-field profiles are given as an inset in (f) and (h).

initial condition and boundary conditions used in the stochastic
simulations and the resulting profiles are superimposed in
Figs. 4(d), 4(f), 4(h), 5(d), 5(f), and 5(h). In the case of
the relatively small proliferation rate (P, = 0.0025, Fig. 4)
we observe that the traditional mean-field result captures the
density profiles accurately, however for the larger proliferation
rate (P, = 0.025, Fig. 5) we observe a large deviation between
the simulation data and the mean-field model, particularly at
t = 100 where the mean-field result completely fails to capture
the density profile away from the central part of the lattice.

051922-8



CORRECTED MEAN-FIELD MODELS FOR SPATIALLY ...

10 ) t=0 t=0
<C> \
Coy \ Faalll+)
|
/’ \
A
0.1 fanmmatoras’ et 1
(d) (e)
1 X 200 1 X 200
1.2 >
E=1.54x10 t=1000 14 t=1000
<C>
Crt s Fpalll+1)
TN
/ \‘ . —_—
fy o
M 1 X 200 © 1 X 200
1.2
E=1.14x107 t=4000 14 t=4000
<C>
Crnf  Mrtrsmtprtpsoabtomtesonavtonsy F o o (1141)
1
(h) o [
1 X 200 ® 1 X 200

FIG. 6. (Color online) (a)-(c) show snapshots of 20 identically
prepared realizations where the motility of agents is unbiased with
P, = A =t =1, and agents proliferate and die with relatively slow
proliferation and death rates, P, = 0.0025 and P; = 0.001. At =
0 the initial occupancy of the /th lattice site was given by C(l) =
0.140.9 exp [—(l — 100)? /400]. Simulation results are shown after
(a) t =0, (b) t = 1000, and (c) t = 4000 where we can see that
the peak in density that was initially located at x = 100 becomes
indistinguishable from the surrounding region of the lattice. As ¢
increases we see that the system tends toward a spatially uniform
steady state where the agent density is less than confluence. Results
in (d) and (e), (f) and (g), and (h) and (i) characterizse the system at
t = 0,7 = 1000, and r = 4000, respectively. In each case the average
agent density (blue, medium gray), mean-field (red, dark gray), and
corrected KSA mean-field (green, light gray) are shown together, and
the corresponding profiles of F4 (/,/ 4+ 1) are shown separately as
indicated. The RMSE for the mean-field and corrected mean-field
profiles are given as an inset in (f) and (h).

(c) Corrected mean-field model. To obtain the corrected
mean-field result we solve Egs. (19)—(22) and obtain C,
Faalm)yform=1+1,14+2,1+3,1+4,...,1 + M. Asfor
the biased motility case we determined the value of M
iteratively and found that setting M = 10 was sufficient to
obtain the converged results given in Figs. 4(d)-4(i) and
Figs. 5(d)-5(i). Comparing the profiles for the relatively
small proliferation rate (P, = 0.0025, Fig. 4) shows that the
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traditional mean-field profile, the corrected mean-field profile,
and the simulation results are visually indistinguishable.
However, the profiles for the relatively large proliferation rate
(P, = 0.025, Fig. 5) show that the corrected mean-field model
gives a significant improvement relative to the traditional
mean-field profile as it accurately captures the details of the
simulation data. This improvement is reflected in the RMSE
data given in Fig. 5. Results in Figs. 4(e), 4(g), 4(i), 5(e),
5(g), and 5(i) show the distribution of Fa a(l,l 4+ 1) for the
lower and higher proliferation rates, respectively. This data
provides us with additional information about the effect of
correlations in the system. In the small proliferation rate system
we have F4 4(I,] + 1) ~ 1 at all locations on the lattice for
all times considered. Alternatively for the high proliferation
rate system we see that in the central part of the lattice we
have F4 a(l,l + 1)~ 1 and in this region there is virtually
no difference between the corrected mean-field result and the
traditional mean-field result. In regions of the lattice further
away from the peak in density we see that Fs 4(/,/ + 1) > 1
and this corresponds to the region where there is a significant
deviation between the traditional mean-field result and the
corrected mean-field profile.

We now consider two further sets of simulation data where
agents undergo both proliferation and death events. We choose
to focus on two cases with P, > P;. In the first case we
consider relatively slow proliferation and death rates with
P, =0.0025 and P; = 0.001 (Fig. 6) and in the second case
we consider a system with a relatively faster proliferation and
deathrates with P, = 0.025 and P; = 0.01 (Fig. 7). Generally,
for this choice of parameters, the population does not become
extinct on the time scale of interest. The alternative case, where
P; > P,, generally results in a trivial long-term steady state
where there are no agents remaining on the lattice.

Results are presented in Figs. 6 and 7 in exactly the same
way that results were presented in Figs. 4 and 5 except that
we have incorporated agent death. Snapshots of simulation
results in Figs. 6(a)-6(c) at ¢+ = 0, 1000, 4000, respectively,
and in Figs. 7(a)-7(c) at t = 0, 100, 400, respectively, show
that the number of agents present on the lattice increases
with time but fails to fill the lattice completely, as observed
in Figs. 4 and 5. Density profiles for the slow proliferation
and death system in Figs. 6(d), 6(f), and 6(h) show that the
traditional mean-field result is able to capture the simulation
data adequately. Alternatively, equivalent data for the faster
proliferation and death system in Figs. 7(d), 7(f), and 7(h)
show that the traditional mean-field model fails to capture the
details of the simulation density profiles and confirms that the
corrected mean-field profile is able to describe these details
accurately.

D. Approximately corrected mean-field models of
invasion wave phenomena

For all of the models considered so far we have seen that
the traditional mean-field result can either exactly predict the
simulation results or there can be large deviations between
the mean-field result and the simulation data. In all cases
presented where there are deviations between the traditional
mean-field result and the simulation data we observe that the
corrected mean-field result is able to accurately capture the
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FIG. 7. (Color online) (a)-(c) show snapshots of 20 identically
prepared realizations where the motility of agents is unbiased with
P, = A =1 =1, and agents proliferate and die with relatively
faster proliferation and death rates, P, =0.025 and P; = 0.01.
At t = 0 the initial occupancy of the /th lattice site was given
by C(/) =0.1+0.9 exp [—(l — 100)2/400]. Simulation results are
shown after (a) t = 0, (b) t = 100, and (c) t = 400 where we can see
that the peak in density that was initially located at x = 100 becomes
indistinguishable from the surrounding region of the lattice. As ¢
increases we see that the system tends toward a spatially uniform
steady state where the agent density is less than confluence. Results
in (d) and (e), (f) and (g), and (h) and (i) characterize the system at
t =0, r =100, and ¢ = 400, respectively. In each case the average
agent density (blue, medium gray), mean-field (red, dark gray), and
corrected KSA mean-field (green, light gray) are shown together, and
the corresponding profiles of Fy 4(l,l + 1) are shown separately as
indicated. The RMSE for the mean-field and corrected mean-field
profiles are given as an inset in (f) and (h).

simulation data. This is a promising result. However, care must
be taken to apply this approach in general. If we examine the
evolution of the F4 4(I,m) equations in Appendix A3 we see
that the differential equations governing the evolution of the
correlation functions involve rational expressions with terms
like Cy, (1 — Cy) and C;(1 — C)) appearing in the denominator.
This implies that the correlation functions are unbounded when
certain lattice sites are either completely occupied (C; = 1) or
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FIG. 8. (Color online) Schematic invasion wave profile with
invading cell density profile shown in green (light gray) as it invades
from left to right. The invaded, invading, and uninvaded regions are
marked.

completely vacant (C; = 0). This complication motivated us
to use Gaussian-like initial profiles in Secs. III B-III C since
these initial profiles avoided the complication that C; = 1 and
C; = 0 at any site.

We will now focus on applying the corrected models
to represent cell invasion processes like that schematically
depicted in Fig. 8. We consider three regions relative to the
leading edge of the wave, namely: (i) behind the wavefront
where C ~ 1 (the invaded region); (ii) at the wavefront
where 0 < C < 1 (the invading region), and (iii) ahead of the
wavefront where C & 0 (the uninvaded region). To simulate
this kind of invasion system we repeat the simulations shown
in Figs. 4 and 5 except we change the initial condition so that,
in each realization, the /th lattice site was initially occupied
with probability

1, 1<1 <50,
Ch=4{1-[%"]. 50<i<100, (25)
0, 100 < 1 < 200.

This initial condition involves setting both C; = 1 and C; = 0
for certain lattice sites. For this initial condition we apply
reflecting boundary conditions at / = 1 and / = 200. We now
consider two sets of simulation data for P,, = 1 and P; = 0.0
with the same initial condition given by Eq. (25). The first set
of simulation data are for a relatively slow proliferation rate
[P, = 0.005, Figs. 9(a)-9(c)] and the second set of simulation
data are for a relatively faster proliferation rate [P, = 0.05,
Figs. 10(a)-10(c)]. For both cases, snapshots in Figs. 9(a)-9(c)
and 10(a)-10(c) show that the agents move and proliferate
leading to the formation of an invasion wave which moves in
the positive x direction. For the relatively slow proliferation
rate the system forms a gently sloping invasion wave profile
while the system with the higher proliferation rate forms
a steeper invasion wave. Averaged density data from these
simulations are presented in Figs. 9(d)-9(f) and 10(d)-10(f)
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FIG. 9. (Color online) (a)-(c) show snapshots of 20 identically
prepared realizations where the motility of agents is unbiased with
P, =A=1=1, and agents proliferate with a relatively slow
proliferation rate, P, = 0.005, and do not die, P, =0. At t =0
the initial occupancy of the /th lattice site was given by Eq. (25).
Simulation results are shown at (a) t =0, (b) t =200, and (c)
t = 1000 indicating that the combined motility and proliferation of
agents leads to the formation of an invasion wave which moves
from left to right. Results in (d)-(f) characterize the system at
t =0,t =200, and ¢ = 1000, respectively. In each case the average
agent density (blue, medium gray), mean-field (red, dark gray), and
corrected KSA mean-field (green, light gray) are shown and we can
see that there is a small deviation between the simulation data, the
traditional mean-field result, and the corrected mean-field result. The
corrected mean-field result is obtained using the procedure outlined
in Sec. III D with € = 1 x 10~%. The RMSE for the mean-field and
corrected mean-field profiles are given as an inset in (e) and (f).

which shows how the initial ramp profile evolves into an
invasion wave similar in shape to the schematic shown in Fig. 8.
To compare the averaged simulation data with the mean-field
model we set Fy 4(I, £1) =1 in Eq. (20), as before, and
solve the resulting system, Eq. (24). Results in Figs. 9(d)—
9(f) show that the traditional mean-field model and the
simulation data match reasonably well, whereas the results in
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FIG. 10. (Color online) (a)—(c) show snapshots of 20 identically
prepared realizations where the motility of agents is unbiased
with P, = A =t = 1, and agents proliferate with a relatively fast
proliferation rate, P, = 0.05, and do not die, P, =0. At t =0
the initial occupancy of the /th lattice site was given by Eq. (25).
Simulation results are shown at (a) r = 0, (b) r = 100, and (c) t = 200
indicating that the combined motility and proliferation of agents
leads to the formation of an invasion wave which moves from left
to right. Results in (d)—(f) characterize the system at t = 0, r = 100,
and ¢ = 200, respectively. In each case the average agent density
(blue, medium gray), mean-field (red, dark gray), and corrected KSA
mean-field (green, light gray) are shown and we can see that there
is a large deviation between the simulation data and the traditional
mean-field result. The corrected mean-field result is obtained using
the procedure outlined in Sec. III D with € = 1 x 107%. The RMSE
for the mean-field and corrected mean-field profiles are given as an
inset in (e) and (f).

Figs. 10(d)—-10(f) show that there is a large deviation between
the simulation data and the traditional mean-field model for
the higher proliferation rate. In particular, we see that the
simulation data is retarded relative to the mean field invasion
wave [16] and by ¢t = 200 there is a very large deviation
between the simulation data and the traditional mean-field
result.
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To generate an improved mean-field result we must modify
our previous approach for solving the correlation equations
and to do this we use a hybrid method where we solve the
truncated system of correlation equations in those regions
of the lattice where ¢ < C < (1 — ¢) and use the traditional
mean-field model in the remaining regions of the lattice where
(1—-¢€)< C < land0 < C < €. This hybrid method involves
dividing the invasion wave profile shown schematically in
Fig. 8 into the invaded, invading, and uninvaded regions. We
apply the traditional mean-field model to solve for C; in the
invaded and uninvaded regions while we apply the corrected
mean-field model to solve for C; in the invading region. The
accuracy of this approach depends on the value of € that
is chosen to delineate these regions, and also the level at
which the correlation system is truncated for Fu 4(I,m) with
m=I1+1,1+2,1+3,1+4,...,l+ M. To demonstrate the
effectiveness of this strategy we present corrected mean-field
results in Figs. 9(d)-9(f) and 10(d)-10(f) that were obtained
by setting € =1 x 107% and M = 10. As expected, for a
relatively slow proliferation rate (Fig. 9), we see that the
corrected mean-field result and the traditional mean-field result
are very similar. Alternatively, the corrected mean-field result
for the high proliferation rate (Fig. 10) provides a far better
match to the simulation data than the traditional mean-field
result. These differences are reflected in the RMSE data given
in Figs. 9 and 10.

As we have mentioned, the accuracy of the corrected mean-
field model depends on the choice of €. Our results in Figs. 9
and 10 correspond toe = 1 x 10~% and we found that reducing
€ further did not change the corrected mean-field results in
these cases. We did, however, test larger values of € and found
that larger values gave poorer results. This is an intuitive result
since increasing € means that we are increasing the size of the
lattice where the traditional mean-field model is applied. In
general, the relationship between the accuracy of the corrected
mean-field model and the value of € is complicated since it also
depends on the shape of the density profile. This means that
for invasion wave problems the accuracy of the hybrid method
will depend both on € and any other factor that influences
the shape of the density profile such as the initial condition,
the boundary conditions, and the parameters P, and P,. We
have not investigated the details of the complicated relation-
ship here since our aim is to demonstrate the application
of the hybrid method. A detailed analysis of the accuracy
of the hybrid method is left as an open question for future
research.

Although it was necessary to use the hybrid approach to
solve the corrected mean-field model for the invasion wave
problems in Figs. 9 and 10, we remark that the hybrid method
was not required to solve the problems described in Figs. 4
and 5 even though these previous problems involved the
lattice becoming uniformly occupied to confluence toward
the end of the simulation. In this previous case the system
of correlation equations was applied everywhere across the
domain and the numerical solution remained bounded for
all times considered. This implies that the hybrid method
is only required when we specify C; =0 or C; =1 at the
beginning of the simulation like we did in Figs. 9 and 10.
In the previous case (Figs. 4 and 5) the solution evolved in
such a way that the governing equations did not blow up,
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implying that there was some cancellation effects that negated
this issue.

E. Discussion and conclusion

Many mean-field models in the exclusion process literature
are derived by invoking an independence assumption [6,8—11,
13]. This assumption states that the average occupancy status
of a lattice site is independent of the average occupancy status
of other lattice sites. Given that most exclusion processes in-
volve agent transitions to and from neighboring lattice sites, the
independence assumption appears to be intuitively invalid [15].
However without any formal way of relaxing the independence
assumption it seems probable that violating the independence
assumption could explain why some mean-field models fail to
match simulation data [8,9]. In this work we develop corrected
mean-field descriptions of various exclusion-process-based
models that include (i) unbiased motility, (ii) biased motility,
and (iii) unbiased motility with birth and death processes. The
corrected mean-field model describes the evolution of k-point
distribution functions that represent the exclusion process
without making any independence assumption. This procedure
leads to an infinite system of coupled nonlinear equations
which are truncated using a moment closure approximation.
In this study we close the system using the KSA. Our
results show that the simplest unbiased motility mechanism
is governed by the same mean-field model that is obtained
by invoking the independence assumption. This demonstrates
that the independence assumption leads to an exact result by
coincidence. For biased motility we show that small deviations
between simulation data and standard mean-field models are
corrected using the improved KSA mean-field model. For
unbiased motility incorporating agent birth and death we show
that large deviations between simulation data and standard
mean-field models are reduced using the corrected KSA mean-
field model. In summary, our analysis provides a rigorous
explanation of why certain previous mean-field models based
on the independence assumption appear to provide a good
match to simulation data while other previous mean-field
models fail to capture the details of the discrete simulation
data. In these latter cases the corrected mean-field models
presented here provide an improved match to simulation data.

A key contribution of our analysis is that we study problems
where the initial agent density varies spatially across the
lattice. This is a significant generalization of previous works
that have been limited to studying initially uniform problems.
These previous uniform studies have considered problems that
have arisen in surface chemistry [17,18], ecology [5], and
cell biology [14]. Our interest is to apply exclusion process
models to represent cell biology phenomena, which includes
the spreading of cell populations as well as invasion wave
processes [21,22] that have broad applications to understand-
ing wound healing, malignant invasion, and developmental
biology. These problems are inherently spatially dependent
since we are interested in predicting the evolution of moving
fronts and previous studies based on initially uniform problems
do not apply. The KSA-based corrected mean-field model is
fully documented here and we show that the improved model
involves solving a system of coupled nonlinear differential
equations describing several correlation functions, Fa_a(/,m).
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These functions provide us with a quantitative measure of
the correlation between the occupancy status of lattice sites /
and m. In all cases the differential equations governing
the evolution of the correlation functions involve rational
expressions with terms like C;, (1 — C;) and/or C;(1 — C))
on the denominator. This implies that the correlation functions
are unbounded when the probability of certain lattice sites
are either completely occupied (C; = 1) or completely vacant
(C;=0).

The issue regarding the correlation functions becoming
unbounded when certain lattice sites are either completely
occupied or completely vacant never arose in previous studies
focusing on initially uniform problems [5,14,17,18]. In these
previous studies it made no sense to consider the evolution of
a completely and uniformly occupied lattice or a completely
and uniformly vacant lattice. In contrast, for the more general
spatially variable problems considered here, we must deal with
this complication. For demonstrative purposes, we present
simulation data and solutions of the corrected mean-field
model for a range of problems where the initial distribution
of agents on the lattice is such that 0 < C; < 1 for all lattice
sites across the lattice. Studying this kind of initial condition
allowed us to demonstrate how the corrected mean-field model
performed relative to the traditional mean-field model for a
range of problems. We also present results for a more general
cell invasion problem where the initial distribution of agents
includes certain regions of the lattice that are completely
occupied and certain regions of the lattice that are vacant.
Here we adopt a hybrid approach to solve this problem
by applying the corrected mean-field model to regions of
the lattice with € < C; < (1 — €), while using the traditional
mean-field model elsewhere on the lattice. Our simulation
data confirms that this hybrid approach leads to an improved
mean-field solution that outperforms the traditional mean-field
result.

Various extensions of this work are possible with ob-
vious applications to exclusion process models on 2D
and 3D lattices. We would also like to make the point
that although this work is based on the traditional KSA
closure scheme, it is possible to incorporate other closure
schemes into the models outlined here. For example, previous
investigators have indicated that the accuracy of the traditional
KSA closure scheme can be improved by incorporating a
power series [19,23,24] or exponential factor [5]. We have not
used these correction methods in the present study since our
simulation data demonstrates that the standard KSA closure
scheme performs adequately for the problems considered here.
We note, however, that any future developments in terms of
new closure schemes or new corrections to the KSA closure
scheme could, in principle, be incorporated into the models
reported here.

APPENDIX: p® EVOLUTION EQUATIONS
1. Simplifying relations

To simplify the various evolution equations for p®(A;, A,,)
presented in the main part of the paper we make use of three
results described briefly here.
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a. Conservation rule

In all models we make use of a summation rule that allows
us to collapse certain p® terms into p®. The summation rule
can be written as

> p(01.0m.04) = pP(01.0m). (AD)

On

For example,

PP(AL A, Arer) + 0P (AL AL 01) = pP (AL AL). (A2)

b. Kirkwood superposition approximation

In all models except for the simple unbiased motility case,
some of the p©® terms cannot be reduced using the summation
rule. In this case we close the system approximately by
introducing an approximate relationship between the o and
p@ distribution functions known as the KSA which can be
written as

PP (AL AP P (AL A)PP (A, Ay)
PD(ADPD(A)p M (A)

= CICmCs FA,A(l,m)FA,A(l,s)FAA(m,s).

(A3)

PI(AL AR A) =

This approximation has been widely studied [5,14,17-20],
and as evidenced by our computational results in the main
paper, the KSA proves to be a sufficiently accurate closure
scheme.

¢. Correlation functions

We also make use of the relationship between the p®
distribution functions and the correlation functions together
with the product rule of differentiation to simplify the temporal
terms:

dp® (A1, A) _dICICy Faall,m)] dFa a(l,m)
dr B dr T
4+ Faa(l,m) I:Cmg + Cld&} . (A4
' dr dr

Using these three relationships we now present the final
equations governing the evolution of the correlation functions
for various mechanisms explored in this study. We only present
the final versions of these equations. These final versions have
been derived making use of the summation rule and the KSA
where appropriate. For convenience we will prime notation F’
to represent temporal derivatives F //L A m) =dFa a(,m)/dt.
In this Appendix all correlation functions will refer to the
correlation between two occupied sites Fa 4(l,m) and we
will drop the subscript for convenience so that F(I,m) =
Faall,m).
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2. Biased motility
The evolution of F(I,l + 1) is given by

o C!
FiUl+1) = —F@I+1) [ﬂ N _z}
C1 G

P, [C C
+22 N POl + D+ 22 FA L +2) = 2FA L+ 1)
2 | ¢ C

I+1
+Ema {L[l G F(L— D[ = CFUI+ DIF( — 1,1+ 1)
2 Cl(l — Cl) 1 5 1 5 3
+;[1 —CaFLI-DIN-CFU-1LI+DIFII+1)
a-c-y
1
———[1 = C2F, I +2)][1 = Cr o FU+ LI+ 2)]FU I+ 1)
(1—-Ciy2)

_ Ciia
Ci(1 = Ciqp)

For any general distance F(I,m), where | — m| > 1, we obtain

[1— Cry FA,L+ DI[1 — Croy FU A+ 1,1 + 2] F(,1 + 2)} .

Um) = — GG PGy Crut
F'(I,m) = F(l,m)[cl +Cm]+ > [ G F(l—-1,m)+ G F( + 1,m)
+ Cn-t F(l,m — 1)+ Cons Faallm+1) — 4F(1,m)]
Pna Ci
N {m[l — G FIm]l - CF(,l—-DIFI—1,m)
Cmfl
oo et~ CaF Il = CuF G = DIF@m = 1)
ta ey G PO = DI = G P = Lm))F(Lm)
1
a1 = Camt Flum = DI = oy Fmam = DIF(Lm)
1
————— 1 = C, FU,1 + DI[1 = Cr F(L + Lm)1F(I,m)
(I-Crp)
_;[1 - Cm+lF(m7m + 1)][1 - Cm+1F(l,m + 1)]F(l,m)
(I = Cuny1)
Ci1
—m[l — C/F(l,l+ DI[1 = C,FA,mIF( + 1,m)
Cint1
- m[l — Cu F(I,m)][1 — Cy F(m,m + DIF(,m + 1)} ,

3. Unbiased motility with agent proliferation and agent death

The evolution of F(I,l 4+ 1) is given by

, C.,  C P, [ Ci Cii2
Fl+1)=—-FUl+1)|=—+ = +2P;)|+ = |——F(U-1LI+ D)+ —FIl+2)-2F(,Il+1)
C 2 1 G Ciy1

w1 G

2 C[ C/+1 C/(l _Cl)

n Ciio
Cry1(1—=Cipy)

For any general distance F(I,m), where |l — m| > 1, we obtain

[1 — Crat F(L+ DI = iy  F(L+ 1,1 + 21F (L + 2)} .
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c
F'(l,m)=—F(,m)| =L + =™ 4+ 2P,
(l,m) (m)[c,+cm+ d:|
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P, [Ci_ Cin
— | —F(I -1, —F(+1,
+ > |: c ( m) + q I+ 1,m)

+ G = 1+ 2 F 1) - 4F(l,m)}
Py Ci-
Ciy1
toa- cl)[l — CF(,L+ D[l — CF(,m)F(m,l+ 1)
Cm+1
+m[1 — C,FU,m[l — C,Fm,m + DIFU,m+1)
Cm—l
+ m[l - Cu F(,m)[1 — Cpy F(m,m — D]F(,m — 1)} . (A8)

4. Numerical solution

The solution of the systems of coupled nonlinear differ-
ential equations presented throughout the paper are gener-
ated numerically using a fourth-order Runge-Kutta method
with constant time step & [25]. All numerical results

presented in the manuscript are for 2 = 1 x 107!, To test the
accuracy of these numerical solutions we also generated results
with & =1 x 1072 and demonstrated (results not shown)
that they were visually indistinguishable from the results
forh=1x 1071,

[1] B. Berkowitz and H. Scher, Phys. Rev. E 57, 5858 (1998).
[2] Y. Edery, H. Scher, and B. Berkowitz, Water Resour. Res. 46,
WO07524 (2010).
[3] R. Law, D. J. Murrel, and U. Dieckmann, Ecology 84, 252
(2003).
[4] D. J. Murrell, U. Dieckmann, and R. Law, J. Theor. Biol. 229,
421 (2004).
[5] M. Raghib, N. A. Hill, and U. Dieckmann, J. Math. Biol. 62,
605 (2011).
[6] C. Deroulers, M. Aubert, M. Badoual, and B. Grammaticos,
Phys. Rev. E 79, 031917 (2009).
[7] A. Fernando, K. A. Landman, and M. J. Simpson, Phys. Rev. E
81, 011903 (2010).
[8] M. J. Simpson, K. A. Landman, and B. D. Hughes, Physica A
388, 399 (2009).
[9] M. J. Simpson, K. A. Landman, and B. D. Hughes, Phys. Rev.
E 79, 031920 (2009).
[10] M. J. Simpson, K. A. Landman, and B. D. Hughes, Physica A
389, 3779 (2010).
[11] M. J. Simpson, C. Towne, D. L. S. McElwain, and Z. Upton,
Phys. Rev. E 82, 041901 (2010).
[12] M. J. Simpson, R. E. Baker, and S. W. McCue, Phys. Rev. E 83,
021901 (2011).

[13] K. Anguige and C. Schmeiser, J. Math. Biol. 58, 395 (2009).

[14] R. E. Baker and M. J. Simpson, Phys. Rev. E 82, 041905
(2010).

[15] T. M. Liggett, Stochastic Interacting Systems: Contact, Voter
and Exclusion Processes (Springer, New York, 1999).

[16] T. Callaghan, E. Khain, L. M. Sander, and R. M. Ziff, J. Stat.
Phys. 122, 909 (2006).

[17] J. Mai, V. N. Kuzovkov, and W. J. von Niessen, Chem. Phys. 98,
10017 (1993).

[18] J. Mai, V. N. Kuzovkov, and W. von Niessen, Physica A 203,
298 (1994).

[19] N. N. Bugaenko, A. N. Gorban, and I. V. Karlin, Theor. Math.
Phys. 88, 977 (1991).

[20] A. Singer, J. Chem. Phys. 121, 3657 (2004).

[21] P. K. Maini, D. L. S. McElwain, and D. Leavesley, Appl. Math.
Lett. 17, 575 (2004).

[22] P. K. Maini, D. L. S. McElwain, and D. I. Leavesley, Tissue Eng.
10, 475 (2004).

[23] G. H. A. Cole and A. Moreton, Mol. Phys. 13, 501
(1967).

[24] G. H. A Cole, Rep. Prog. Phys. 31, 419 (1968).

[25] S. C. Chapraand R. P. Canale, Numerical Methods for Engineers
(McGraw-Hill, Singapore, 1998).

051922-15


http://dx.doi.org/10.1103/PhysRevE.57.5858
http://dx.doi.org/10.1029/2009WR009017
http://dx.doi.org/10.1029/2009WR009017
http://dx.doi.org/10.1890/0012-9658(2003)084[0252:PGISAT]2.0.CO;2
http://dx.doi.org/10.1890/0012-9658(2003)084[0252:PGISAT]2.0.CO;2
http://dx.doi.org/10.1016/j.jtbi.2004.04.013
http://dx.doi.org/10.1016/j.jtbi.2004.04.013
http://dx.doi.org/10.1007/s00285-010-0345-9
http://dx.doi.org/10.1007/s00285-010-0345-9
http://dx.doi.org/10.1103/PhysRevE.79.031917
http://dx.doi.org/10.1103/PhysRevE.81.011903
http://dx.doi.org/10.1103/PhysRevE.81.011903
http://dx.doi.org/10.1016/j.physa.2008.10.038
http://dx.doi.org/10.1016/j.physa.2008.10.038
http://dx.doi.org/10.1103/PhysRevE.79.031920
http://dx.doi.org/10.1103/PhysRevE.79.031920
http://dx.doi.org/10.1016/j.physa.2010.05.020
http://dx.doi.org/10.1016/j.physa.2010.05.020
http://dx.doi.org/10.1103/PhysRevE.82.041901
http://dx.doi.org/10.1103/PhysRevE.83.021901
http://dx.doi.org/10.1103/PhysRevE.83.021901
http://dx.doi.org/10.1007/s00285-008-0197-8
http://dx.doi.org/10.1103/PhysRevE.82.041905
http://dx.doi.org/10.1103/PhysRevE.82.041905
http://dx.doi.org/10.1007/s10955-006-9022-1
http://dx.doi.org/10.1007/s10955-006-9022-1
http://dx.doi.org/10.1016/0378-4371(94)90158-9
http://dx.doi.org/10.1016/0378-4371(94)90158-9
http://dx.doi.org/10.1007/BF01027699
http://dx.doi.org/10.1007/BF01027699
http://dx.doi.org/10.1063/1.1776552
http://dx.doi.org/10.1016/S0893-9659(04)90128-0
http://dx.doi.org/10.1016/S0893-9659(04)90128-0
http://dx.doi.org/10.1089/107632704323061834
http://dx.doi.org/10.1089/107632704323061834
http://dx.doi.org/10.1080/00268976700101421
http://dx.doi.org/10.1080/00268976700101421
http://dx.doi.org/10.1088/0034-4885/31/2/301

