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Interface-mediated interactions: Entropic forces of curved membranes
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Particles embedded in a fluctuating interface experience forces and torques mediated by the deformations and
by the thermal fluctuations of the medium. Considering a system of two cylinders bound to a fluid membrane, we
show that the entropic contribution enhances the curvature-mediated repulsion between the two cylinders. This
is contrary to the usual attractive Casimir force in the absence of curvature-mediated interactions. For a large
distance between the cylinders, we retrieve the renormalization of the surface tension of a flat membrane due to
thermal fluctuations.
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I. INTRODUCTION

Particles bound to an interface may interact via forces and
torques of two distinct physical origins. One contribution
to these so-called interface-mediated interactions is purely
geometric and results from the deformations caused by the
particles. Since the interface is also a thermally fluctuating
medium, embedded particles may also interact through a
fluctuation-induced interaction. The associated entropic force
is an example of the more general phenomenon of Casimir
forces between objects placed in a fluctuating medium. In
its original formulation, two uncharged conducting plates
were predicted to attract each other due to the quantum
electromagnetic fluctuations of the vacuum [1]. In a soft matter
context, fluctuation-mediated forces were, for instance, studied
for objects immersed in a fluid near its critical point [2–4] or
attached to a fluid interface [5–7].

Interface-mediated forces have also received intense at-
tention recently due to their possible relevance in biolog-
ical processes: membrane-mediated interactions could aid
cooperation of proteins in the biological membrane and
complement the effects of direct van der Waals or electrostatic
forces [8]. Theoretical studies of this problem have typically
considered particles on quasiplanar fluid membranes [9–16],
neglecting the intrinsic nonlinearity of the underlying (ground-
state) shape equation. Some systems, especially those with
a symmetry, have been studied on a nonlinear level without
taking into account any fluctuations [17].

In this paper, we investigate interface-mediated interactions
in their full generality on a curved geometry, including entropic
contributions for the specific problem of two parallel cylinders
bound to the same side of a membrane. The ground-state of
this problem and thus the forces at zero temperature induced
by the membrane were studied in Refs. [18,19] via stress and
torque tensors and in Refs. [19,20] via energy minimization.
The method employed here to include thermal fluctuations is
based on the calculation of the free energy of the system in
a semiclassical approximation, where Gaussian fluctuations
around the curved ground-state are computed. To this end we
introduce a new parametrization for the fluctuation variables,
which is possible due to the translational symmetry of the
membrane. The force can then be obtained by deriving the
free energy with respect to the distance between the cylinders.

II. THE MODEL

We first start by exposing the problem and shortly retrieve
the ground-state configuration, which will be the starting point
for the computation of the thermal fluctuations. Consider two
identical cylinders of length L and radius R bound to one
side of the membrane, parallel to the y axis and separated
by a distance d (see Fig. 1). In the limit of large L/R,
boundary effects at the ends of the cylinders can be neglected
and the profile can be decomposed into the following parts:
an inner section between the cylinders, two outer sections
that become flat for x → ±∞, and two bound sections in
which the cylinder and the membrane are in contact with
each other. The contact area is given by αcRL, where αc is
the wrapping angle (see Fig. 1). The value of αc depends
on the physical situation considered: (i) the cylinder either
has a finite adhesion energy w per area so that αc is
determined via an adhesion balance at the contact lines or
(ii) only a given part of the cylinder surface is adhering strongly
to the membrane so that αc is fixed. The ground-state of case (i),
which was studied numerically in detail in Ref. [20], displays
a phase diagram which is more complicated than in case (ii).
In order to avoid complications already at the ground-state
level, we will thus focus on case (ii) in the following by setting
αc = αo + αi = const, where αo/i is the contact angle between
the cylinder and the outer/inner membrane. The shape of the
bound parts is prescribed by the geometry of the attached
cylinder, whereas the profiles of the free membrane sections
are determined by solving the nonlinear shape equation, which
results from the minimization of the Helfrich Hamiltonian
[21,22]

H =
∫

�

dA

(
σ + κ

2
K2

)
, (1)

where � is the surface of the free membrane and dA is
the infinitesimal area element. In this functional, σ denotes
the surface tension, κ the bending rigidity, and K the local
curvature of the membrane. At zero temperature, the profile
obeys translational symmetry along the y axis. It is thus
convenient to introduce the angle-arc length parametrization
ψ(s), where s is the arc length and ψ the angle between the
x axis and the tangent to the profile. In this parametrization,
the curvature is given by K = ±dψ/ds [+ for the inner region
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FIG. 1. (Color online) Two parallel cylinders on the same side of
a fluid membrane with fixed wrapping angle αc = αi + αo = 120◦.
The membrane fluctuates around its ground-state profile X0. The
corresponding fluctuation variable u gives the distance between X0

and the actual profile X measured along the normal n of the ground-
state membrane (see inset).

and − for the outer ones (see again Fig. 1)]. The shape equation
of the surface can be written as λ2d2ψ/ds2 − η sin ψ = 0,
with λ = √

κ/σ the reference length scale. The dimensionless
quantity η is defined as η = fx/σ , where fx is the force per
length L of the cylinder at every point of the membrane (which
is constant and horizontal on each membrane section). Using
the stress tensor [19], the zero-temperature force on the left
cylinder is given by the simple expression F

(0)
cyl = σ (η − 1)L.

The outer section exercises a pulling force −σL on the left
cylinder, the force of the inner section is σηL. Later on, we
will see how the values of the forces will be renormalized by
thermal fluctuations. For the total force without fluctuations,
one only has to determine the value of η, which is an implicit
function of d. To do so, one first solves the shape equation,
which admits different solutions ψin(s) and ψout(s) (expressed
in terms of elliptic Jacobi functions), corresponding to the
inner and outer sections and depending on the boundary
conditions at each cylinder. The value of η in the inner section
for any given αi is determined implicitly by the requirement
ψ0 ≡ ψin(s0) = αi , where s0 is the arc length between the
midline and the contact point on the cylinder of the inner
membrane. Then, s0 is also implicitly determined by the
relation

d

2
− R sin αi =

∫ s0

0
ds cos ψ . (2)

The torque balance equation at equilibrium,

Ki − Ko − R

λ2
(η cos αi − cos αo) = 0 , (3)

where Ko/i is the contact curvature in the outer/inner region,
fixes the individual values αo and αi . Solving the torque
equation, values of η, αo, αi for a given d can now be
determined numerically. For the case under consideration,
η < 1 is an increasing function with the distance d, so that
the cylinders always repel each other [19]. This justifies
that we have restricted our discussion to parallel cylinders.
Indeed, every deviation from parallelism would directly be
compensated by a counteracting torque.

III. THERMAL FLUCTUATIONS

A. The fluctuation operator H (2)

With the knowledge of the zero-temperature profile, it is
now possible to compute the entropic force. We first focus
on the inner section and set ψ(s) ≡ ψin(s). The position
vector including fluctuations can then be written as X(s,y) =
X0(s) + (−u sin ψ,0,u cos ψ), where u(s,y) is the membrane
fluctuation in the normal direction and X0(s) the position
vector of the zero-temperature profile (see inset of Fig. 1).

For small temperature, the Helfrich Hamiltonian (1) can be
expanded H = H0 + H (2) to second order in u, where H0 is the
ground-state energy. The contribution V (d) of the fluctuations
to the free energy is then given by

V (d) = β−1 ln
∫

Due−βH (2)
, (4)

where β−1 = kBT . The fluctuation operator H (2) can be
determined by expressing the Helfrich Hamiltonian (1) with
the help of the parametrization X(s,y). One obtains (see
Appendix A)

H (2) =
∫ [

ψ̇4u2

2
+ ψ̇ψ̈usu +

(
1

λ2
+ 3ψ̇2

2

)
u2

s

2
+ ψ̇2ussu

+u2
ss + u2

yy

2
+ ussuyy +

(
1

λ2
− ψ̇2

2

)
u2

y

2

]
dsdy, (5)

where u was assumed to satisfy periodic boundary conditions.
The domain of integration is −L/2 < y < L/2 and −s0 <

s < s0. The thermal contribution to the force of the inner
section is in principal given by F fl

in = ∂V (d)/∂d. However,
thermal fluctuations also induce a rotation of the cylinders to
maintain the torque balance. For small membrane curvatures,
the actual values of η as well as s0 and ψ0 differ only slightly
from their zero-temperature values. Solving the arc length and
torque Eqs. (2) and (3) for small deviations δη, δs0, δψ0, one
can see that the inner thermal force must be corrected by a
prefactor, i.e., Z(ψ0,η)F fl

in. It turns out that Z(ψ0,η) does not
vary much from unity and is thus disregarded here. For a large
curvature of the inner membrane, this approximation would
in principle break down even though a general change of the
behavior is not expected.

The computation of Eq. (4) for every value of
separation d is very difficult, as H (2) has no known eigenvalues
and eigenfunctions. To circumvent this problem, we focus on
the two limiting cases, the quasiflat and the highly curved
regime, and propose an interpolating formula for intermediate
separations.

B. The quasiflat regime

Let us first consider the quasiflat regime, i.e., the regime of
very large d/λ for which the membrane can be considered
as flat except at the cylinders. In this case, η ≈ 1 and
∂ψ0/∂d ≈ 0. In Eq. (4), u can be expanded in Fourier modes
u(s,y) = ∑

q,n un,q exp(iπns/s0) exp(iπqy/L) with n and q

two integers. An implicit cut-off 
 of the order of the inverse of
the membrane thickness (a ∼ 5 nm) is assumed. The number
of modes along the y-/s-direction are given, respectively, by
N = 2π
L and M = 4π
s0 (2s0 ≈ d being the arc length
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of the inner part). Since the field u(s,y) is dimensional, the
measure of the partition function is Du ≡ ∏

y,s μ−1du(s,y),
with μ an arbitrary length scale that disappears from the
expression of the force.

To compute the energy contribution (4) in the quasiflat
regime, we decompose Eq. (5) in two parts:

H (2) =
∫ [

u2
ss + u2

yy

2
+ ussuyy + 1

λ2

u2
y

2

]
dsdy

+
∫ [

ψ̇4u2

2
+ ψ̇ψ̈usu +

(
1

λ2
+ 3ψ̇2

2

)
u2

s

2

+ψ̇2ussu − ψ̇2

2

u2
y

2

]
dsdy (6)

and rewrite H (2) in Fourier components according to this
decomposition:

H (2)= 4dLβμ2
∑
m,n

u(−m)[G−1(−m,n,q)+X(−m,n,q)]u(n),

(7)

where the u(n) are the Fourier components of u, with
u(−m) = ū(m). The terms G−1 and X correspond to the
Fourier transform of the two terms arising in the decomposition
(6). Namely, one has:

G−1(−m,n,q) = δmn

{[(
πn

d

)2

+
(

πq

L

)2]2

+ 1

λ2

[(
πn

d

)2

+
(

πq

L

)2]}
, (8)

which is the diagonal propagator of the flat case, and

X(−m,n,q) = 1

d

∫ d
2

− d
2

ds

[
1

2
ψ̇4+3

2

(
ψ̈2+ 1

λ2
ψ̇2

)
−5π2

4

(
mn

d2
− q2

L2

)
ψ̇2

]
exp

[
iπ (n − m)s

d

]
(9)

is the nondiagonal matrix due to curvature corrections. These
results allow the computation of the path integral (4) with the
help of the usual formula for the integral of a quadratic weight:

βV = ln
∫

Due−βH (2)

= ln
√

det [4dLβμ2(G−1 + X)]

= 1

2
Tr ln[4dLβμ2(G−1 + X)]

= 1

2
Tr ln (4dLβμ2G−1) +

∑
k�1

(−1)k−1

2k
Tr(GX)k . (10)

The first term of Eq. (10) is just the free energy of the flat case:

1

2

∑
q,n

ln

(
4dLβμ2

{[
1

2

(
2πn

d

)2

+
(

2πq

L

)2]2

+ 1

2λ2

[(
2πn

d

)2

+
(

2πq

L

)2]})
. (11)

The second term is the perturbation correction [with
G̃ (n,q) := G(−n,n,q)]:

∞∑
k=1

(−1)k−1

2k
Tr(GX)k =

∞∑
k=1

(−1)k−1

2k

∑
q

∑
ni ,∑
ni=0

X(−n1,n2,q)

× G̃(n2,q)X(−n2,n3,q)G̃(n3,q) . . .

× X(−nk−1,nk,q)G̃(nk,q) . (12)

A careful inspection shows that to the leading order 1/d, the
sum in Eq. (12) is dominated by terms where the propagator
G is singular, that is at (n,q) ∼ 0. As the term X(−m,n,q) is
regular at the origin, we can approximate the series Eq. (12)
by keeping only the contributions of the form X(0,0,0)G̃(n,q).
This dominant contribution can be resummed as

∞∑
k=1

(−1)k−1

2k
Tr(GX)k	1

2

∑
q

ln

[
1 +

∑
n

X(0,0,0)G̃(n,q)

]
,

(13)

yielding a correction to the force

βδF = 1

2

∑
q

∂
∂d

∑
n X(0,0,0)G̃(n,q)

1 +∑n X(0,0,0)G̃(n,q)
. (14)

In the limit of large d and L, the sums can be approximated
by integrals. A lengthy but straightforward calculation, which
is sketched in Appendix B, leads to the following expression
of the thermal force of the inner section

βF fl
in

L
2
≈ − 1

2π2
− A λ

d
+ o

(
λ

d

)
for d/λ 
 1 (15)

with A = B
2π2(
λ)2

∫ 1
0

1
1+x2

dx

1+ B
π
λ

1
x

arctan( 1
x

)
> 0, where B =

16C(4C2+3C+9)
3(C+1)3 and C = tan2(ψ0/4). Since F fl

in is negative, it
contributes to the repulsion between the cylinders. For
d → ∞, F fl

in/L ≈ −
2/(2π2β) corresponds to the entropic
part of the intrinsic tension as found in Ref. [24] and denoted by
τ ≡ τin = σ − 
2/(2π2β). Obviously, the outer section pulls
with an intrinsic tension of opposite sign τout = −τin on the
left cylinder. The total thermal force F fl = −L
2Aλ/(βd)
in the quasiflat regime is thus always repulsive just as the
zero-temperature force F

(0)
cyl (see Fig. 2). It should be noted

that even for η close to one, the membrane is not completely
flat due to the nonvanishing contact angle ψ0. Only for ψ0 = 0
is the membrane completely flat and F fl equals zero. To recover
the usual attractive Casimir behavior, one has to go beyond the
1/d expansion.

C. The highly curved regime

At small separations, the membrane is highly curved if the
scaled ground-state force η is close to zero [19]. This highly
curved regime is accessible only for large wrapping angles
αc: for example, choosing the radius of the cylinders such that
R/λ = 1, then d/λ � 2. If the two cylinders are in contact, i.e.,
d/λ = 2, one obtains η = 0.93 for αc = 45◦, which implies
that the membrane is still rather flat. For αc = 120◦, one is
already close to the highly curved regime since η = 0.11.
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FIG. 2. Scaled total thermal force −F̃ fl/L = −2πβF fl/(L
2) =
2πAλ/d on the left cylinder in the quasiflat regime as a function of
separation d/λ for αc = 10◦ (short dashes), αc = 45◦ (dashed-dotted
line), αc = 90◦ (long dashes), and 120◦ (solid line).

1. Change of variable

To calculate the thermal force in this regime, consider
a—zero energy cost— rigid translation of amplitude unity
in both x and z directions. This translation of the membrane
as a whole can be decomposed into normal and tangential
components, which are combinations of cos ψ and sin ψ . Now,
owing to the property that tangential fluctuations leave H

invariant [25], it is clear that individually cos ψ and sin ψ

are zero modes of H (2). As they are also zero modes of
the operator d2/dψ2 + 1, we can write H (2) in the form
H (2) = 1

2

∫
[ψ̇2(d2/dψ2 + 1)u]2 + uH̃ (y)udy, where H̃ (y) is

a differential operator acting on the variable y only. This
form of H (2) and the fact that from the ground-state we have
ds = dψ/K(ψ) with K(ψ) = √

2[1 − η cos(ψ)]/λ, suggests
a change of variables between s → ψ = ψ(s). In this way, the
s dependence is eliminated in the benefit of the new variable
of integration, ψ , and

H (2) = 1

2

∫ {
K(ψ)3

[(
d2

dψ2
+ 1

)
u

]2

− 2K(ψ)
∂uyy

∂ψ

∂u

∂ψ

+ [K(ψ)−1/λ2 − K(ψ)/2]u2
y + u2

yy

}
dψdy , (16)

where u(s,y) has been replaced by u(ψ,y) [26]. The do-
main of integration is now −L/2 < y < L/2 and −ψ0 <

ψ < ψ0. This new formulation is the clue to compute the
Gaussian functional integral (4), since it relies only on the
angle variable ψ . Using the Fourier transform u(ψ,y) =∑

q,n ũn,q exp(iπnψ/ψ0) exp(iπqy/L), with n and q two in-
tegers, we can write H (2) = ∑

m,n,q ũm,qS(m,n,q)ũn,q , where

S(m,n,q) = 2ψ0

{[(
πm
ψ0

)2 − 1
][(

πn
ψ0

)2 − 1
]

2
an+m

−
(

πq

L

)2(
π2nm

ψ2
0

)
bn+m + 1

2

(
πq

L

)4

cn+m

+1

2

(
πq

L

)2(
cn+m

λ2
− bn+m

2

)}
, (17)

with

ak = 1

2ψ0

∫ ψ0

−ψ0

K(ψ)3Wk(ψ) dψ , (18a)

bk = 1

2ψ0

∫ ψ0

−ψ0

K(ψ)Wk(ψ) dψ , (18b)

and

ck = 1

2ψ0

∫ ψ0

−ψ0

K(ψ)−1Wk(ψ) dψ , (18c)

where Wk(ψ) := exp(−iπkψ/ψ0).

2. The cut-off problem

In the usual Fourier decomposition u(s,y) =∑
q,n un,q exp(iπns/s0) exp(iπqy/L), an implicit cut-off 


is assumed with N = 2π
L and M = 4π
s0 the number of
modes along the y-/s-direction, respectively (see Sec. III B).
A short inspection shows that for a finite M in the s space,
there is an infinite number of modes in the ψ space. Actually,
an expansion in the ψ variable of a function F (ψ) has to be
equal to its expansion in s space:

F (ψ(s)) =
∑

n

F̃n exp

(
iπnψ(s)

ψ0

)
=
∑

n

Fn exp

(
iπns

s0

)
.

(19)
The relation Fn = ∑

p AnpF̃p connects both kind of Fourier
coefficients. It can be found by expanding ψ(s) in its
own Fourier components ψk . Actually, the expansion of the
exponential of a sum of exponentials is given by the Jacobi
Anger formula, which leads to

Anp =
[ ∞∏

k=1

J0
(
ψ̃

(p)
k

)]

×

⎛⎜⎜⎜⎝δnp +
∞∑
l=1

∑
ki>0,

i=1...l

∑
mki

�=0,∑l
i=1 kimki

=n−p

l∏
i=1

Jmki

(
ψ̃

(p)
ki

)
J0
(
ψ̃

(p)
ki

)
⎞⎟⎟⎟⎠ , (20)

with ψ̃
(p)
k = 2πipψk

ψ0
, where Jk are Bessel functions of the first

kind [27]. Consequently, the path integral of H (2) over N

modes un,q in the s space should involve an infinite number of
modes ũn,q in the ψ space. To clarify this point, consider the
Gaussian weight in the s space,1 exp(

∑
−N<n,m<N u−mSnmun).

We will see in the next section that it can be approximated by
a diagonal quadratic form in the ψ space, exp(

∑
p ũ−pS̃ppũp).

The corresponding coefficients S̃pp are obviously given by the
change of variables (20)

S̃pp =
( ∑

−N<n,m<N

SnmAmpAnp

)
. (21)

However, a careful analysis shows an exponential decrease of
the coefficients S̃pp for p > M , which is faster the closer η to
0, but relatively slow for η close to 1. This relies on the fact

1For the sake of simplicity, we suppress the variable q, which
does not play any role in the following argument, and write Snm

for S(n,m,q).
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FIG. 3. Scaled total thermal force −F̃ fl/L := −2πβF fl/

(L
2) = −[2πβF fl
in/(L
2) + 1/π ] on the left cylinder as a function

of separation d/λ � 2 for R/λ = 1 and αc = 10◦ (short dashes),
αc = 45◦ (dashed-dotted line), αc = 90◦ (long dashes), and 120◦

(solid line).

that for small η the coefficient Anp can be shown to be equal

to δnp + ηpC(−1)n−p/(n − p)3(1 − δnp) with C = 4
π2

s2
0

λ2
sin ψ0

ψ0
.

For η = 0, Anp = δnp and all S̃pp = 0 for p > M; the same
cut-off 
 can thus be implemented in s and ψ space. Therefore,
as long as we stay close to η = 0, we consider a constant cut-off

. This condition has to be relaxed when η goes to one. In
Sec III D we will propose an interpolating formula between
the two regimes η ≈ 0 and η ≈ 1.

3. Interaction energy for the highly curved regime

In principle, we could do a perturbative expansion of
the same kind as in the quasiflat case. A careful inspec-
tion shows that the small expansion parameter is η so
that the perturbative contributions due to the off-diagonal
matrix elements S(m,n,q) are negligible for η ≈ 0. There-
fore, βV ≈ 2−1Tr ln D with D ≡ S(−n,n,q) given explicitly
by S = 2ψ0L[(n2 − 1)2a0 + (2b0n

2 + d0)q2 + c0q
4] with the

notations n = πn/ψ0 and q = πq/L. The various coefficients
are functions of d. They are given by Eqs. (18), with k = 0
and d0 = c0/λ

2 − b0/2, and can be explicitly evaluated in
terms of Jacobi elliptic functions. Interestingly, for η = 0,
we have a0 = 2b0/λ

2 = 4c0/λ
4 = 4/(

√
2λ4) and S(m,n,q) =

δm,−n8
√

2ψ0Lλ−4{(n2 − 1)2 + (qλ)2[n2 + (qλ)2/4]}, which,
for ψ0 = π , corresponds to the propagator obtained in [28]
for membrane tubules. In the limit of large L, the sum over q

can be replaced by an integration
∑

q → ∫ 


−

, and we obtain

with n′ = √
n2 − 1,

βV (d)

L


= 1

π

M∑
n=1

ln[2ψ0Lβμ2(n′4a0 + 2
2n′2b0 + c0

4)]

− 2n′c+
b

[
arctan

(
b
+n′c−

n′c+

)
+ arctan

(
b
−n′c−

n′c+

)]
−
[

4
−n′c−
b

ln

(
an′2+b
2+2
n′c−
an′2+b
2−2
n′c−

)]
. (22)

The coefficients a,b,c± are given by a = √
a0, b = √

c0, and
c± = [(

√
a0c0 ± b0)/2]1/2. The calculation of the entropic

force F fl
in = ∂V (d)/∂d is now straightforward but must be

done with caution. First, all coefficients a,b,c as well as ψ0 are
implicit functions of d. Second, the differentiation with respect
to d, which is a continuous variable, must be done at constant

, even though, at first sight, the number of modes M = 2π
d

is proportional to d. But M is actually the integer part of
2π
d and is thus insensitive to an infinitesimal change of d.

Moreover, Eq. (22) is strictly speaking only valid in the highly
curved regime where η ≈ 0. To go to larger distances one has
to take into account the variation of the number of modes (due
to our change of variable s → ψ) as well as the off-diagonal el-
ements of S(m,n,q), which could be computed perturbatively.

D. Interpolation formula for all separations

Instead of adjusting exactly the discrete number of modes
with d (which is in fact impossible), we choose to introduce
a two-parameter function g(p,α) = (p s0/λ)η/α , such that the
Fourier modes n in Eq. (22) must be replaced by ñ = n/g(p,α)
everywhere. This ansatz takes into account the growing
number of modes with d in an approximate but controlled
manner. The parameters p and α have to be chosen such that in
the highly curved regime g(p,α) ∼ 1, whereas in approaching
η ≈ 1 the force should correspond to Eq. (15). This ansatz has

2 3 4 5 6
d λ

15

30

45

60

ψ0

(a)

2 3 4 5 6
d λ

0.25

0.5

0.75

s0 d

(b)

FIG. 4. (a) Inner contact angle ψ0 and (b) derivative of the arc length ∂s0/∂d as a function of d/λ for R/λ = 1 and αc = 45◦ (dashed-dotted
line) and 120◦ (solid line). The thin solid lines correspond to the respective large d limits.
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thus a second advantage: like a variational procedure would
also do, it allows to approximate the perturbative contributions,
which are very hard to compute. Therefore, the introduction
of ñ is a way to interpolate between the two regimes η ≈ 0
and η ≈ 1. Taking all this into account and replacing the

∑
n

by an integral, the thermal force F fl
in on the left cylinder reads

2πβF fl
in

L
2
= 2

π

(
∂s0

∂d
− s0∂g

g∂d

)
+

√
2

x
(
√

x − yU + √
x + yV )

+ 1

2gx2
[(x2 + g2y)U − g2

√
x2 − y2V ] ln A

− g

x2
(
√

x2 − y2U + yV )(arctan B+ + arctan B−)

+V

g
(arctan D+ + arctan D−), (23)

where x = (a0c
3
0)1/2 and y = b0c0. We also intro-

duced the notations A = x+g2+g
√

2(x−y)
x+g2−g

√
2(x−y)

, B± =
√

2x±g
√

x−y

g
√

x+y
,

and D± = g
√

2±√
x−y√

x+y
as well as U = 21/2

π
{s0

∂
∂d

(x −
y)1/2 − (x − y)1/2 ∂

g∂d
(s0g)} and V = 21/2

π
{s0

∂
∂d

(x + y)1/2 −
(x + y)1/2 ∂

g∂d
(s0g)}. Asking that the large d/λ limit of

Eq. (23) is given by Eq. (15), we obtain α = 5 and p =
δ exp(−2π2A λ

d
), where the constant of integration δ is the

only free parameter determined below.
Inserting numerical values in Eq. (23), one finds that the

thermal force F fl
in exerted on the left cylinder by the inner part

of the membrane is negative. It thus enhances the curvature-
mediated repulsion between the cylinders. As the outer
freely fluctuating membrane exerts a constant force F fl

out/L =

2/(2π2β), which does not compensate F fl

in completely, the
total thermal force F fl is repulsive for all separations (see
Fig. 3).The curve of −F fl shows two characteristic trends: at
short separations d/λ ≈ 2, the force increases with d. This is
due to a fast rotation of the cylinders for an infinitesimal change
in d (see Fig. 4), which implies that the length 2s0 of the inner
membrane stays almost unchanged; i.e., ∂s0/∂d is small. The
membrane is thus more under tension and thermal fluctuations
are strongly reduced. Since ∂s0/∂d increases with d, the force
grows until it reaches a maximum value at ∂s0/∂d ≈ 1/2.
For larger separations, ψ0 and ∂s0/∂d stay constant and the

6 8 10 12
d λ

0.2

0.4

0.6

−F̃ fl
in/L

δ = 10−1δ = 10−2

δ = 10−3

δ ≤ 10−6

FIG. 5. Scaled thermal force −F̃ fl
in/L := −2πβF fl

in/(L
2) on the
left cylinder as a function of separation d/λ � 2 for R/λ = 1, αc =
120◦, and fitting parameters δ = 10−1,10−2,10−3, and � 10−6. The
first three curves reach the limit 1/π at d/λ → ∞ from below. All
curves with δ � 10−6 are identical for the given resolution of the
figure and give a monotous unique force.

force −F fl
in should decrease in a monotonous manner until it

tends to the constant value L
2/(2π2β) in the limit d/λ → ∞.
Actually, this monotonous decrease of the force—expected on
physical grounds—can be exploited to fix the fitting parameter
δ: as shown in Fig. 5, δ has to be set to a value smaller than
10−6.

To summarize, the total force per length Fcyl/L = (F (0)
cyl +

F fl)/L on the left cylinder is

Fcyl/L = −σ (1 − η) + F fl
in/L + 
2/(2π2β) . (24)

Since this force is always negative, there is no equilibrium
position beside the limit d/λ → ∞, where Fcyl → 0.

IV. CONCLUSION

By developing a new approach for the computation of the
free energy for a system of two cylinders bound on the same
side of a membrane, we could evaluate the corrections caused
by the thermal fluctuations to the repelling zero-temperature
force. It was found that this contribution in the section
between the cylinders strongly depends on the membrane
curvature. The calculated thermal force is always repulsive.
This effect differs from the attractive Casimir force, which
arises from the reduction of the number of internal modes with
respect to the outer ones where the ground-state is identical
everywhere. This is obviously not the case here, since the
zero-temperature shapes of the inner and outer sections are
different: even though the number of modes in the inner
section is smaller than in the outer ones, their fluctuations are
strongly enhanced on a curved background and thus always
dominate the fluctuations of the outer less curved region.
Nontrivial membrane geometries as the one presented here
are in fact ubiquitous in nature. The approach of this paper
is sufficiently general to calculate the physical properties of
other systems with highly curved ground-states.
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APPENDIX A : DERIVATION OF THE FLUCTUATION
OPERATOR H (2) [SEE EQ. (5)]

To rewrite the Helfrich Hamiltonian [Eq. (1)] in terms
of the parametrization X(s,y), one has to replace the area
element dA and the curvature K in Eq. (1) using the functions
u(s,y), ψ(s), and their derivatives [23]. First, one needs to
determine the components of the (symmetric) metric tensor
gab (a,b ∈ {s,y})2:

gss =
(

∂ X
∂s

)2

= (uψ̇ − 1)2 + u2
s ,

gsy = ∂ X
∂y

· ∂ X
∂s

= uyus , and (A1)

gyy =
(

∂ X
∂y

)2

= 1 + u2
y ,

2Note that ∂ X0/∂s = (cos ψ,0, sin ψ).
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where we have introduced the notations ψ̇ ≡ ∂ψ/∂s,
us ≡ ∂u/∂s, and uy ≡ ∂u/∂y. This allows to calculate
the area element dA = √

g dsdy with
√

g = √
det (gab) =√

(uψ̇ − 1)2(1 + u2
y) + u2

s . The components of the extrinsic

curvature tensor Kab are

Kss = ∂ X
∂s

· ∂n
∂s

= 1√
g

[−ψ̇+2uψ̇2−uss−u2ψ̇3−uusψ̈+(uuss−2u2
s

)
ψ̇
]

Ksy = ∂ X
∂y

· ∂n
∂s

= 1√
g

[
(−1 + uψ̇) usy − ψ̇uyus

]
, and

Kyy = ∂ X
∂y

· ∂n
∂y

= 1√
g

(−1 + uψ̇) uss . (A2)

The contraction of Kab with the metric yields the curvature
K = ∑

Kabg
ab, where gab is the inverse of the metric,

i.e., gss = gyy/g, gsy = −gsy/g, and gyy = gss/g.
Inserting the expressions for dA and K into H , one
identifies

H (2) =
∫ [

ψ̇4u2

2
+ ψ̇ψ̈usu +

(
1

λ2
+ 3ψ̇2

2

)
u2

s

2
+ ψ̇2ussu

+u2
ss + u2

yy

2
+ ussuyy +

(
1

λ2
− ψ̇2

2

)
u2

y

2

]
dsdy .

(A3)

APPENDIX B : DERIVATION OF EQ. (15)

Let X(0) = X(0,0,0) and start with Eq. (14)

βδF = 1

2

∑
q

∂
∂d

∑
n X(0)G̃(n,q)

1 +∑n X(0)G̃(n,q)
. (B1)

Note that, according to their definition, ∂
∂d

X(0) = − 1
d
X(0)

and ∂
∂d

∑
n G̃(n,q) = 2

d

∑
n

λ2( 2πn
d

)2

[( 2πn
d

)2+( 2πq

L
)2]2 . Thus, a continuous

approximation for the sum (which is valid for a large
d, given the high number of modes) yields for large
separations

∂

∂d

∑
n

X(0)G̃(n,q)

=−X(0)

π
λ2
∫ 


2π
d

[
1

(n2+q2)
− 2n2

(n2+q2)2

]
dn

	−X(0)

π
λ2


q2− 2π
d




(
2 + q2)
[(

2π
d

)2 + q2
] ,

and by the same token,

1 +
∑

n

X(0)G̃(n,q) = 1 + λ2

π
X(0)d

∫ 


2π
d

1

n2 + q2
dn 	 1

+λ2

π

X(0)d

q
arctan

(
q

2π
d

+ q2




)
.

As a consequence, Eq. (B1) becomes in the continuum
approximation

βδF = − 1

d

L

2π

∫ 


2π
d

X(0)d
π

λ2

q2− 2π

d

(


2+q2
)[(

2π
d

)2
+q2
]

1 + λ2

π

X(0)d
q

arctan
(

q

2π
d

+ q2




) dq.

A careful inspection of this expression can be performed by
dividing the integration interval into three parts, [ 2π

d
,
√

2π
d


],

[
√

2π
d


,( 2π
d


3)
1
4 ], and [( 2π

d

3)

1
4 ,
]. It turns out that the con-

tributions of the two first intervals are negligible with
respect to the last one. Moreover, checking that in the
range of integration considered, the numerator q2 − 2π

d



can be approximated by q2, we can thus write βδF for
large d as

βδF 	 − 1

d

L

2π

∫ 


0

X(0)d
π

λ2
 1(

2+q2

)
1 + λ2

π

X(0)d
q

arctan
(



q

)dq. (B2)

Ultimatly, the evaluation of βδF requires the computation
of

X(0) = X(0,0,0) = 1

d

∫ d
2

− d
2

[
1

2
ψ̇4 + 3

2

(
ψ̈2 + 1

λ2
ψ̇2

)]
ds.

(B3)
This computation relies on the saddle-point solution ψ(s).
Actually, for large d, η 	 1, one has

ψ̇ 	
√

2

(
1 − cos (ψ)

λ2

)
= 2

λ

∣∣∣∣sin

(
ψ

2

)∣∣∣∣ ,
whose solution is

ψ(s) = 2 arccos

[
1 − C exp

(
2 s−s0

λ

)
1 + C exp

(
2 s−s0

λ

)] ,

with C = tan2(ψ0

4 ). As a consequence, replacing ψ(s) in
Eq. (B3), one finds directly that X(0) = 16

3 C (2C+3)(5C+3)
dλ3(C+1)3 .

Inserting this value in the expression of βδF in Eq. (B2) leads
to the result claimed in the text.
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