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Multiphoton fluorescence recovery after photobleaching (MP-FRAP) is a laser microscopy technique used
to measure diffusion coefficients of macromolecules in biological systems. The three-dimensional resolution
and superior depth penetration within scattering samples offered by MP-FRAP make it an important tool for
investigating both in vitro and in vivo systems. However, biological systems frequently confine diffusion within
solid barriers, and to date the effect of such barriers on the measurement of absolute diffusion coefficients via
MP-FRAP has not been studied. We have used Monte Carlo simulations of diffusion and MP-FRAP to understand
the effect of barriers of varying geometries and positions relative to the two-photon focal volume. Furthermore,
we supply ranges of barrier positions within which MP-FRAP can confidently be employed to measure accurate
diffusion coefficients. Finally, we produce two new MP-FRAP models that can produce accurate diffusion
coefficients in the presence of a single plane boundary or parallel infinite plane boundaries positioned parallel to
the optical axis, up to the resolution limit of the multiphoton laser scanning microscope.
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I. INTRODUCTION

Multiphoton fluorescence recovery after photobleaching
(MP-FRAP) is a laser microscopy technique typically em-
ployed to measure diffusion coefficients within biological
systems [1]. MP-FRAP is performed by using a brief, high-
intensity, laser flash to generate photobleaching within a region
of interest in a fluorescent sample. The laser is then attenuated
and the region of interest is monitored as still-fluorescent
molecules from outside the region diffuse in to replace the
outwardly diffusing bleached molecules. The resulting fluores-
cence versus time curve can be fitted to an analytical formula
to produce the diffusion coefficient of the mobile fluorophore.
In an MP-FRAP experiment, fluorescence and photobleach-
ing are both generated via multiphoton excitation [1]. The
intrinsic spatial confinement of multiphoton excitation results
in a three-dimensionally (3D) resolved bleaching/monitoring
volume [2] and allows the use of MP-FRAP to measure three-
dimensionally resolved diffusion coefficients within intact
samples. This intrinsic spatial confinement obviates the need
for a confocal pinhole and allows MP-FRAP, as well as the
multiphoton laser-scanning microscope upon which it is based,
to probe living tissue down to depths of several hundred
micrometers. In its original formulation [1] MP-FRAP was
demonstrated with a parked bleaching and monitoring beam.
Several variants of MP-FRAP have since been demonstrated
with patterned photobleaching accomplished by interfering
beams [3], beam scanning [4], and other methods. In this work
we refer to the experiment performed in its classical parked
beam configuration as MP-FRAP.

Other techniques employed to measure biological dif-
fusion include (single-photon) fluorescence recovery after
photobleaching (FRAP), FRAP with spatial Fourier analysis
(SFA-FRAP), single particle tracking (SPT), and fluorescence
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correlation spectroscopy (FCS). FRAP is the precursor to MP-
FRAP and was developed in the 1970s [5–7] to probe transport
parameters in biological systems. Due to the lack of spatial
confinement of the one-photon excitation process, FRAP is
applied to two-dimensional samples, defined as having an axial
extent that is significantly smaller than the Rayleigh length
of the focused bleach and monitor beam. High-resolution
measurements with high numerical aperture (NA) lenses are
therefore limited to thin samples (<1 μm). FRAP can be used
on thicker samples by using cylindrical beams (i.e., a low
NA lens) with longer Rayleigh lengths. This again provides
a two-dimensional measurement of the diffusion coefficient,
averaged over the axial extent of the sample. Finally, FRAP
with a confocal pinhole can be used to achieve 3D resolved
measurements [8], but rely on numerical analysis rather than
analytical formulas. The use of spatial Fourier analysis allows
SFA-FRAP [9] to probe diffusion in intact thick tissue, but
the technique also has low spatial resolution (∼40 μm)
and is limited to the depth penetration of epifluorescence
microscopy (∼50 μm). SPT tracks individual molecules via
high spatiotemporal imaging to determine their transport
properties, with two-dimensional (2D) imaging techniques
(i.e., epifluorescence) producing 2D resolved measurements
of diffusion coefficients [10,11] and 3D imaging techniques
producing 3D resolved measurements of diffusion coefficients.
FCS comes in both one-photon [12] and two-photon [13,14]
varieties and like MP-FRAP it can be used to measure
diffusion with high, 3D , resolution. SPT and FCS rely on low
fluorophore concentrations (with accompanying low signals),
while MP-FRAP relies on high fluorophore concentrations
(with accompanying large signals), making the techniques
complementary, especially in the difficult optical environment
of scattering tissue.

The effect of barriers to diffusion is an important and
relevant topic regarding the study of both biological and
nonbiological systems. MP-FRAP has been employed to
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measure absolute diffusion coefficients in the cytoplasm of
cells [1,15], in cartilage [16], in optically fabricated gels
[17], and in blood plasma [18]. In these cases, the volume
surrounding the bleached spot was assumed to be “open,”
with barriers to diffusion at infinity. However, many biological
systems inherently confine measurements to regions within
solid barriers to diffusion, such as cell walls and organelles.
In vivo systems in particular offer few free volumes for
diffusion measurements. Clearly, when the focal volume is
positioned within a cell there is concern that the confined
geometry will affect the measured diffusion coefficient. How-
ever, even when the bleach and monitor volume is positioned
outside of individual cells, the tissue interstitium exhibits
a complex structure that can interfere with free diffusion
due to adjacent cellular structures. Determining the effects
of these barriers, and the distances over which these effects
become significant, is absolutely necessary for MP-FRAP to
be performed accurately in vivo.

In the limit that these barriers become extremely close,
their impact is relatively straightforward to model because
they simply change the dimensionality of the system. For
example, it has been shown that an MP-FRAP experiment
in microvilli (an extremely narrow tube) can be modeled by
one-dimensional diffusion [19,20]. However, there has been
no analysis of MP-FRAP applied in systems with boundaries
to diffusion positioned at intermediate distances, i.e., neither
approaching zero nor at infinity, in order to determine their
effects on the reported diffusion coefficient.

There have been several recent studies investigating the
various effects caused by barriers to diffusion in relation to
micro- and nanostructures [21,22], nuclear magnetic reso-
nance [23], diffusion-convection processes [24,25], anomalous
diffusion [26], and diffusion in channels [27]. However, the
results of these studies are not presented in the context of
experimental biological diffusion measurement techniques. In
recognition of the prevalence of small volumes presented by
many biological systems, work has been done to apply FCS
[28–32], SPT [33,34], and FRAP [35] in systems where the
focal volume is confined. While MP-FRAP has been applied to
both living cells and in vivo, to date the effect of barriers on the
measurement of absolute diffusion coefficients via MP-FRAP
has been largely neglected (although in the development of
one patterned photobleaching variant of MP-FRAP the effect
of axial boundaries was considered [4]).

Barriers to diffusion are omnipresent in vivo, and their
effects must be considered when attempting to perform
accurate MP-FRAP. In this work we explore the effects
of different barrier geometries on the diffusion coefficient
reported by MP-FRAP, discuss the mechanism by which
these barriers affect the reported diffusion coefficient, and
determine the appropriate distances at which the effects of
barriers can be neglected. To do this we simulate the diffusive
spread of a distribution of bleached molecules in the presence
of various barriers to diffusion via Monte Carlo simulation
and then calculate the resultant (two-photon) fluorescence
signal, producing an artificial fluorescence versus time curve.
We then fit many such curves to the classical MP-FRAP
equation, which assumes all barriers are at infinity, and explore
how the presence of differing barriers produces errors in the
reported diffusion coefficient. In the case of both a single

plane boundary and two parallel infinite plane boundaries
oriented parallel to the optical axis, we introduce new models
of MP-FRAP that explicitly account for the presence of one or
more boundaries and explore how these new models improve
the accuracy of the reported diffusion coefficients. This work
is essential to the application of MP-FRAP in vivo.

II. MONTE CARLO MODEL OF MP-FRAP

A. Initial fluorophore distribution

The initial concentration distribution of unbleached fluo-
rophore immediately after the photobleaching pulse, in the
limit that the boundaries to diffusion are at infinity, is given by
Brown et al. [1]:

c(x,y,z; t = 0) = co exp
[ − (1/b)qbδb

〈
I b
bl(x,y,z)

〉
�t

]
, (1)

where co is the initial equilibrium concentration of fluorophore,
b is the number of photons absorbed per photobleaching event,
qb is the quantum efficiency for b-photon photobleaching,
δb is the multiphoton fluorescence action cross-section of
the fluorophore for the order of excitation required for
photobleaching, 〈I b

bl(x,y,z)〉 is the time average of the bleach
intensity raised to the bth power, and �t is the duration of the
bleaching pulse.

The bleach intensity can be approximated as a 3D Gaussian
[1]:

〈
I b

bl(x,y,z)
〉 = 〈

I b
bl(0,0,0)

〉
exp

[
−2b(x2 + y2)

ω2
r

− 2bz2

ω2
z

]
, (2)

where ωr and ωz are the 1/e2 radial and axial dimensions of the
two-photon focal volume, respectively, and 〈I b

bl(0,0,0)〉 is the
time average of the intensity at the two-photon focal volume
center raised to the bth power.

For the purpose of simulation, it is more efficient and effec-
tive to follow the bleached fluorophores [36–38]. Substituting
Eq. (2) into Eq. (1), setting b = 2 for a two-photon bleaching
process and co = 1 in anticipation of populating nodes later
to determine the amplitude, and noting that the bleach depth
parameter is defined as β ≡ (1/b)qbδb〈I b

bl(0,0,0)〉�t , we find
the initial distribution of bleached fluorophore:

cbl(x,y,z; t = 0)

= 1 − exp

{
−β exp

[
−4(x2 + y2)

ω2
r

− 4z2

ω2
z

]}
. (3)

The bleach depth parameter was chosen to be β = 0.25,
a value typical of experimental in vivo MP-FRAP recovery
curves [1,18]. The axial and radial extents of the two-photon
focal volume were defined as ωr ≡ 2.6λ/(2πNA) and ωz ≡
8.8nλ/[2π (NA)2], respectively, where λ is the wavelength
of the excitation laser, n is the index of refraction of the
immersion medium, and NA is the numerical aperture of the
lens [39]. Our simulations represent the NA extremes of typical
water-immersion lenses (λ = 780 nm, n= 1.33, NA = 0.5 or
1.2). Space was discretized into a regular lattice with spacing
defined by the expected diffusion properties (see “Diffusion”
below). One thousand bleached fluorophores were placed at
lattice points using Eq. (3) as the probability distribution and
with the caveat that no fluorophores were allowed outside
any diffusive barriers introduced into the system. Multiple
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occupancy on a single node was permitted, though rarely
occurred.

It is important to note that the size of the bleaching
distribution is not necessarily the same as that of the optical
focal volume. As explained in Brown et al. [1], the shape of the
photobleaching volume will depend upon the photochemical
mechanism of photobleaching, the bleach depth parameter,
and the characteristic radii of the optical point spread function
(PSF). In order to explore a tractable parameter space, we are
assuming the simple first-order model of photobleaching pho-
tochemistry described within Brown et al., an experimentally
relevant value for the bleach depth parameter of β = 0.25,
and two values of microscope NA (and hence two values for
each of the characteristic radii of the optical PSF) of 0.5 and
1.2. Due to the relatively small value of β, this produces a
characteristic size for the bleaching volume that is within 3%
of the size of the optical PSF; hence we plot the effects of
barrier proximity as a function of distance from the center of
the focal volume in units of ωr and ωz, the radial and axial e−2

extents of the PSF, respectively. To extrapolate these results to
other photobleaching chemistries or greater bleach depths, one
can calculate the characteristic radial and axial dimensions of
that photobleaching distribution and treat those as ωr and ωz

for comparison to our results.

B. Diffusion

Diffusion was modeled as a random walk on a 3D lattice
[37,38,40,41]. Lattice spacing was determined by the 3D dif-
fusion equation, 〈r2〉 = 6Dt , where the diffusion coefficient,
D, was chosen a priori and the time step, t , was chosen to be
approximately 1/1000 of the typical diffusive recovery time
for a system with a diffusion coefficient D and with radial and
axial focal volume widths ωr and ωz. For both the low and
high NA cases, D was chosen as 10 μm2/s, approximately
the experimental diffusion coefficient for 2000 kD fluorescein
dextran [18]. The corresponding time steps were chosen as
3.12 and 0.376 μs, respectively, and the lattice spacings were
calculated to be 13.7 and 4.75 nm, respectively.

C. Boundary conditions

Four boundary models were applied to the diffusing system:
a single infinite plane boundary parallel and perpendicular
to the optical axis, two parallel infinite plane boundaries
parallel and perpendicular to the optical axis, a hollow infinite
cylindrical boundary parallel and perpendicular to the optical
axis, and a hollow spherical boundary. In the context of
our simulations a barrier is considered infinite if a particle
cannot cross the barrier at any time during the simulation. The
parallel, cylindrical, and spherical boundaries were positioned
symmetrically about the focal volume center, and the positions
of all of the boundaries were defined as fractions of ωr or
ωz relative to the focal volume center. All boundaries were
assumed to be perfectly reflecting; i.e., any particle attempting
to cross a boundary was returned to the node it was occupying
when the step began. There were no bleached or unbleached
molecules beyond the boundaries at t = 0 or at any subsequent
point.

D. MP-FRAP

The fluorescence intensity generated by a weak monitoring
beam that is held stationary in the sample and produces
fluorescence through an m-photon process is given by

F (t) = δmE

m

∫ 〈
Im
mo(x,y,z)

〉
c(x,y,z; t)dxdydz, (4)

where δm is the multiphoton fluorescence action cross-section
of the fluorophore for the order of excitation required to
produce fluorescence, E is the collective efficiency of the
detection system, and m is the number of photons absorbed
per excitation event.

We can calculate the “missing fluorescence” that would be
generated by the bleached fluorophores were they not bleached
by re-expressing the integral as a sum of the monitor intensity
[given by Eq. (2) with b → m] over all bleached fluorophore
locations (xi,yi,zi). We can also let (1/m)Eδm → 1, as it will
be divided out when the fluorescence is normalized for fitting:

Fbl(t) =
∑

i

exp

[
−2b

(
x2

i + y2
i

)
ω2

r

− 2bz2
i

ω2
z

]
. (5)

To obtain the normalized fluorescence of the unbleached
molecules, F (t)/Fo, we first normalize the missing fluores-
cence of the bleached molecules by the prebleach fluorescence
of all the fluorophores in the system, Fo, and then subtract
from one: F (t)/Fo = 1 − Fbl(t)/Fo. Fo was determined by
first setting t = 0 and β = 0.25 in Eq. (6), below, truncating
the sum to the first ten terms, and solving for F (0)/Fo. This
value was then substituted into F (0)/Fo = 1 − Fbl(0)/Fo to
deduce Fo from Fbl(0).

The natural variation of a Monte Carlo simulated random
walk introduced a small amount of noise into the resulting F (t)
recovery curves. On top of this, we added Poisson distributed
noise to mimic the typical distribution of noise arising from
photon counting experiments, and in an amount typical of
in vitro MP-FRAP experiments [1,18]. Fluorescence recov-
eries were terminated when the change in the recovered
fluorescence was less than 1% over a time equivalent to the
half-time for complete recovery of a freely diffusing system
with diffusion coefficient D.

Unless otherwise stated, all simulated F (t) curves were fit
to the accepted diffusive recovery model [1] for a stationary
bleaching and monitoring beam:

F (t)

Fo

=
∞∑

n=0

(−β)n

n!

1

(1 + n + 2nt/τD)

1

(1 + n + 2nt/RτD)1/2
,

(6)

where τD is the characteristic diffusion time and R is the square
of the ratio of the axial and radial dimensions of the focal
volume. The diffusion coefficient is given by D = ω2

r /8τD .

III. RESULTS AND DISCUSSION

A. Single plane boundary

We begin our Monte Carlo investigation by introducing a
single infinite plane reflective boundary parallel to the optical
axis, at a range of distances measured in units of ωr relative to
the focal volume center. This models diffusion measurements
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FIG. 1. (Color) Single boundary parallel to the optical axis at a
range of positions, presented as fractions of ωr from the focal volume
center, for both a high NA (squares) lens and a low NA (circles)
lens. Negative position values indicate that the boundary has crossed
the focal volume center (i.e., more than half the focal volume is
hidden beyond the boundary). Fluorescence recovery curves were
generated via Monte Carlo simulation and fit to the standard MP-
FRAP model [Eq. (6)]. Fit diffusion coefficients were normalized to
the input diffusion coefficient; hence an accurate fit produces a ratio
of one.

adjacent to cell walls [42–44]. We then generate an initial
distribution of bleached molecules according to Eq. (1), with
the caveat that no molecules are located beyond the boundary.
Then we simulate the random diffusion of those molecules
and produce an F (t) curve as described above. The resultant
curve is fit to Eq. (6), the MP-FRAP formula that assumes all
boundaries are at infinity. The fit diffusion coefficient is then
divided by the true diffusion coefficient (defined a priori in
setting up the diffusion random walk); hence errors due to the
presence of a boundary are readily identified by a deviation of
this ratio from one. Note that we ceased our simulations at a
boundary location of −0.5ωr because at this point the average
fluorescence from the focal volume in steady state is <10% of
the value of the unobstructed focal volume.

The resultant data are presented in Fig. 1 and show that
MP-FRAP begins to yield diffusion coefficients significantly
different from the input diffusion coefficient (defined hereafter
as when the mean fit diffusion coefficient is more than 1
standard deviation (SD) different from the input diffusion
coefficient) when the boundary passes a distance of 1.3ωr

from the focal volume center for a high NA lens and a distance
of 1.5ωr for a low NA lens. In each of these cases, the fit
diffusion coefficient, Dfit, becomes significantly different from
the input coefficient, Dinput, before the boundary crosses the
focal volume center (0ωr ), and the deviation is biphasic, with
Dfit initially smaller than Dinput, then becoming significantly
larger than Dinput as the boundary crosses the focal volume
center. The erroneously low value of Dfit is most pronounced
when the boundary is in the range of ∼0ωr–1.5ωr , and we
hypothesized that this occurs because the boundary hinders
the complete escape of bleached molecules from the focal
volume, forcing a selection of fluorophores to reside longer
in the neighborhood of the focal volume, thereby lengthening
the recovery time. We further hypothesized that as a growing
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FIG. 2. (Color) Single “destructive” boundary (black) and
“reflective” boundary (blue) parallel to the optical axis at a range
of positions, presented as fractions of ωr from the focal volume
center for a high NA (squares) lens and a low NA (circles) lens.
Negative position values indicate that the boundary has crossed the
focal volume center. Fluorescence recovery curves were generated
via Monte Carlo simulation and fit to the standard MP-FRAP model.
Fit diffusion coefficients were normalized to the input diffusion
coefficient.

portion of the focal volume becomes “hidden” behind the
boundary its characteristic radial size will become smaller than
ωr and fitting of the resultant recovery curves to Eq. (6), which
assumes that ωr is the relevant radial length scale, will produce
the erroneously large values of Dfit that become apparent as
the wall approaches −0.5ωr .

To test these hypotheses we first repeated the series of
Monte Carlo simulations, now using a “destructive” boundary
instead of a “reflective” one, such that each bleached molecule
that attempted to cross the boundary was removed from the
simulation. As shown in Fig. 2, removal of the reflected
fluorophores eliminated the initially low values of Dfit but
retained the later large values, suggesting that it is indeed
reflection of bleached molecules off of the boundary and back
into the focal volume that lengthens the recovery time and
leads to the initial erroneously small values of Dfit. One may
note that the curves describing the destructive case begin to
upswing while those for the reflective case are still in their
initial downturn. At this point in the reflective case the effect on
recovery is dominated by the fluorophores reflecting back into
the region of the focal center, and only as the boundary crosses
the focal center does the effect on shortening ωr begin to
overcome particle deflection and reverse the trend, eventually
leading to too-large values of Dfit.

Next, to demonstrate the effect that changing the focal
volume dimensions has on fluorescence recovery and fitting,
we generated data assuming an unobstructed focal volume and
free diffusion, but with ωr reduced to mimic the influence
of the barriers reducing the focal volume as introduced
in the simulations. We then fit the resulting fluorescence
curves assuming a focal volume with the original ωr . As ωr

was reduced to successively smaller values, the fit diffusion
coefficient became increasingly large, beyond the value of
Dinput (data not shown). This reproduces the trend seen in

051916-4



MULTIPHOTON FLUORESCENCE RECOVERY AFTER . . . PHYSICAL REVIEW E 83, 051916 (2011)

Fig. 2 and suggests that the erroneously large values of Dfit are
indeed due solely to a reduction in the bleaching distribution
and monitoring volume, and hence are an overestimate of their
characteristic size during the fitting process.

Inspection of Fig. 1 also reveals that the low NA curve is
more affected by the approach of the barrier than is the high
NA curve, with more significantly low initial values for Dfit.
We hypothesized that this is due to the different aspect ratios
of the focal volumes (ωz/ωr = 3.75 for the high NA case
and ωz/ωr = 9 for the low NA case). The fastest route for
diffusive escape from an initial bleached distribution will be
along the shortest dimension of the initial distribution, and the
higher aspect ratio of the low NA focal volume means that the
diffusive transport in the direction of the approaching barrier
is a more significant contributor to fluorescence recovery for
that objective lens than for a higher NA objective, resulting in
a more significant effect of the barrier. To test this hypothesis
we repeated the series of Monte Carlo simulations, but brought
in a barrier to diffusion that was perpendicular to the optical
axis. The fastest route for diffusive escape in this geometry is
now parallel to the surface of the approaching barrier and thus
unhindered by it, leading us to predict that the initially low
values of Dfit should deviate from Dinput far less than for the
case of boundaries parallel to the optical axis. Furthermore, the
low values of Dfit should now be least significant for the low
NA case, as that has the highest aspect ratio. As shown in Fig. 3,
the initially low values of Dfit for the boundary perpendicular
to the optical axis do indeed deviate less from Dinput and are
now least significant for the low NA case, thus confirming
our hypothesis. Figure 3 also reveals that MP-FRAP begins
to yield diffusion coefficients significantly different from the
input diffusion when a boundary perpendicular to the optical
axis passes −0.3ωz for a high NA lens. For the low NA case,
Dfit does not deviate significantly for any of the boundary
locations assessed.
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FIG. 3. (Color) Single boundary parallel (blue) and perpendicular
(red) to the optical axis at a range of positions, presented as fractions
of ωr or ωz, respectively, from the focal volume center for a high
NA (squares) lens and a low NA (circles) lens. Negative position
values indicate that the boundary has crossed the focal volume
center. Fluorescence recovery curves were generated via Monte Carlo
simulation and fit to the standard MP-FRAP model. Fit diffusion
coefficients were normalized to the input diffusion coefficient.

To improve the accuracy of the reported diffusion coef-
ficient for the case of a single barrier to diffusion, we have
derived an alternative analytical model of the fluorescence
recovery (see Appendix) that takes into account the presence
of the barrier. For a barrier lying parallel to the optical axis,
the new model is

F (t)

F ′
o

= 1

2

1

erfc(−2u/ωr )

∞∑
n=0

(−β)n

n!

1

[n + μn(t)]

1

[n + νn(t)]1/2

×
{

erfc

[
−2 [1 + n/μn(t)]1/2 u

ωr

]

+ exp

[
− 16n

n + μn(t)

(
u

ωr

)2
]

× erfc

[
−2

[1 − n/μn(t)]

[1 + n/μn(t)]1/2

u

ωr

] }
, (7)

where μn(t) = 1 + 2nt/τD , νn(t) = 1 + 2nt/RτD , and u is the
x or y position of the bleached molecule distribution center
relative to the boundary. For a barrier perpendicular to the
optical axis, the form is the same but μn → νn and ωr → ωz

in the exponential and complementary error functions.
When this new MP-FRAP “single boundary” model is used

to fit simulated diffusion curves produced in the presence
of a single barrier parallel to the optical axis at a known
distance, the fit diffusion coefficients improve dramatically
over a wide range of barrier distances (see Fig. 4). For the
case of a barrier perpendicular to the optical axis, Dfit does
not improve significantly over the already generally accurate
results using the standard model (data not shown). Figure 4
shows that Dfit remains accurate until after the boundary has
crossed the center of the focal volume (0ωr ), but becomes
significantly different from Dinput as a boundary parallel to
the optical axis passes −0.15ωr from the focal volume center
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FIG. 4. (Color) Single boundary parallel to the optical axis at a
range of positions, presented as fractions of ωr from the focal volume
center for a high NA (squares) lens and a low NA (circles) lens.
Negative position values indicate that the boundary has crossed the
focal volume center. Fluorescence recovery curves were generated
via Monte Carlo simulation and fit to the standard MP-FRAP model
(blue) and the new MP-FRAP model (green) designed for use near a
single barrier. Fit diffusion coefficients were normalized to the input
diffusion coefficient.
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for both a high NA lens and a low NA lens. If the position
of the boundary is not known, we can allow u to be a free
fitting parameter. However, doing so yields erroneous values
for the diffusion coefficient for barrier positions <1ωr (data
not shown).

B. Parallel plane boundaries

Two parallel infinite plane reflective boundaries mimic
systems such as the regions between cell walls found in tumor
and brain extracellular space [42–44]. To model this system
we introduce parallel plane barriers symmetrically about the
focal volume center, positioned parallel or perpendicular to
the optical axis at a range of distances measured in units of ωr

or ωz relative to the focal volume center. As before, the data
are presented as Dfit/Dinput as a function of boundary location.
In each case, Fig. 5 shows that as the boundaries approach
the focal volume, the fit diffusion coefficient begins to drop
compared to the input diffusion coefficient. Dfit becomes
significantly different from Dinput as boundaries parallel to
the optical axis pass 1.5ωr from the focal volume center for
a high NA lens and 1.8ωr for a low NA lens. For boundaries
perpendicular to the optical axis, Dfit becomes statistically
significantly different from Dinput as the boundaries pass 0.5ωz

from the focal center for a high NA lens. For the low NA case,
Dfit does not deviate significantly for any of the boundary
locations assessed.

As in the case of the single boundary, the effect on the
diffusion coefficient is more significant for the case of two
parallel plane boundaries running parallel to the optical axis.
As demonstrated previously, this arises because boundaries
parallel to the optical axis reduce the opportunity for diffusing

FIG. 5. (Color) Two parallel boundaries parallel (blue) or perpen-
dicular (red) to the optical axis at a range of positions symmetric about
the focal volume center and presented as fractions of ωr or ωz for a
high NA (squares) lens and a low NA (circles) lens. Fluorescence
recovery curves were generated through Monte Carlo simulation
and fit to the standard MP-FRAP model. Fit diffusion coefficients
were normalized to the input diffusion coefficient. Dashed lines mark
the limit of 2D diffusion as indicated by generating data with the
2D MP-FRAP recovery equation and fitting it to the 3D MP-FRAP
recovery equation. For data points marked with an asterisk (*), the
accurate diffusion coefficient was recovered when the data were fit
with the 2D MP-FRAP model.

molecules to leave the focal volume via the shorter radial
dimension, which predominantly determines the duration of
recovery for a freely diffusing sample. This is also shown by
the opposite behaviors of low and high NA lenses in the two
geometries. When the boundaries are parallel to the optical
axis, the low NA lens is the most affected because radial
diffusion is more significant in this high aspect ratio focal
volume. Conversely, when the boundaries are perpendicular
to the optical axis, the low NA lens is the least affected, for
the same reason. Unlike the single boundary case, however, as
the boundaries significantly reduce the focal volume Dfit does
not rise but levels off. The characteristic length of the focal
volume is reduced in the direction normal to the plane surfaces,
suggesting that the characteristic recovery time should become
shorter, as in the single boundary case. However, as the distance
between the planes approaches zero, diffusion is effectively
confined to two dimensions, and this effect dominates.

By letting ωz → ∞ in Eq. (6) we obtain a two-dimensional
form of the MP-FRAP model, which is valid in the limit of a
2D system perpendicular to the optical axis and identical to
the original one-photon FRAP model [5]:

F (t)

Fo

=
∞∑

n=0

(−β)n

n!

1

1 + n + 2nt/τD

. (8)

By generating data using this 2D formula and then fitting the
data to the standard 3D model we find that in the limit of 2D
diffusion the 3D model should yield a value of the diffusion
coefficient that is 0.84 ± 0.04 times the accepted value for a
high NA lens and 0.96 ± 0.03 times the accepted value for a
low NA lens. These limits are plotted in Fig. 5 as the dashed
lines and coincide with the values of the normalized diffusion
coefficients at small values of ωz as determined by the Monte
Carlo simulations of MP-FRAP. The asterisks (*) mark data
sets that, when refit with the 2D MP-FRAP model given by
Eq. (8), recovered the input diffusion coefficient to within
1 SD.

To improve the accuracy of the reported diffusion co-
efficient for the case of parallel infinite plane barriers to
diffusion, we have derived an alternative analytical model of
the fluorescence recovery (see the Appendix) that takes into
account the presence of the barriers. For barriers lying parallel
to the optical axis, the new model is

F (t)

F ′′
o

= 1

3

1

erf(2u/ωr )

∞∑
n=0

(−β)n

n!

1

[n + μn(t)]

1

[n + νn(t)]1/2

×
{

erf

[
−2[1 + n/μn(t)]1/2 u

ωr

]

+ exp

[
− 16n

n + μn(t)

(
u

ωr

)2]

×
(

erf

[
− 2

[1 − n/μn(t)]

[1 + n/μn(t)]1/2

u

ωr

]

+ erf

[
− 2

[1 + 3n/μn(t)]

[1 + n/μn(t)]1/2

u

ωr

])}
. (9)

For barriers perpendicular to the optical axis, the form is the
same but μn → νn and ωr → ωz in the exponential and error
functions.

051916-6



MULTIPHOTON FLUORESCENCE RECOVERY AFTER . . . PHYSICAL REVIEW E 83, 051916 (2011)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

Boundary Location (units of ω
r
)

D
fi

t/D
in

p
u

t

FIG. 6. (Color) Two parallel plane boundaries parallel to the
optical axis at a range of positions, presented as fractions of ωr

from the focal volume center for a high NA (squares) lens and a
low NA (circles) lens. Fluorescence recovery curves were generated
via Monte Carlo simulation and fit to the standard MP-FRAP model
(blue) and the new MP-FRAP model (green) designed for use between
two parallel plane barriers. Fit diffusion coefficients were normalized
to the input diffusion coefficient.

When this new MP-FRAP “parallel boundary” model is
used to fit simulated diffusion curves produced assuming
the presence of two parallel plane barriers parallel to the
optical axis at a known distance, the fit diffusion coefficients
improve dramatically over a wide range of barrier distances
(see Fig. 6). For the case of barriers perpendicular to the optical
axis the values for Dfit do not improve significantly over the
already widely accurate results using the standard model (data
not shown). Figure 6 shows that Dfit becomes significantly
different from Dinput as boundaries parallel to the optical axis
pass ωr from the focal volume center for both a high NA lens
and a low NA lens. If the position of the boundary is not known,
we can allow u to be a free fitting parameter. However, doing
so yields poor fits for barrier positions <1ωr (data not shown).

C. Cylindrical boundary

An infinite hollow cylindrical boundary provides an excel-
lent approximation for neuronal dendrites and axons, in which
transport measurements are of interest in neurobiological
research [45,46]. In our simulations, we introduce a cylindrical
boundary both parallel and perpendicular to the optical axis,
positioned symmetrically about the focal volume center with a
range of radii measured in units of ωr and ωz. Again, the data
are presented as Dfit/Dinput as a function of boundary location.
As with the case of the parallel plane boundaries, Fig. 7 shows
that as the cylindrical boundary approaches the focal volume,
Dfit begins to drop compared to Dinput, and these effects occur
at values of ωr for the case of a cylindrical boundary parallel
to the optical axis larger than for corresponding values of ωz in
the perpendicular case. Specifically, Dfit becomes significantly
smaller than Dinput as the radius of a cylinder parallel to the
optical axis becomes smaller than 1.8ωr for a high NA lens and
2ωr for a low NA lens. Dfit becomes statistically significantly
smaller than Dinput as the radius of a cylinder perpendicular
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FIG. 7. (Color) Cylindrical boundary parallel (blue) and perpen-
dicular (red) to the optical axis at a range of positions, symmetric
about the focal volume center and presented as fractions of ωr or ωz,
for a high NA (squares) lens and a low NA (circles) lens. Fluorescence
recovery curves were generated through Monte Carlo simulation
and fit to the standard MP-FRAP model. Fit diffusion coefficients
were normalized to the input diffusion coefficient. Dashed lines mark
the limit of 1D diffusion as indicated by generating data with the
1D MP-FRAP recovery equation and fitting it to the 3D MP-FRAP
recovery equation. For data points marked with an asterisk (*), the
accurate diffusion coefficient was recovered when the data were fit
with the 1D MP-FRAP model.

to the optical axis becomes smaller than 0.7ωz for a high NA
lens and 0.3ωz for a low NA lens.

Similar to the parallel plane boundaries, we find that when
the cylindrical boundary is sufficiently constricting the diffu-
sion effectively becomes one dimensional (1D). Consequently,
although the size of the available volume decreases Dfit does
not increase above Dinput after initially dropping significantly
below Dinput. In the limit of 1D diffusion, the MP-FRAP model
can be altered to account for the dimensional change. By letting
ωr → ∞ in Eq. (6) we obtain a 1D form of the MP-FRAP
model for diffusion along the optical axis:

F (t)

Fo

=
∞∑

n=0

(−β)n

n!

1

(1 + n + 2nt/RτD)1/2
. (10)

By generating data using this 1D model and fitting it to the 3D
model we find that in the limit of 1D diffusion the 3D model
should yield a value of the diffusion coefficient that is 0.026 ±
0.001 times the accepted value for a high NA lens and 0.006 ±
0.001 times the accepted value for a low NA lens. These limits
are plotted in Fig. 7 as the dashed lines and coincide with
the values of the normalized diffusion coefficients at small
values of ωr as determined by the Monte Carlo simulations
of MP-FRAP. The asterisks (*) mark data sets that, when refit
with the 1D MP-FRAP model, recovered the input diffusion
coefficient, within 1 SD.

D. Spherical boundary

A hollow spherical boundary well approximates a cell
body, cell nucleus, or dendritic spine [47–49]. We introduce
the spherical boundary symmetrically about the focal volume
center with a range of radii measured in units of ωr . The data
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FIG. 8. (Color) Spherical boundary at a range of positions,
symmetric about the focal volume center and presented as fractions
of ωr , for a high NA (squares) lens and a low NA (circles) lens.
Fluorescence recovery curves were generated through Monte Carlo
simulation and fit to the standard MP-FRAP model. Fit diffusion
coefficients were normalized to the input diffusion coefficient.

are presented as Dfit/Dinput as a function of boundary location.
Figure 8 shows that the fit diffusion coefficient drops rapidly
relative to the input diffusion coefficient as the boundaries
narrow in on the focal volume. Specifically, Dfit becomes
significantly smaller than Dinput as the radius of the sphere
becomes smaller than 2.75ωr for a high NA lens and 3.75ωr

for a low NA lens.
As the sphere becomes sufficiently small, many (and

eventually all) of the bleached molecules will be unable to
leave the focal volume. This suggests that the standard 3D
MP-FRAP model [Eq. (6)], which assumes free diffusion
of the entire fluorophore population, may be inappropriate
to fit the recovery. The concept of an “immobile fraction”
has been discussed previously [1,50] in the context of
fluorophore populations attached to the extracellular matrix or
cell cytoskeleton and involves an additional fitting parameter
to account for the incomplete recovery caused by a subset
of immobile fluorophores. We refit the data generated for
free diffusion within a spherical boundary using standard 3D
MP-FRAP with a fitting parameter for an immobile fraction,
but did not achieve significantly more accurate values for the
diffusion coefficient (data not shown). This arises because the

case of an immobile fluorophore population and our case of a
trapped but mobile population are only superficially similar. In
the case of an immobile fraction, a subset of fluorophores are
permanently (relative to the duration of the experiment) fixed
in space. The remaining fluorophores, however, are assumed
to diffuse freely. In the case of fluorophores confined within a
spherical boundary, however, while many fluorophores remain
within the focal volume they are always free to move. As
the bleached molecules spread from their initial center-heavy
distribution to a more uniform distribution, the fluorescence of
the sample changes. The shape of the recovery is subtly, yet
significantly, different from the case of immobile fluorophores,
and fitting with this added parameter does not significantly
improve the resultant diffusion coefficient.

E. Summary

Using Monte Carlo simulations, we have defined the range
of applicability of MP-FRAP to measure diffusion in the
presence of barriers of various geometries and positions
relative to the focal volume center. Table I summarizes the
results of our simulations. Using the standard MP-FRAP
model, the onset of deviations in the fit diffusion coefficient is
at a distance of 1.3ωr–1.5ωr for a single plane barrier parallel
to the optical axis and ∼−0.3ωz for a barrier perpendicular
to the optical axis. Using the new MP-FRAP single boundary
model (Eq. (7)) for a barrier parallel to the optical axis, the
initially low values of Dfit are avoided and the point of onset
of significant deviations greatly improves to ∼−0.15ωr . For
two parallel plane boundaries, the onset of deviations is at
a distance of 1.5ωr–1.8ωr for barriers parallel to the optical
axis and <0.1ωz to ∼0.5ωz for barriers perpendicular to the
optical axis. To improve the range of applicability for barriers
parallel to the optical axis, the user could perform MP-FRAP
analysis using the new two-boundary model [Eq. (9)], enabling
accurate diffusion coefficients to be produced down to ωr .
The onset of deviations within a hollow cylindrical boundary
is at a radius of ∼1.8ωr–2ωr for a cylinder parallel to the
optical axis and ∼0.3ωz–0.7ωz for a cylinder perpendicular to
the optical axis. In each of these geometries, the high-aspect
ratio of two-photon focal volumes leads to greater deviations
when the boundaries are brought in parallel to the optical
axis. For the sphere, the onset of deviations occurs at a radius
of ∼2.75ωr–3.75ωr and is not improved by fitting with an
immobile fraction term.

TABLE I. Summary of results of fitting fluorescence recovery curves in the presence of reflective boundaries to diffusion with the standard
MP-FRAP diffusive-recovery model. Boundaries are located symmetrically about the focal volume center at positions measured in units of ωr

or ωz. The boundary locations for a single parallel-plane boundary and two parallel-plane boundaries laying parallel to the optical axis within
which the standard MP-FRAP model yields erroneous diffusion coefficients can be narrowed by using the new models presented in the text.

Boundary geometry Orientation with respect to optical axis Boundary limit with standard MP-FRAP Boundary limit with new model

Single plane parallel 1.3ωr–1.5ωr ∼−0.15ωr

perpendicular ∼−0.3ωz

Parallel-plane parallel 1.5ωr–1.8ωr 1ωr

perpendicular <0.1ωz–∼0.5ωz

Cylinder parallel 1.8ωr–2ωr

perpendicular 0.3ωz–0.7ωz

Sphere 2.75ωr–3.75ωr
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FIG. 9. (Color) Representative recovery curves and fits for the case of a cylindrical barrier of three different radii (3.5ωr , 1.5ωr , and 1.0ωr ,
respectively), oriented parallel to the optical axis. In (a) the shape of the recovery curve matches that for free diffusion, and Dfit/Dinput = 1.02.
By direct comparison with (a) the recovery curve in (b) appears altered, but the shape is typical of MP-FRAP recovery curves and the fit looks
good by eye. However, Dfit/Dinput = 0.59; Dfit is not accurate. In (c) the curve is significantly altered in shape and the fit both looks poor to the
eye and yields an inaccurate diffusion coefficient, Dfit/Dinput = 0.15.

For all geometries, the error in the fit diffusion coefficient as
the boundary approaches the focal volume is initially presented
as a deviation below the input diffusion coefficient. This is
caused by a hindrance of the ability of bleached molecules
to leave the environment of the focal volume as a result of
reflection off of the boundary wall(s) and back into the focal
volume. For the case of a single plane barrier to diffusion, after
initially dipping below Dinput, Dfit begins to rise, eventually
leading to deviations greater than Dinput. This is caused by
truncation of the bleach distribution and monitor volume
as the focal volume crosses into the boundary wall. This
same trend is not seen for the other geometries, however,
even though our simulations bring the boundaries inside the
focal volume, thus also truncating the bleach distribution and
monitor volumes. Instead, Dfit levels off in all cases. For the
parallel plane and cylindrical boundaries, this is because the
confinement mimics the approach to a 2D (parallel plane) or
1D (cylindrical) system. When data at this limit for barriers
parallel to the optical axis are refit with the corresponding
1D or 2D MP-FRAP models, Dfit returns the same value as
Dinput. For the case of the spherically confining boundary, Dfit

continues to get smaller as the boundaries move inward.
Given the significant errors evident in the fit diffusion

coefficient when the various boundaries closely confine the
focal volume, it is reasonable to expect that the corresponding
recovery curves would be significantly altered compared to
their unbounded counterparts and that the fits may be obviously
poor by simple inspection. In the case of a single plane barrier
or two parallel-plane barriers, while the recovery curves do
lengthen as the boundaries are brought in (hence the drop
in Dfit), they retain the classic recovery curve shape and
fits to recovery curves for all boundary locations assessed
look good by inspection (data not shown). It is not until
a cylindrical barrier is brought in to narrowly confine the
focal volume that any obvious error is detected. Figure 9
shows representative data sets and fits for recovery curves
generated within cylindrical boundaries of three different
radii. To simulate the data shown in Fig. 9(a) the cylinder
radius was 3.5ωr . In this case the boundary was far enough
away to achieve a result consistent with free diffusion, and
Dfit/Dinput = 1.02. To generate the data in Fig. 9(b) the

cylinder radius was 1.5ωr . Although by direct comparison with
Fig. 9(a) the recovery curve does appear altered, the shape is
typical of MP-FRAP recovery curves and the fit looks good by
eye. However, in agreement with Fig. 7, Dfit/Dinput = 0.59; the
fit diffusion coefficient is not accurate. Finally, to produce the
data in Fig. 9(c) the cylinder radius was 1.0ωr , very nearly at
the limit of 1D diffusion. In this case the curve is further altered
and the fit now looks poor to the eye. Again in agreement with
Fig. 7, Dfit/Dinput = 0.15. Clearly, the experimental researcher
cannot rely on inspection of recovery curves and fits to indicate
an error in the measurement, except in the extreme case of a
narrowly constrained cylinder. Instead, she or he should follow
the guidelines described here.

Most MP-FRAP experiments are performed using a multi-
photon laser scanning microscopy (MPLSM) platform, with a
radial and axial resolution of imaging of ∼ωr and ∼ωz, respec-
tively [51], although improved resolution can be achieved with
deconvolution techniques [52]. Furthermore, MP-FRAP relies
on large fluorophore concentrations, typically high enough to
allow in vivo imaging of the diffusing fluorophore population.
Based upon our results, the user can therefore image the spatial
distribution of fluorophores and avoid MP-FRAP analysis
using the standard model [Eq. (6)] when the boundaries move
within the locations presented in the third column of Table I.
In the cases of planar barriers and a cylindrical barrier, all
oriented perpendicular to the optical axis, one cannot take
advantage of the full range of safe barrier distances because
the resolution limit of the microscope (∼1ωz) prevents us
from accurately determining our position relative to the barrier
with accuracy less than the resolution limit. In those cases,
MP-FRAP should only be performed when the barrier is at
a resolvable distance from the focal volume center (typically
�1ωz) to ensure that unsafe regions are not interrogated. In
the case of a single barrier or two parallel-plane barriers lying
parallel to the optical axis, the range of safe barrier distances
has been extended by the new models [Eqs. (7) and (9)] down
to or below the resolution limit.

In some experiments, the diffusing population may be
concentrated enough to use for MP-FRAP but too dilute to
allow imaging of the diffusive barriers. In this case, a second
fluorophore could be employed to highlight the boundaries
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FIG. 10. (Color) Placement of real and “image” bleached
molecule concentration distributions for the case of a single infinite
plane boundary. The overlap of the image distribution in the region
of the real distribution as the two distributions spread (t > 0) mimics
the behavior of diffusing molecules that bounce off the barrier and
back into the focal volume. At t = 0, there will be overcounting
of bleached molecules when the two distributions are close to the
barrier. This error will remain small until the image distribution peak
approaches the barrier.

within and between which the measurement will be taken, for
example, by labeling the cell walls or by introducing a second
diffusible fluorophore into the region of tissue interstitium
under study. By using an appropriately chosen color for the
second population, the spectral overlap in fluorescence is
minimized and the effects on the MP-FRAP results will be
negligible.

Our results provide assurance to the experimental re-
searcher that if she or he can successfully image the region
of interest of the intended measurement, then MP-FRAP can
now be relied upon to yield an accurate measurement of the
absolute diffusion coefficient within the constrained space.
This opens up a wide range of in vivo systems within which
MP-FRAP can now be confidently applied.

IV. CONCLUSION

In this paper, we have used Monte Carlo simulations
to model multiphoton fluorescence recovery after photo-
bleaching in the presence of reflecting boundaries of various
geometries and sizes. Our results show that MP-FRAP can
produce erroneous values of the diffusion coefficient even
when the boundaries are significantly larger than the focal
volume. The size limit at which the boundaries begin affecting
the MP-FRAP measurement varies with the geometry of
the boundary, with the two extremes being a single plane
perpendicular to the optical axis (Dfit becomes erroneous at
∼−0.3ωz) and a sphere (Dfit becomes erroneous at 3.75ωr ).
The significance of the error is a function of the aspect ratio
of the focal volume (i.e., the NA) and the orientation of the
barriers, with barriers to diffusion in the radial direction having
the greatest effect. Using our guidelines, a researcher can
first image a sample using two-photon fluorescence and then
measure and locate a region with the appropriate dimensions
to allow an accurate measurement of the diffusion coefficient
using the appropriate model. For both a single barrier and
paired barriers parallel to the optical axis, we present a new
model of MP-FRAP that can be used to produce accurate
diffusion coefficients for boundary distances much closer than

is possible with the standard MP-FRAP model. Measurements
of diffusion via MP-FRAP can now be completed with
confidence in an array of in vivo systems previously believed
to be inaccessible.
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APPENDIX

The time-dependent concentration distribution of un-
bleached fluorophore following the bleach pulse is given by
Brown et al. [1]. When written in Cartesian coordinates for a
concentration distribution centered at the origin, the expression
is

c(x,y,z; t) = co

∞∑
n=0

(−β)n

n!

1

μn(t)νn(t)1/2

× exp

[
−2bn

ω2
r

x2

μn(t)

]
exp

[
−2bn

ω2
r

y2

μn(t)

]

× exp

[
−2bn

ω2
z

z2

νn(t)

]
, (A1)

where

μn(t) = 1 + 8bnDt/ω2
r , (A2)

νn(t) = 1 + 8bnDt/ω2
z . (A3)

For the case of a single infinite plane boundary at the
origin we can develop an approximate analytical model by
replacing the barrier with the real distribution and an “image”
distribution placed symmetrically about the origin at positions
u and −u, which represent the distance of the real distribution
from the barrier (see Fig. 10). In the region to the right of the
origin, this closely models the behavior of the system: as the
distributions spread due to diffusion, the overlap of the image
distribution with the real distribution mimics the behavior of
those fluorophores that bounce off the barrier and back into
the space to the right of the barrier. With this approximation,
there is some overcounting of the initial fluorophore population
(hatched region in Fig. 10) when the two distributions are
oriented close to the barrier. This “extra” distribution of
bleached molecules will evolve over time, producing an error
in the fluorescence as a function of time, and hence in the
diffusion coefficient, D. However, this error remains small
until the peak of the image distribution approaches the origin.
As the two distributions perfectly overlap the error in D

disappears and then grows again as the distribution centers
continue past one another.

The combined concentration distribution, assuming a bar-
rier parallel to the optical axis in the x dimension, is given by

c′(x,y,z; t) = (1/2)[c1(x − u,y,z; t) + c2(x + u,y,z; t)],

(A4)
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where c1 and c2 are produced by introducing a coordinate
shift into Eq. (A1), and the 1/2 accounts for the fact that we
have introduced an image distribution that doubles the true
concentration of fluorophore.

The fluorescence recovery is monitored by a low-intensity
laser beam centered on the real concentration distribution and
is given by

F ′(t) = δmE

2m

∫ 〈
Im
mo(x − u,y,z)

〉
c′(x,y,z; t)dxdydz, (A5)

where δm is the multiphoton fluorescence action cross-section,
E is the collection efficiency of the system, m is the number
of photons required to produce fluorescence from a single
fluorophore, and 〈Im

mo(x − u,y,z)〉 is the time-average of the
bleach intensity raised to the mth power, given by〈

Im
mo(x − u,y,z)

〉 = 〈
Im
mo(0,0,0)

〉
e−(2m/ω2

r )(x−u)2

× e−(2m/ω2
r )y2

e−(2m/ω2
z )z2

. (A6)

It is important to note that while for the standard model
derivation the integral in F (t) is taken over all space, in the
presence of a single barrier the integral along the dimension
interrupted by the barrier (in this case x) is taken only from
0 → ∞.

When Eqs. (A4) and (A6) are substituted into Eq. (A5)
and the integral is performed, the simplified expression for the
fluorescence recovery, letting m = b = 2, is

F ′(t)
F ′

o

= 1

2

1

erfc(−2u/ωr )

∞∑
n=0

(−β)n

n!

1

[n + μn(t)]

1

[n + νn(t)]1/2

×
{

erfc

[
−2 [1 + n/μn(t)]1/2 u

ωr

]

+ exp

[
− 16n

n + μn(t)

(
u

ωr

)2
]

× erfc

[
−2

[1 − n/μn(t)]

[1 + n/μn(t)]1/2

u

ωr

] }
, (A7)

where F ′
o is the equilibrium value of the fluorescence be-

fore the photobleaching pulse. We can compare Eq. (A7)
with the standard MP-FRAP model [Eq. (6)] to gain some
insight into the new form. As noted earlier, the 1/2 arises
from our introduction of the image distribution. The first
complementary error function comes from the calculation
of F ′

o, which is evaluated over the limits 0 → ∞. The first
part of the summation, appearing on the first line, is the
standard MP-FRAP equation. Finally, the contribution to the
fluorescence recovery is shared between the real concentration
distribution, represented by the second complementary error
function, and the image concentration distribution, represented
by the exponential × complementary error function term. In
the limit u → ∞,

F ′(t)
F ′

o

= 1

2
+ 1

2

∞∑
n=0

(−β)n

n!

1

[n + μn(t)]

1

[n + νn(t)]1/2
. (A8)

With the image distribution center pushed to negative infinity,
the distribution of unbleached molecules in the region of
the focal volume (at positive infinity) is at equilibrium and
contributes a constant 1/2 to the normalized fluorescence.

Meanwhile, the real distribution center translates to infinity
with the focal volume and produces a fluorescence recovery
with the same form as a standard fluorescence recovery. At
full recovery (t → ∞), F ′(t)/F ′

o = 1, as expected.
This derivation can be repeated for a wall perpendicular

to the optical axis by introducing the appropriate coordinate
shifts in z, rather than x or y. The result has the same form
as Eq. (A7), but with ωr → ωz and μn(t) → νn(t) in the
exponential and complimentary error functions.

Following similar logic leading to the derivation of the
“single boundary” MP-FRAP model, we can also produce an
approximate analytical model for use in the presence of two
parallel infinite-plane boundaries. In this case, we place the
real concentration distribution at the origin and model two
boundaries placed symmetrically about the distribution center
(at u and −u) with an image distribution on the opposite side of
each barrier (at −2u and 2u). The concentration distribution for
this configuration has three parts, c′′(x,y,z; t) = (1/3)[c1(x −
2u,y,z,; t) + c2(x,y,z; t) + c3(x + 2u,y,z; t)], and the inte-
gration to determine the fluorescence is limited to −u → u

along the dimension in which the barriers appear. The resulting
normalized fluorescence recovery, for boundaries parallel to
the optical axis, is given by

F ′′(t)
F ′′

o

= 1

3

1

erf(2u/ωr )

∞∑
n=0

(−β)n

n!

1

[n + μn(t)]

1

[n + νn(t)]1/2

×
{

erf

[
−2 [1 + n/μn(t)]1/2 u

ωr

]

+ exp

[
− 16n

n + μn(t)

(
u

ωr

)2
]

×
(

erf

[
−2

[1 − n/μn(t)]

[1 + n/μn(t)]1/2

u

ωr

]

+ erf

[
−2

[1 + 3n/μn(t)]

[1 + n/μn(t)]1/2

u

ωr

] )}
. (A9)

Similar to the single boundary formula, the 1/3 arises
from the introduction of the two image distributions. The
first error function comes from the calculation of F ′′

o , which
is evaluated from −u → u. The standard MP-FRAP model
appears again and is weighted by contributions from the real
distribution, represented by the second error function, and the
image distributions, represented by the two exponential × error
function terms. In the limit u → ∞,

F ′′(t)
F ′′

o

= 2

3
+1

3

∞∑
n=0

(−β)n

n!

1

[n+μn(t)]

1

[n+νn(t)]1/2
. (A10)

Here, the image distributions contribute a constant 1/3
each to the normalized fluorescence, while the real distribution
recovers as would a standard MP-FRAP curve. At full recovery
(t → ∞), F (t)′′/F ′′

o = 1, as expected.
As with the one-boundary model, this derivation can

be repeated for walls perpendicular to the optical axis by
introducing the appropriate coordinate shifts in z, rather than
x or y. The result has the same form as Eq. (A9), but with
ωr → ωz and μn(t) → νn(t) in the exponential and error
functions.
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