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Sequentially firing neurons confer flexible timing in neural pattern generators
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Neuronal networks exhibit a variety of complex spatiotemporal patterns that include sequential activity,
synchrony, and wavelike dynamics. Inhibition is the primary means through which such patterns are implemented.
This behavior is dependent on both the intrinsic dynamics of the individual neurons as well as the connectivity
patterns. Many neural circuits consist of networks of smaller subcircuits (motifs) that are coupled together to
form the larger system. In this paper, we consider a particularly simple motif, comprising purely inhibitory
interactions, which generates sequential periodic dynamics. We first describe the dynamics of the single motif
both for general balanced coupling (all cells receive the same number and strength of inputs) and then for a
specific class of balanced networks: circulant systems. We couple these motifs together to form larger networks.
We use the theory of weak coupling to derive phase models which, themselves, have a certain structure and
symmetry. We show that this structure endows the coupled system with the ability to produce arbitrary timing
relationships between symmetrically coupled motifs and that the phase relationships are robust over a wide range
of frequencies. The theory is applicable to many other systems in biology and physics.
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I. INTRODUCTION

Biological systems and, in particular, many nervous sys-
tems are organized around repetitions of simple motifs [1,2].
One of the goals of theoretical biology and computational
neuroscience is to understand the behavior and dynamics
of the whole system given the dynamics of the parts and
their connectivity. Specifically, a common question is how
the connections between the parts determine the output of
the coupled network. For example, many invertebrate nervous
systems are composed of small (often as few as three cells)
motifs which generate rhythmic dynamics [3–6]. These motifs
are then coupled together (for example, as left and right pairs or
in a chain) to form larger networks. The full network is respon-
sible for producing the correct neural inputs to various motor
functions responsible for swimming [7–9], walking [10,11],
and eating [4]. These oscillatory motifs are not restricted to
invertebrates, but have also been found in vertebrates [12].

Our choice of motifs is motivated by a number of other neu-
ral models where the connections between units are dominated
by inhibition. Winner-less-competition (WLC) networks [13]
represent a class of such networks which have been shown
to generate complex patterned sequences. They have been
successfully used to model the dynamics observed in the
insect olfactory system as well as in some central pattern
generators (CPGs) [14]. While many inhibitory networks
produce WLC via heteroclinic cycles, this is not always the
only type of behavior found. Standard WLC examples such as
the Lotka-Volterra system are also able to generate limit cycle
oscillations. Indeed, Terman et al. [15] consider a class of
motifs that are also dominated asymmetric inhibition. There,
they consider networks of relaxation oscillators in which the
activity of one suppresses the activity of all other cells to which
it is connected. Once the active cell turns off, some other cell

or cells turn on and so on. Their motifs settle into attracting
periodic orbits.

Winner-take-all (WTA) networks are characterized by
symmetric coupling and thus they tend to generate fixed-point
behavior. In contrast, random networks and the kinds of
networks encountered in neural contexts [2,16,17] are far from
symmetric, so that such networks can often produce temporally
rich behavior such as limit cycles and chaos [13]. Further-
more, unlike fixed-point-generating networks, small coupling
strengths can have dramatic effects in periodic and chaotic
networks. Specifically, when an isolated motif produces stable
fixed-point behavior, then coupling between two such motifs
must be sufficiently strong to produce qualitative changes
from the uncoupled system. In contrast, chaotic and oscillatory
motifs can be strongly influenced by weak interactions.

The goal of this paper is to first analyze a particular class
of motifs and show that rhythmic sequential dynamics arise
generically in a wide variety of circumstances. Second, we then
ask what type of dynamics arises when such oscillatory motifs
are coupled together in a symmetric manner. Since the relative
timing of neuronal circuit output (oscillatory and otherwise)
is quite important (particularly for rhythmic motor systems,
but also for sensory systems [18]), we ask how the coupling
between a pair of oscillatory motifs affects the relative timing
of their outputs. We use bifurcation theory to study the onset
of oscillatory dynamics in the individual motif. We then use
the theory of averaging and weak coupling to study the relative
timing of outputs between pairs of such modular networks. We
compare the weak-coupling phase models with the full model.
We finally show that the use of sequence-generating modules
confers the coupled network with robust timing relationships
over a wide range of frequencies, a property that is especially
important in CPGs.
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FIG. 1. Two mutually coupled networks. Solid lines are intranet-
work connections and can be general. Dashed lines show two types of
connections A,B which are reciprocal. Note that within the network,
the coupling is “balanced”: Each cell receives the same number of
inputs.

II. PURE INHIBITORY NEURAL MODELS

Figure 1 shows a pair of coupled motifs, each of which
is a network of five coupled cells. Suppose that the isolated
motif produces oscillatory but not necessarily synchronous
behavior. That is, say that the cells within the motif have
different (perhaps just time-shifted) wave forms. Then we
can ask, what happens when the two motifs are coupled and
how does the resulting dynamics depend on the choice of
connections, A or B or some combination of both of them.
For example, the two motifs could represent the left and right
sides of a bilateral CPG with the dashed lines representing the
cross coupling. In order to address this question, we analyze
the dynamics within a single motif in which all connections
are inhibitory. We look for architectures that generate stable
sequential rhythmic dynamics. We start with general random
networks and show that periodic dynamics are quite common
and can be understood from the spectra of the connectivity
matrices. We find that a common pattern of activity consists of
three or more cells alternating their dynamics. This suggests
a simpler class of models, circulant systems, which show
robust periodic dynamics as the drive or the coupling strength
increase. Finally, we turn to the simplest circulant system
of three cells that inhibit each other asymmetrically. This
particular motif is remarkably common in neuroscience and is
the basis for many of the CPGs discussed in the Introduction.

A. Random balanced coupling

There are many ways to choose the dynamics within a
motif and, indeed, even the dynamics within each of the cells
composing the motif. We will use a simple firing rate Wilson-
Cowan model for each cell within a motif and we will couple
cells with inhibitory coupling. Thus each motif has the form

ẋi = −xi + F

(
Ii −

n∑
k=1

gikxk

)
, (1)

where Ii is the input into the ith cell, gik is the strength
of interaction between cell k and cell i, and F (u) is a
monotonically increasing function; we will use F (u) = 1/[1 +
exp(−u)]. The coupling strengths gik are non-negative.

The dynamics of even as simple a network as (1) can be
complicated. To get a handle on it, we will consider motifs that
are homogeneous; that is, all the applied inputs Ii are identical
and the net input into each cell is the same:

n∑
k=1

gik = g, for all i.

With this assumption, it is immediately clear that there is a
unique homogeneous fixed point, xi = ū, where

ū = F (I − gū).

The network illustrated in Fig. 1 has the so-called balanced
property; that is, the total inputs coming into any cell is the
same for each cell. There are several ways to achieve balance
in a network. For example, each cell could receive the same
number of inputs where each have the same strength. More
generally, the summed strength of all inputs to each cell could
be the same with no constraints on who is coupled to whom.
Balanced systems have been the subject of a great deal of
recent work [19,20].

We write gik = gGik , where Gik is now fixed and is such
that

∑n
k=1 Gik = 1. Thus, g and the input I are the two

parameters in our network. We can now ask what happens
as these parameters change. Thus, we perform a local stability
analysis around the homogeneous equilibrium point, xi = ū.

Let α := F ′(I − gū), where F ′(u) is derivative of F. ū is
itself a function of g and I , decreasing as a function of g

and increasing as a function of I . Thus, α is also a function
of g,I so that as g or I change, so does the parameter α.

Since F is monotonic, α is always positive and is maximal at
the inflection point of F . For our choice of F , the inflection
point is at 0. Finally, we can always choose I so that ū is at
the inflection point, for our function, I = g/2 guarantees this
feature.

With these preliminary remarks, we can write down the
linearized equation

ẏi = −yi − αg

n∑
k=1

Gikyk.

Let μj be an eigenvalue of the matrix G whose entries are Gik.

Then, the eigenvalues of the linearized system above are

λj = −1 + αgμj .

As noted above, we can always move along a parameter path
in g,I so that α is some fixed positive value. Thus, we can
make the quantity αg as large as we would like by increasing
g and choosing I appropriately. The eigenvalues λj are clearly
negative for g sufficiently small. G is the transpose of a
probability matrix: All entries are non-negative and the row
sums are 1. We can conclude that the eigenvalue of G that has
maximum magnitude is 1 with an eigenvector of all 1’s. This
gives, for the linearized system, an eigenvalue λ = −1 − gα,
which is clearly negative. Let ν be the eigenvalue of G which
has the most negative real part. Let us write ν = −r ± iω.

Then as g increases, the linearized system has an eigenvalue

λ = −1 + αgr − iαgω.
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FIG. 2. (Color online) Eigenvalue spectra of several 20 × 20 random matrices with row sums equal to 1. In addition to the 19 eigenvalues
shown, there is a simple eigenvalue, λ = 1, that is not shown. The entries of each matrix are chosen to be uniformly distributed on (0,1) and
then each row is scaled so the row sum is 1. (a)–(d) are four such randomly chosen matrices.

If g > 1/(αr), then the real part of λ becomes positive. If this
particular eigenvalue is complex (ω �= 0), then we generically
expect a Hopf bifurcation to occur. Of course, if the matrix
G is symmetric, then the only long-time solutions to (1) are
fixed points. Thus, to get sequencelike behavior for such
purely inhibitory networks requires that the matrix G be
nonsymmetric. Figure 2 shows examples of several 20 × 20
random matrices. We see that in Figs. 2(a), 2(b), and 2(c) the
eigenvalue with the most negative real part is complex (circles)
while in Fig. 2(d) the most negative eigenvalue is real. From
our prior discussion, as g increases, we expect to see the loss
of stability of the constant steady state via a Hopf bifurcation
in the examples shown in Figs. 2(a), 2(b), and 2(c), but a
pitchfork bifurcation with the matrix example in Fig. 2(d).
In general, for an m × m random matrix with entries taken
from a uniform distribution and row sums normalized to 1,
the m − 1 eigenvalues that are not 1 lie in a circle of radius
1/

√
m [21]. Thus, we need to choose only those matrices

whose eigenvalues with the most negative real parts are also
complex.

We have sketched out the linear theory for these inhibitory
networks, but we are interested in the oscillatory dynamics, so

we will resort to a numerical computation of the bifurcation
diagrams as the coupling strength g increases. Figure 3 shows
the bifurcation diagram for the system with the matrix in
Fig. 2(a) and I = 20. As predicted from the spectrum of
G, the uniform steady state loses stability through a Hopf
bifurcation at a value of g near 30. There is a supercritical
branch of periodic solutions that bifurcates (shown by the
thick lines) which appears to terminate at a saddle homoclinic
orbit. Figure 3(c) shows that the frequency rapidly drops to
0 as g increases toward the homoclinic. The nearly vertical
frequency drop suggests a saddle homoclinic rather than a
saddle node on an invariant circle (SNIC) which, instead,
shows a square-root dependence of the frequency. Figure 3(b)
shows a two-parameter diagram, that is, the curve of Hopf
bifurcations as I and g co-vary. For quite a wide range of
applied currents, we see that there is a Hopf bifurcation to
periodic orbits as the linear analysis suggests. Figure 3(d)
shows the projection of the trajectories of three different
cells in the 20-cell network. One point that we would like to
emphasize and is clear from Fig. 3(d) is the sequential nature
of the firing. That is, during a cycle, each of the three variables
shown comes on at different phases.
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FIG. 3. (Color online) (a) Bifurcation diagram for a 20-neuron network as g varies with I = 20. The solid thick black line represents the
symmetric stable equilibrium and the light curve is the branch of periodic orbits. An unstable pitchfork bifurcation to unstable equilibria is
partially shown between g = 50 and g = 70. (b) Two-parameter diagram with I and g as parameters. The black line represents the parameters
for (a). The lighter colored curve is the curve of Hopf bifurcations. (c) Frequency of oscillation from (a). (d) Projection of x9,x16,x18 near
termination of the branch of periodic orbits in (c).

Figure 4 shows additional bifurcation diagrams for twenty
cell random networks. Figure 4(a) depicts the dynamics
beyond the bifurcation for the coupling whose eigenvalue
spectrum is shown in Fig. 2(b). As Fig. 3, the oscillation
persists for a wide range of applied currents I with apparently
no additional bifurcations. This is in contrast to the behavior
of the system whose eigenspectrum is shown in Fig. 2(c) and
whose bifurcation diagrams are depicted in Figs. 4(b)–4(d)
for three different applied currents. First, we note that, as
predicted from the linear theory, all three systems undergo
Hopf bifurcations as the coupling strength g is increased.
However, the dynamics past the Hopf bifurcation depends
very strongly on the applied current I . When I = 20, then,
as Fig. 4(a), the oscillation persists for very large values of g,
but the limit cycle undergoes some complex bifurcations for
g ≈ 55 before returning to a simple limit cycle. Choosing I =
30,10 leads to dramatic differences in the global dynamics.
For both I = 10,30 but not I = 20, the oscillation terminates
at a SNIC formed by a stable and unstable pair of fixed points
(light colored arrows). However, at low drive, (I = 10), there
is a small regime of synaptic strengths where there are two
small-amplitude stable periodic orbits (green arrow).

Figure 5 shows that it is not even necessary that the initial
bifurcation be a Hopf in order to get oscillatory dynamics.

Figure 2(d) shows a connection matrix where the eigenvalue
with most negative real part is real, so that a pitchfork
bifurcation is predicted from the matrix. As can be seen in
the bifurcation diagram, the uniform fixed point loses stability
at a pitchfork bifurcation (a). The lower branch of fixed points
undergoes a Hopf bifurcation (b), which terminates on a
SNIC (c). The upper branch undergoes a Hopf bifurcation
at two points (d), (e). Another pitchfork emerges (f) which
is unstable, but the lower branch stabilizes at a saddle node
(g) and produces a Hopf bifurcation (h). Thus for g between
points (c) and (h), there are three stable limit cycles. The
black arrow shows the point which we will explore later in
the next section as the oscillation is simple yet quite rich
in structure. (By rich, we mean that it is not too close to
a pure sinusoidal oscillation and has several large Fourier
components.)

B. Circulant matrices

Perhaps the easiest way to connect a network of cells in
order to produce an oscillation or other patterned state is to
assume that the coupling matrix Gij is a function of i − j only.
We also assume that the coupling is not isotropic, for then
G = GT and all eigenvalues of G will be real. The resulting
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FIG. 4. (Color online) Different 20-neuron networks. (a) Similar to Fig. 3 with the weight matrix from Fig. 2(b). (b)–(d) Weight matrix
from Fig. 2(c), with three different values of I . Light curves are stable fixed points, thin black are unstable, and thick dark curves are limit
cycles. Light colored arrows mark SNIC bifurcations and the black arrow marks a pair of small-amplitude stable limit cycles.

network is then a gradient system [22] and all solutions tend
to equilibria. Thus, while we assume Gij is a function of
i − j , it is not a function of |i − j |. Finally, we assume the
connectivity is topologically equivalent to a circle. This kind
of system arises naturally in networks that have some type of
spatial organization, such as the “ring model” [23]. Matrices
of this form are called circulant. We write the first row of
G as

R1 := [a0,a1, . . . ,aN−1]

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180

a

b
c

d

e

f

g
h

g

x7

FIG. 5. (Color online) Bifurcation diagram of the system corre-
sponding to Fig. 2(d), where the first instability is at a zero eigenvalue
resulting in a pitchfork (a) in the figure. Light curves are stable
equilibria, thin black curves are unstable equilibria, and thick curves
are stable periodic orbits. Here I = 30. Arrow denotes parameters
used in Fig. 14.

and suppose that the second row is the same as the first row,
shifted to the right:

R2 := [aN−1,a0,a1,a2, . . . ,aN−2].

We similarly shift the other rows to obtain the full matrix. For
such matrices, the eigenvalues are explicitly computable:

μk =
m−1∑
j=0

aj e
−2πijk/m. (2)

Thus, if aj �= am−j , then we expect the eigenvalues will be
complex (except k = 0, the dominant positive eigenvalue).
The number k is called the wave number for the eigenvalue.
Figure 6 shows an example of the dynamics of a 20-neuron
system with R1 randomly chosen. Figure 6(a) shows the
eigenvalue spectrum. The bifurcation diagram in Fig. 6(b)
shows a single stable branch of periodic orbits emerging
from the uniform state. The pattern of oscillations is shown
in Fig. 6(c). The spatial mode is 2π3/20, that is, k = 3. Since
3 and 20 are relatively prime, no two oscillators are at their
maximum at the same time. The resulting pattern is a wave that
has three oscillators near their maximum at any given time.

What is crucial for our ensuing analysis is that the network
of cells generates oscillations in which different members
come on during different parts of the cycle. In the example in
Fig. 6(c), seven groups of three oscillators occur in succession.
The simplest network capable of producing sequential activity
is a three-cell circulant system:

x ′
1 = −x1 + F (I − g[ax1 + bx2 + cx3]),

x ′
2 = −x2 + F (I − g[ax2 + bx3 + cx1]), (3)

x ′
3 = −x3 + F (I − g[ax3 + bx1 + cx2]).
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FIG. 6. (Color online) 20-neuron circulant system. (a) Eigenvalue spectrum. (b) Bifurcation diagram showing a single primary branch of
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Phase sensitivity for one cycle of the oscillation. (d) Interaction functions when oscillator 1 receives inputs from oscillators 1 or 5 from the
other motif. The black curve is the odd part of the interaction function when inputs from 1 and 5 are equal in strength. [See Eq. (4) for the
definition of H.]

Here a,b,c are non-negative parameters. Typically, we take
0 < a < b < c. Figure 7 shows a figure analogous to Fig. 3
for this network. Unlike the 20-neuron case, we can gain a
fairly complete understanding of the behavior. The periodic
orbit emerges super-critically from the symmetric equilibrium
point and terminates on a saddle-node bifurcation of equilibria.
These equilibria correspond to states in which each of the
three neurons is the “winner.” The two-parameter diagram
[Fig. 7(b)] is almost the same as the 20-neuron network,
but the termination is on a symmetric SNIC rather than a
saddle homoclinic. The frequency shows the characteristic
square-root shape of a saddle node on a limit cycle bifurcation
[Fig. 7(c)] and the projected orbit clearly shows the “ghosts”
of the three asymmetric fixed points that disappear at the
triple saddle-node bifurcation. Three-cell networks are very
common in vertebrate CPGs, as discussed in the Introduction
to this paper. Rabinovich has analyzed a similar system to this.
However, his system produces a heteroclinic cycle.

In this section, we have shown that driven inhibitory
networks of the form (1) generically produce limit cycle
oscillations in which the cells in the network alternate their
activity. In other words, as the three-neuron model analyzed
in Ref. [14], these more general networks produce repetitive
sequential activity. Using such a network as our basic motif,

we now explore the dynamical possibilities of coupling them
together. Given that the cells are “on” at different parts of their
cycle, we expect that there can be many different patterns of
synchrony and locking depending on which cell is connected
to which.

III. WEAK-COUPLING THEORY

The dynamics of generally coupled oscillators is a difficult
problem, so that several approaches can be taken to make the
problem tractable. One of the most general methods available
is to restrict the analysis to the case where interactions between
the oscillators are “weak.” That is, coupling is not so strong as
to distort the individual limit cycles. We first summarize the
Malkin theorem for weak coupling [24].

Consider

X′ = Q(X) + εC1(X,Y ) + O(ε2),

Y ′ = Q(Y ) + εC2(Y,X) + O(ε2).

Here Q : Rn → Rn and Ck : Rn × Rn → Rn are smooth
functions. We assume that there is an asymptotically stable
limit cycle, X0(t) for the uncoupled system, X′

0 = Q(X0)
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the L2 norm. (b) Two-parameter diagram showing the curve of Hopf bifurcations. (c) Frequency of oscillations. (d) Three-dimensional projection
for g = 31 near the termination of the branch of periodics.

with period P. C1,2 represent the coupling functions to order
0 < ε � 1. Let X∗(t) satisfy

dX∗

dt
= −DXQ[X0(t)]T X∗, X∗(t)X′

0(t) = 1.

Here DXQ[X0(t)] is the N × N Jacobi matrix [of partial
derivatives of Q evaluated along the limit cycle, X0(t)]. Then
X(t) = X0(θX) + O(ε), Y (t) = X0(θY ) + O(ε), and

dθX

dt
= 1 + εH1(θY − θX) + O(ε2),

dθY

dt
= 1 + εH2(θX − θY ) + O(ε2),

where

Hj (φ) := 1

P

∫ P

0
X∗(t)Cj [X0(t),X0(t + φ)]dt. (4)

The function X∗(t) is called the sensitivity function or the
adjoint solution.

Before turning to the application of this theory to our motifs,
we show why understanding the interaction functions Hj (φ)
is useful. For reciprocally coupled identical oscillators, the
Malkin theorem implies (to order ε)

dθX

dt
= 1 + εH (θY − θX),

dθY

dt
= 1 + εH (θX − θY ).

Let φ := θY − θX. Then

dφ

dt
= −2εHodd(φ) := ε[H (−φ) − H (φ)].

Any continuous odd periodic function has at least two zeros,
φ = 0 and φ = P/2. The former is the perfectly synchronous
solution where both of the motifs follow the same exact
trajectory and the latter is the “antiphase” solution where the
motifs are half a cycle apart. The existence of these solutions is
independent of the nature of the coupling between two motifs,
however, their stability does depend on the coupling, as we
will show shortly. There is no reason why Hodd(φ), might not
have other zeros besides 0,P/2. Such a zero would be very
sensitive to the precise nature of the coupling and, if the zero
is stable, would confer a great deal of flexibility in the range of
stable patterns between two or more coupled motifs. Near the
Hopf bifurcation, the limit cycles are very sinusoidal and thus
they have only a single Fourier component. Their sensitivity
has a similar sinusoidal form so that their odd part of the
interaction function is proportional to sin 2πφ/P [25]. This
means that the only possible patterns are φ = 0,P/2. For this
reason, we want to move away from the Hopf bifurcation point
so that the limit cycle X0(t) and the sensitivity function X∗(t)
have multiple Fourier modes. We conclude by remarking that
perfect synchrony, φ = 0, is stable if −2H ′

odd(0) = −2H ′(0)
is negative. That is, when H ′(0) > 0. Similarly, the antiphase
solution, φ = P/2, is stable when H ′(P/2) > 0.
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A. Weakly coupled motifs

We now apply the weak-coupling theory to a pair of coupled
motifs where the coupling strength, ε is small:

x ′
i = −xi + f

(
I − g

m∑
j=1

Gijxj − ε

m∑
j=1

Cijyj

)
,

y ′
i = −yi + f

(
I − g

m∑
j=1

Gijyj − ε

m∑
j=1

Cijxj

)
.

We expand the inside of f in terms of ε to find

x ′
i = −xi + f

(
I − g

m∑
j=1

Gijxj − ε

m∑
j=1

Cijyj

)

= −xi + f (Si) − εf ′(Si)
m∑

j=1

Cijyj + O(ε2), (5)

where Si = I − g
∑m

j=1 Gijxj . The equations for yi are simi-
larly defined with the y and x interchanged. For the remainder
of the paper, we suppose the coupling between motifs is
symmetric as in Fig. 1. Let x∗

i (t) denote the components of
X∗(t) and xi(t) denote the components of X0(t). Then

H (φ) = − 1

P

∫ P

0

[ m∑
i,j=1

x∗
i (t)f ′[Si(t)]Cijxj (t + φ)

]
dt. (6)

Let us define zi(t) = x∗
i (t)f ′[Si(t)]. This function determines

the sensitivity of the oscillator to perturbations of the ith cell.
Then, we can write (6) as

H (φ) = − 1

P

∫ P

0

⎡
⎣ m∑

i,j=1

zi(t)Cijxj (t + φ)

⎤
⎦ dt.

Thus, the interaction function H is dependent on the sensitivity
of the receiver and the activity of the sender. For example, if
some of cells do not participate in the rhythm, that is, they are
either suppressed or nearly in the maximally active state, then
they will be insensitive as receivers (since f ′[Si(t)] is close
to zero) nor will they be useful senders since xi(t) is nearly
constant and thus conveys no phase information. Generally
speaking, in dealing with inhibitory motifs that have no special
structure, some fraction of the cells will not participate in the
rhythm in the sense that their activities only fluctuate weakly.
In circulant systems, all cells participate in the rhythm and
their wave forms are just shifted versions of each other, so all
of them are equally good at sending and receiving inputs from
other motifs.

B. General results about synchrony

Before our analysis of specific motifs and patterns of
coupling, we look at synchrony with a particular kind of
coupling. Consider

x ′
i = −xi + F

(
I − g

∑
j

Gij xj − ε
∑

j

Cij yj

)
. (7)

The general interaction function is given by

H (φ) = − 1

T

∫ T

0
X∗(t) · F ′(I − gGX(t))CX(t + φ)dt. (8)

Here F ′(·) means the vector formed from each of the compo-
nents, F ′(I − ∑

j GijXi(t)). Synchrony is stable if H ′(0) > 0,
that is,

M := − 1

T

∫ T

0
X∗(t) · F ′(I − gGX(t))CX′(t), dt > 0. (9)

Consider the equation

X′ + X = F (I − gGX). (10)

Differentiate this with respect to t and we obtain

X′′ + X′ = −gF ′(I − gGX)GX′.

Integrate this against the adjoint X∗(t) using the fact that X′(t) ·
X∗(t) = 1 to obtain

1 + 1

P

∫ P

0
X∗(t) · X′′(t)dt

= −g
1

P

∫ P

0
X∗(t) · F ′(I − gGX(t))GX′(t)dt. (11)

If the coupling to other groups, C is exactly the same as the
coupling within groups, G, then we see that

gH ′(0) = 1 + 1

T

∫ T

0
X∗(t) · X′′(t)dt. (12)

The term involving X′′(t) arises in many situations, for
example, in the evolution of the phase for reaction-diffusion
equations with scalar coupling [26]. It will be small or zero if
the isochrons of the limit cycle are nearly radial (small “twist,”
see below). Thus, while it is not possible to declare that H ′(0) is
positive, for a generic class of limit cycles, the twist is small.
At a SNIC, the integral vanishes (see below). Thus, for our
three-oscillator circulant system (which is near the SNIC), we
expect that synchrony will be stable if the coupling between
groups exactly reflects the coupling within the group and is
simply weaker.

We now prove that near a SNIC, the integral vanishes. The
normal form near a SNIC is [27]

x ′ = 1 − cos x + a2(1 + cos x).

We can solve this for the periodic orbit, x(t) = −2 arctan
[a cot(at)]. As this is a scalar equation, the adjoint is x∗(t) =
1/x ′(t). Since x ′(t) is an even periodic function, the adjoint
is also an even periodic function and x ′′(t) is an odd periodic
function. Thus, the integral of x ′′(t)x∗(t) vanishes. Hence, near
a SNIC, we have that H ′(0) > 0 and synchrony is stable.

Near a Hopf bifurcation, X(t) = (cos t, sin t) and X∗(t) =
(q cos t − sin t, cos t + q sin t), where q is dependent on the
nonlinear coefficients of the normal form. If q = 0, the
isochrons are radial; otherwise they have a twist. The desired
integral is −q, so that if q > 1, then even with this special
coupling, synchrony will be unstable. It is for this reason
that we cannot say anything general about when synchrony
is stable near a Hopf bifurcation, except that for systems with
nearly radial isochrons, where we can say that synchrony is an
attractor.
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FIG. 8. (Color online) Example of a symmetric coupling motif
with composite coupling.

C. Interaction functions for circulant systems

The general interaction function for two coupled motifs has
the form

H (φ) = − 1

P

∫ P

0

[ m∑
i,j=1

zi(t)Cijxj (t + φ)

]
dt,

where the functions xi(t),zi(t) are very general and bear little
relationship to each other. However, in a circulant system, the
translational symmetry leads to the bifurcation to patterns of
activity that are identical to traveling waves, cf. Fig. 6(c). This
means that the only difference between, say, xi(t) and xj (t), is
a temporal phase shift. That is, there exists an integer k such
that xj (t) = xi(t + kP/m), where m is the number of neurons
in the motif and P is the period of the oscillation. Similarly,
the sensitivities zi(t) are related in the same way. Hence, to
compute the interaction, we need only compute one integral
and the rest will just be phase shifts. Specifically, let ki be
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FIG. 9. (Color online) (a) −2ho
p(φ), where ho

p is the odd part of
the weak-coupling function for the composite coupling illustrated
in Fig. 8. Filled circles show stable fixed points for four different
values of p. (b) Odd part of the H function when the connection
is #1 to #1.

such that xi(t) = x1(t + kiP/m) and zi(t) = z1(t + kiP/m).
Consider a term in the interaction function of the form

− 1

P

∫ P

0
Cij zi(t)xj (t + φ)dt.

We can rewrite this as

− 1

P

∫ P

0
Cij z1(t + kiP/m)x1(t + kjP/m + φ)dt,

which is then

−Cij

1

P

∫ P

0
z1(t)x1(t + (kj − ki)P/m + φ)dt.

Let

h(φ) := − 1

P

∫ P

0
z1(t)x1(t + φ)dt.

Then the general interaction function has the form

H (φ) =
m∑

i,j=1

Cijh

(
φ + P

kj − ki

m

)
.

Thus, for circulant motifs, the composite interaction function
is a weighted sum of the phase shift of the single 1 → 1
connection. In particular, we need only study coupled networks
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of periodic solutions to the full model for two different coupling
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where a single cell in the motif (call it cell 1) receives all the
inputs from the other motif. For example, in the simplest three-
cell motif, we need to look only at the cases where C11,C12,C13

are nonzero and thus

H (φ) = C11h(φ) + C12h(φ + P/3) + C13h(φ − P/3), (13)

where we use that fact that 2P/3 = −P/3 modulo P.

IV. SYNCHRONY AND LOCKING IN
CIRCULANT SYSTEMS

We start this section with an exploration of the dynamics of
a pair of coupled three-cell motifs. From the discussion in the
previous section and Eq. (13), we need only look at networks in
which cell 1 receives all the inputs. Figure 8 shows an example
system in which cell 1 receives input only from cells 2 and 3
in the other motif. When p = 1, coupling is just from 2 to 1,
and when p = 0, it is from 3 to 1. We set

Hp(φ) = ph(φ + P/3) + (1 − p)h(φ − P/3).

The phase difference between the two motifs satisfies

dφ

dt
= −2hodd

p (φ) := Hp(−φ) − Hp(φ).

Figure 9(a) shows hodd
p for several different values of p.

When p = 1 and connections are only from 2 to 1, the
antiphase solution is the only stable equilibrium and we expect
that for weak coupling the two motifs will oscillate out of
phase. In contrast, when p = 0 and coupling is only from
3 to 1, then perfect synchrony is an asymptotically stable
solution; the two motifs will synchronize. For a mixture of
the two types of coupling, the stable phase difference between
the two networks can take many values between synchrony
and antiphase. Thus, the timing difference (phase difference)
between the two symmetrically coupled networks can be
arbitrarily prescribed by adjusting the ratio of the coupling
strengths between different members of the motif. Figure 10(a)
formalizes this idea by showing the stable equilibria for the
weakly coupled pair of networks as a function of the parameter
p. When p = 0, synchrony is stable. As p increases, there
is a supercritical pitchfork bifurcation for p ≈ 0.35. The new
branch of stable solutions represents a state in which the stable
phase difference between the two oscillatory networks is some
intermediate value that increases from φ = 0 in a monotonic
fashion as p increases past 0.35. Starting at the other extreme,
when p = 1, the antiphase solution is stable. As p decreases,
the antiphase solution loses stability for p ≈ 0.65. There is
a subcritical pitchfork bifurcation which “turns around” to
become supercritical, where it joins with the solution branch
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emerging from the synchronous solution. Thus, except for a
small interval of phases near the antiphase solution, it is pos-
sible to achieve an arbitrary stable phase difference between
the two networks by doing nothing more than varying the
coupling ratio between the two connections. More generally,
suppose we have two types of coupling, say, H0(φ) and H1(φ),
and consider Hp(φ) = (1 − p)H0(φ) + pH1(φ). Suppose that
H ′

0(0) = a0 > 0 and H ′
0(P/2) = −b0 < 0. This means that

with p = 0, synchrony is stable and antiphase is unstable.
Suppose, in contrast, that H ′

1(0) = −a1 < 0 and H ′
1(P/2) =

b1 > 0. That is, when p = 1, synchrony is unstable and
antiphase is stable. Then we can compute the value of p for
the pitchfork to occur on these branches. Synchrony (φ = 0) is
unstable for p > a1/(a1 + a0) := ps and antiphase is unstable
for p < b1/(b0 + b1) := pa. Generically, the pitchfork will
not be degenerate. [For example, let p = ps be the value of p

where synchrony loses stability. Let hodd(φ) be the odd part of
H at this value of p = ps . Then h′

odd(0) = 0 is the condition
for the loss of stability. The condition for a nondegenerate
pitchfork is h′′′

odd(0) �= 0. The sign of this quantity determines
whether or not the pitchfork is subcritical or supercritical. A
similar condition holds at p = pa .]

In our particular case, the new solutions which bifurcated
from synchrony and antiphase were stable and represented an
intermediate phase difference. However, it is not necessary
for this to happen. Instead, for example, suppose that pa <

ps . Then for pa < p < ps , both antiphase and synchrony are
stable. The coupled network is bistable. It turns out that in our
canonical three-cell circuit, the single reciprocal connection
from 1 to 1 provides a bistable system with both synchrony
and antiphase stable, as seen in Fig. 9(b).

In sum, a weak-coupling analysis shows that even with
symmetric coupling of identical oscillators, it is possible to
modulate the phase difference between a coupled pair of
networks by just varying the coupling ratio, that is, who is
coupled to whom.

A. Beyond weak coupling

While the results for weak coupling show the rich possibil-
ities of interacting circulant motifs, it is not clear how robust
the timing and phase differences will be as the strength of
coupling increases and the full oscillatory networks become
more distorted due to the coupling. In Figs. 10(b) and 10(c),
we show bifurcation diagrams for coupling between units
with strength gc = 0.05,0.25 as p varies. In both cases,
synchrony is stable for p small and antiphase is stable for p

close to 1. As with the phase model, both the synchronous
and antiphase solutions lose stability via a pitchfork and
the critical values of p are close to those predicted through
weak-coupling theory. Figure 11 shows the timing difference
between the corresponding unit 1’s in the two networks with
moderate-coupling strength. As predicted from weak-coupling
theory, synchrony and antiphase disappear for p between 0.4
and 0.7 and the timing difference (or phase; details on how this
is computed are in the figure legend) can take on any value.
In particular, the timing is uniquely determined by p. Typical
time series at three values of p are shown. For p = 0.6, the
oscillation is somewhat distorted as the firing rates are not

simply phase shifts of each other, rather, their amplitudes are
also different.

Figure 12 summarizes the global dynamics as the coupling
strength gc increases. In Fig. 12(a), stability of synchrony
is lost through a pitchfork bifurcation as p changes for all
coupling strengths, gc < 0.52. For gc > 0.52, synchrony is
stable for all p. Furthermore, synchrony restabilizes as p

increases for coupling larger than gc ≈ 0.3. Figure 12(b)
shows an analogous diagram for the fate of the antiphase
branch. Pitchfork bifurcations occur (with respect to the
parameter p) for coupling strengths up to between 0.5 and
0.65. Beyond that, the antiphase branch is lost to a saddle-node
bifurcation.

One of the main points of this paper is that an architecture
in which cells within a motif come on at different times in the
cycle can allow coupled networks to stably maintain specific
phase relationships. However, it might be the case that these
phase relationships (except synchrony and antiphase) are very
sensitive to the frequency of the oscillations. Thus, we consider
the network shown in the last two figures, but now let the
current input I change between I = 1 and I = 2. At I = 1,
the uncoupled system is near the Hopf bifurcation and the
amplitude of the oscillation is very small, while when I = 2,
it is close to the SNIC and the amplitude is quite large. The
period ranges from ∼10 to ∼50. In spite of this large range
in amplitude and period, for a fixed interaction between the
two subnetworks (that is, for fixed p), the phase is remarkably
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constant. Figure 13 shows the phase difference (as measured
in Fig. 11) as the period varies (achieved by changing the input
I ). For each choice of p, the phase is almost constant over the
entire range of periods.

B. Noncirculant systems

Symmetric connectivity between circulant systems has
been shown to yield the possibility for arbitrary time dif-

ferences between pairs of the motifs. We explored in great
detail the dynamics of a specific three-neuron circulant system.
However, the basic principle that underlies this, shared activity
that occurs at different times during the cycle, should hold in
any inhibitory network. For example, consider the random
20-cell network shown in Fig. 5 at the parameter value shown
by the arrow. Figure 14 shows a summary of the dynamics
predicted from weak coupling and the actual dynamics of
a pair of two 20-neuron systems. Figure 14(a) shows the
spatiotemporal pattern of dynamics over a period of time.
The uncoupled period of the network is 8.4. While lacking the
symmetry of a circulant system, it is clear that different neurons
come on at different times during the cycle. Figure 14(b) shows
the adjoint X∗(t) for the network over one cycle. The arrow
marks the sensitivity for oscillator No. 4 and its time series is
shown in Fig. 14(c) along with the activity profile of oscillator
No. 7 [arrow in Fig. 14(a)]. We compute the odd part of
the interaction function when the two systems are coupled
via a single symmetric interaction where unit No. 4 receives
an input from one of several different units. Weak coupling
theory predicts that if the interaction is from No. 1, then the
two systems oscillate in antiphase, while if it is from No.
15, they will synchronize. Interactions mediated by No. 7 or
No. 4 are predicted to lead to phase locking at an intermediate
phase difference. (Recall that roots of the odd part of the
interaction are possible phase-locked times and that the root is
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stable if the slope of the odd part of the interaction function is
positive.) Figure 14(e) shows the dynamics of the full model
when coupling between the two systems is 0.05. Two different
initial conditions lead to two different patterns corresponding
to each of the two systems taking a small lead. [The curve in
Fig. 14(d) marked by the arrow has two roots with a positive
slope.] Figure 14(f) shows simulations for coupling between
No. 1 and No. 4 (top, antiphase) and No. 15 and No. 4 (bottom,
synchronous). Thus, we see that it is not necessary to have a
circulant system in order for the ideas in this section to be
relevant. What matters is not the symmetry but the mere fact
that different components of the network turn on at different
times during the cycle.

V. CONCLUSION

Many neural systems consist of repetitions of similar motifs
that are then coupled together in order to form patterns of
activity that may be useful for some types of computations or
for creating desirable motor outputs. In this paper, we consider
a specific type of motif that is dominated by nonsymmetric
recurrent inhibition. We showed that such networks were
capable of producing wavelike repetitive activity even in
absence of any spatial organization. We then showed that it
is possible to design reciprocal symmetric coupling between
pairs of these motifs such that they are able to produce
arbitrary timing differences. Such timing differences are quite
important in CPGs which are responsible for producing
rhythmic patterned output to muscles used in locomotion and
many other behaviors. For example, the crayfish swimmeret
system requires a phase difference of a quarter of a cycle
between each of the four segments that comprise the pattern
generator [8]. This phase difference must be maintained over
a wide range of swimming speeds corresponding to a similar
range in oscillatory frequencies. Similarly, the lamprey spinal
cord consists of ∼100 segments, each of which consists of
many reciprocally connected inhibitory neurons [28]. These
segments must be coupled in such a way that they maintain
a precise phase lag independent of the swimming speed of
the animal [7]. Simple motifs of the type described in this
paper have exactly this property. As many CPGs are composed
of networks of mutually inhibitory neurons, the architecture
in this paper could provide a simple robust mechanism for
keeping a constant intersegmental phase lag over the entire
range of physiological frequencies.

There have been other attempts at analyzing networks
of inhibitorily coupled neurons. A recent paper, Ref. [29],
considers the stability and dynamics of a large network
consisting of coupled WTA systems. In this work the authors
coupled these motifs and use contraction theory to analyze
how the stability of the resulting patterns depends on the
connectivity. Reference [30] studied clustering and other
dynamics in coupled five-cell motifs where each isolated
motif generates rhythmic and cyclic dynamics. What Ashwin
terms as WLC refers to slow switching between cluster states.
This phenomena occurs if the system has a very specific
interaction function which is perturbed by a small amount
of noise. Reference [15] used a singular perturbation theory
to analyze the global dynamics of networks of inhibitorily
coupled neurons. Terman et al. studied inhibitory networks
which exhibit dynamic clustering. The time evolution of
these networks is divided into episodes. During every episode
neurons in these networks fire due to postinhibitory rebound.
These networks can produce a variety of periodic sequences
which are dependent on the initial conditions of the system.
Reference [31] analyzed networks similar to our three-cell
circulant system using harmonic balance and perturbation
theory. Chen’s neurons are coupled differently than ours
in that they are coupled unidirectionally. His model also
includes excitation. This system displays similar dynamics
to ours except that he approximates all of his membrane
potentials as pure sinusoids. Our approach has been to use a
weak-coupling analysis of networks of motifs, each of which
is an oscillator that depends on strong recurrent inhibition. Our
canonical motif is the three-neuron circulantly coupled system.
A similar system was studied by Rabinovich [32]. His work,
however, focused on the creation of a heteroclinic cycle from
a bifurcation due to asymmetry in the synaptic conductances.
Our analysis is a general study of limit cycle behavior
in systems coupled with circulant matrices. Our perturbed
limit cycles are fundamentally different than a heteroclinic
cycle.

The methods and ideas in this paper are not restricted to
neural applications. The repressilator [33,34] is a synthetic
genetic circuit which produces sustained oscillations. The
mechanism is an asymmetric negative feedback loop between
three genes, essentially identical in structure and behavior to
Eq. (3). Thus, the ideas in this paper could also be used to
set up arbitrary spatiotemporal patterns in oscillating cellular
networks.
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