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Neuron dynamics in the presence of 1/ f noise
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Interest in understanding the interplay between noise and the response of a nonlinear device cuts across
disciplinary boundaries. It is as relevant for unmasking the dynamics of neurons in noisy environments as it is
for designing reliable nanoscale logic circuit elements and sensors. Most studies of noise in nonlinear devices
are limited to either time-correlated noise with a Lorentzian spectrum (of which the white noise is a limiting
case) or just white noise. We use analytical theory and numerical simulations to study the impact of the more
ubiquitous “natural” noise with a 1/f frequency spectrum. Specifically, we study the impact of the 1/f noise on
a leaky integrate and fire model of a neuron. The impact of noise is considered on two quantities of interest to
neuron function: The spike count Fano factor and the speed of neuron response to a small steplike stimulus. For
the perfect (nonleaky) integrate and fire model, we show that the Fano factor can be expressed as an integral over
noise spectrum weighted by a (low-pass) filter function given by F(¢, f) = sinc?(s f1). This result elucidates the
connection between low-frequency noise and disorder in neuron dynamics. Under 1/f noise, spike dynamics
lacks a characteristic correlation time, inducing the leaky and nonleaky models, to exhibit nonergodic behavior
and the Fano factor, increasing logarithmically as a function of time. We compare our results to experimental
data of single neurons in vivo [Teich, Heneghan, Lowen, Ozaki, and Kaplan, J. Opt. Soc. Am. A 14, 529 (1997)]
and show how the 1/f noise model provides much better agreement than the usual approximations based on
Lorentzian noise. The low-frequency noise, however, complicates the case for an information-coding scheme
based on interspike intervals by introducing variability in the neuron response time. On a positive note, the neuron
response time to a step stimulus is, remarkably, nearly optimal in the presence of 1/f noise. An explanation of
this effect elucidates how the brain can take advantage of noise to prime a subset of the neurons to respond almost

instantly to sudden stimuli.
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I. INTRODUCTION

One of the major puzzles of neuroscience is how neurons
can store, process, and compute despite the fact that the brain
is extremely noisy [1]. Understanding the evolved mechanisms
and the associated nonlinear dynamics that allow the neurons
to function in—and even exploit—a noisy environment is
an essential step toward gaining insight into the information
transmission and communication networks in the brain. Such
studies also have important implications beyond the domain of
biophysics and neuroscience. Noise provides a critical barrier
for the development of sensitive electronic and mechanical
devices, particularly at the nanoscale [2,3]. Increasingly, re-
searchers are focusing on exploring innovative, nontraditional
device design and control strategies that exploit the ambient
noise [4-11]. In this regard, there are clear advantages to
understanding how nature has managed to harness noise in
a setting whose primary (apparent) function is to manage
information.

Itis generally accepted that neurons communicate with each
other using sharp electric pulses referred to as action potentials
or spikes. Each neuron is connected to several other neurons
and will only generate a spike output when the integrated input
from other neurons exceeds a certain threshold [12-14]. A
startling discovery that (under certain circumstances) neurons
can spike more regularly when stimulated by noise [15-17] led
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to assertions that noise is inherent to neuron function. Several
subsequent experimental and theoretical studies were aimed at
elucidating the functionality of neural noise [ 18—23]. In the first
instance, noise—as expected—introduces a variability in the
interspike intervals and degrades the information capacity of
the spike trains, with low-contrast signals being most affected
[22]. At the same time, these studies also found that stochastic
resonance provides a mechanism for neurons to take advantage
of their own noise. In stochastic resonance, the addition of
an appropriate amount of noise in a nonlinear system can
induce regularity by sensitizing subthreshold excitations, thus
providing the extra energy for them to reach threshold [15,16,
19] and enabling their detection. Additionally, Brunel et al.
[24] and Svirskis [25] have shown that a model neuron, when
subjected to low-frequency noise, is able to respond faster to a
sudden excitation than in the absence of noise. For an animal
living in a natural environment, the ability to react quickly to
sudden threats can mean the difference between life and death.

All of the studies to date that have considered the impact
of low-frequency noise on neurons have tended to model
noise characterized by a single Lorentzian power spectrum.
Natural noise, however, has an ubiquitous 1/f frequency
dependence [3,26-30]. From current-carrying electronic de-
vices and geophysical time series to biological systems, the
1/f power spectrum is everywhere. In biological settings,
human hearing and speech [27], the response of biological
photoreceptors to large-intensity variation of visual image
streams in nature [28], the stride interval time series of normal
human gait [29], intrinsic noise in neuronal membranes due
to stochastic opening and closing of the various ion channels
[30], and so on all exhibit 1/f behavior. Guerra et al. [7]
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demonstrated how stochastic resonance induced by 1/f noise
can increase the sensitivity of nanomechanical resonators,
allowing for the possibility of fashioning them into noisy but
robust nanoscale computation devices. Neither the response
nor the details of the underlying nonequilibrium behavior that
makes neurons robust to natural (1/f) noise is well understood.

In this paper, we present a comprehensive study of how
neuron dynamics is affected by an arbitrary noise spectral
density and which sectors of the spectra are responsible for
the beneficial functions that noise can provide. Specifically,
we explore whether neuron response under 1/f noise is
significantly different from the response found in the presence
of a simple Lorentzian spectra.

The relevance of low-frequency noise, implied by a 1/f
spectrum, to spike dynamics at the single-neuron level is
especially evident, as we argue, in the direct experimental
measurements of the spike count Fano factor by Teich et al.
[31,32] (Fano factor is the ratio between the variance and the
mean spike number during a given observation time). These
authors demonstrated that the Fano factor of single neurons in
the visual systems of cats and insects increases monotonically
as a function of time. This is in dramatic contrast to the simple
Poisson model (white noise), which leads to a Fano factor equal
to one at all times. The monotonic rise is also incompatible with
models based on Lorentzian noise because the resulting Fano
factor saturates at times longer than the inverse Lorentzian half
width [21,33]. We show that the characteristic nonergodicity
of 1/f noise explains why the Fano factor never saturates in
single-neuron experiments. Moreover, the rate at which the
Fano factor grows as a function of time is different for 1/f
and Lorentzian.

In addition, we consider the effect of 1/f noise on the
reaction time of a neuron in response to a sudden stimulus.
We demonstrate that 1/f noise is nearly optimal for speeding
up neuron response. We provide an explanation for this effect
that sheds light on the mechanism of neuron adaptation to their
noisy environment.

This paper is organized as follows. Section II describes our
model for the neuron, the leaky integrate and fire (LIF) model
of the neuron, and explains how we introduce 1/f noise and
other spectral densities in this model. Section III describes
an analytical theory and a set of numerical simulations of the
neuron Fano factor as a function of time and compares our
result to experimental results [31]. Particularly notable is our
general expression, Eq. (13), relating the Fano factor to an
integral over low-frequency noise weighted by an appropriate
filter function. Section IV addresses the question of how noise
can provide a mechanism for neurons to respond faster to a
sudden stimulus. Section V provides our concluding remarks.

II. THE LIF MODEL

From a biophysical perspective, the classical Hodgkin-
Huxley model [13] and its contemporary variants represent the
most realistic mathematical description of electrical response
of a single neuron. Due to their intrinsic complexity, however,
such models render the theoretical and computational analysis
of neuronal and neural network dynamics exceedingly diffi-
cult. For this reason, most studies to date tend to reference
the simpler spiking neuron models, of which the LIF model

PHYSICAL REVIEW E 83, 051912 (2011)

[12,14] that we adopt is one. The LIF model represents
each neuron by an electrical circuit; when appropriate circuit
parameters and features are chosen, the LIF model can
reproduce dynamics quite similar to the one described by the
more complex Hodgkin-Huxley model [1].

The LIF model consists of a capacitor C in parallel with a
resistor R; an injected continuous current / (¢) models the spike
input from a large number of neighboring neurons. The neuron
(or capacitor) voltage V (¢) is given by the circuit equation,

ave) V@)
7 +T_I(t)' (D

C

A spike is generated whenever the voltage across the capacitor
reaches a certain threshold Vy,; after the spike is emitted, the
neuron is reset to a zero-voltage state. Note how the threshold
rule for spike generation introduces nonlinearity in the LIF
model: Consider two input currents /;(¢) and I5(¢); a neuron
subject to input [1;(¢) + I»(¢)] will generally reach threshold
faster than a neuron that is subject to either I;(t) or I»(t)
only. Hence, the sum of outputs obtained from /;(¢) and I,(¢)
applied separately is different from the output obtained from
[1:(¢) + I(¢)]. Also, the resistance R plays an important role
in the model: It allows charge to leak out, thus negating inputs
received in the distant past. Neurons have the property that
inputs long past have less effect than recent inputs; a sufficient
amount of input must happen sufficiently rapidly for the neuron
to fire.

The version of the LIF model that we are using has an
additional feature that makes it more realistic: The introduction
of a refractory time period 7,, which models the physical reset
time for a neuron after emitting a spike. This prevents the
neuron from receiving input for a time 7, after spiking. Our
choices for these circuit parameters are given in Table L.

The presence of a leak and a refractory period makes the
LIF neuron extremely hard to treat analytically [33]. As a
result, many theoretical studies have focused on the R = oo
and 7, = 0 limits, the so-called perfect (nonleaky) integrate
and fire model [21,34]. This latter model is much easier to
analyze but, as we demonstrate, the reduced complexity also
leads to significantly different dynamics.

A. Introducing noise in the LIF model

We considered the LIF model subject to a noisy input
current of the form

I(t) = 0[1o + Lin(0)], 2

TABLE 1. Circuit parameters used in our LIF model. The
parameters are similar to the ones used to describe neurons in the
cat’s visual cortex (Chapter 14 of [1]).

Parameter Value
Resistance R =383 MQ
Capacitance C =0.207 nF
Circuit time constant RC =793 ms
Threshold voltage Vin = 16.4 mV
Refractory period 7, = 2.68 ms
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where [ is a (constant) bias current, /; is the noise amplitude,
and 6(x) is the Heaviside step function: 6(x) = 1forx > Oand
0(x) = 0 for x < 0; this ensures the current input represents
the sum of spikes from a large number of connected neurons.
The time series 7n(f) is a Gaussian stochastic process, with
variance equal to one and power spectra given by

~ 1 [ ;
S( =~ f dt e (5(1)n(0)). (3)
T J -

with the brackets (- - -) denoting ensemble averages over a large
number of time series 7(¢). Appendix A describes the method
used to generate individual time series for any given noise
spectral density S(f). We considered a number of different
noise densities, including the family of power-law spectral
densities

- 1
So(f) = Apg—, 4
(N =4 @)
where « is an exponent (o = 1 corresponds to 1/f noise).
The normalization constant A, is set by the condition for the
variance to be one, 27 fde’(f) = (n%) = 1. [In the case of
o =1, Eq. (4) is valid for ymin < f < Ymax; Vmin 1S @ lower
cutoff for which S’a(f ) saturates, and yYmax 1S an upper cutoff
for which S, (f) goes to zero faster than 1/f2. See below.]
Another important class of noise spectral density arises
when the environment fluctuates with a single characteristic
time t:

~ 1 Y
SN =5y 5)
with y = 1/(2rwt.). This is a Lorentzian power spectrum and
it implies S(¢) = (n(*)n(0)) = e~ I"1/%  Many authors refer to
7. as the “correlation time” and to the Lorentzian spectra as
“time-correlated noise.” In the limit that y goes to infinite
(t. = 0), S(f) ~ (2m%y)~! is approximately constant for all
f < y. Hence y — oo is the “white noise” limit. Another
important limit occurs when y — 0 (7, — 00): In this case
S(f) — %6(]‘), signaling a “static” limit.

It is useful to recall the basic physical picture for the
origin of 1/f noise. It emerges from the combination of a
large number of Lorentzian fluctuators with an exponentially
wide distribution of characteristic rates y [2,3]. For example,
assume ¥y = Ymax€ *, with A arandom variable that represents
a distribution of activation energies. Assuming A is uniformly
distributed in the interval [0,Anax], We get

~ Amac gy 1 1%
S = —
) /0 Amax 21?2 f2 + 7/2

1 Ymax dy y
T 2noa / dy | £2 4 92 ©)
max Sy | G5 ] y

_ arctan (V"];) — arctan (%) 1

2772 Xmax | f1 '
When  Ymin < |f] € Ymax» W€  may  approximate

arctan(ymax/f) ~ 7 /2 and arctan(ymin/f) = 0; this leads to
I PP — (7
. ~ Vinax T
47-[ ln ( Ymin ) |f|

PHYSICAL REVIEW E 83, 051912 (2011)

where we used the fact that Ap.x = In(Ymax/¥min). Hence,
overall the resultant noise is well described by

;:]:n O<|f|<ymin
S(f) = |ATI| Ymin |f| < Vmax > (®)

<
0 Ymax < | f] < 00

with constant A; = [47 In(Vmax/ Vmin)] "

From Eq. (6) we see that the distribution of Lorentzian
linewidths y is given by P(y) = 1/|dy/d)| = 1/y. This is
the reason why the spectrum acquires the 1/f dependence.
We may generalize this distribution to P(y) = 1/y*, witha a
dimensionless exponent; carrying though a similar derivation
as in Eq. (6) leads to S( f) o< 1/£%. This shows that deviations
of the 1/y distribution will reflect directly into a o # 1
exponent for the noise spectrum.

Usually, ymin is exponentially small, and the experimental
observation time window 7T is smaller than y,.. In this case,
the low-frequency cutoff will be instead set by Yimin = 7.
As the observation time 7 increases, more low-frequency
fluctuators will play a role; as a result, 1/f noise has no
characteristic time scale and displays nonergodic behavior
(time averages of observables are nonconvergent and cannot
be equivalent to ensemble averages). Below we discuss how
the nonergodic property leads to an increasing neuron Fano
factor as a function of time.

B. White versus 1/f noise in the superthreshold regime:
Bursting phenomena

To compare LIF dynamics under the effect of white
and 1/f spectra, we considered noise in the superthreshold
regime (lp > Vin/R = 4.28 x 10719 A). We assumed [ =
4.3 x 107! A, slightly above threshold, ensuring that without
noise the neuron will spike every 46 ms. For the cases with
noise, we used /; = 0.11. The algorithm of Appendix A was
used to generate a current input /(¢), and Eq. (1) is integrated
using the Runge-Kutta method. Figures 1(a) and 1(b) show the
neuron voltage as a function of time, for a particular time series
(the observation time window was T = 2 s). Under white
noise, the spiking remains quite regular over time, because
I(¢) varies rapidly and most of its fluctuating components are
filtered out. On the other hand, 1/f noise shows a combination
of long periods of inactivity, with the voltage taking a long
time to reach threshold, together with periods of spike bursting
where the voltage reaches threshold on a much shorter time
scale. This is a result of the fact that under 1/f noise, the
current tends to get “stuck” at either small or large values.

Figure 2 shows the interspike time interval histogram (IST)
for a 100,000 ensemble of time series with the same parameters
considered in Figs. 1(a) and 1(b). Here we see that both
types of noise can cause a notable decrease in the mean
interspike time interval (compare to the noiseless case of a
constant bias current). However, 1/f noise leads to a far
more dramatic shift. A large portion of the interspike time
histogram lies significantly below the noiseless interval, and a
long tail is observed at large interspike times. This behavior is
characteristic of bursting (see e.g., Chapter 16 of [1]); several
spikes occur in rapid succession, followed by a longer period
without spike activity.
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FIG. 1. (Color online) Neuron voltage as a function of time (black curve) for (a) white noise and (b) 1/f noise. The vertical lines (red)
denote spiking events. Note how 1/f noise leads to long time intervals with no spike generation, followed by intervals with spike bursting.

Figure 2 also shows the ISI for two Lorentzian noise spectra,
withy = O0Hzandy = 1/T = 0.5Hz, where T = 2 s was the
simulation time window for each time series. Lorentzian noise
with such low frequency leads to an ISI that is nearly as broad
as the 1/f noise case; however, the Lorentzian noise cases
do not display the long time tail characteristic of 1/f noise.
The simulations for y = 0 Hz can be compared to an exact
analytical result obtained using the methods of Refs. [21,34]
(see Appendix B). Note how the y = 0 Hz simulations are in
excellent agreement with the exact result.

III. NEURON FANO FACTOR UNDER 1/f NOISE

A. Fano factor in the perfect integrate and fire model:
Analytical results

The Fano factor is defined by [1]

([AN(®)]?)
Fit) = ——, 9)
(N@®))
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FIG. 2. (Color online) Interspike interval histogram (ISI) for the
cases of white and 1/f noise considered in Figs. 1(a) and 1(b),
respectively. The noise amplitude was I; = 0.1/, with bias current /
slightly above threshold. Also shown are the casef of no noise (/; = 0)
and Lorentzian noise with y = 0Hz and y = 1/T = 0.5 Hz, where
T = 2 s was the simulation time window for each time series. Note
how 1/f has much broader ISI, with a long time tail extending well
beyond its mean interspike time.

where the random variable N(¢) is the number of spikes
generated from ¢’ = 0tot' =1, and AN(t) = N(t) — (N(1)).
Hence, the Fano factor measures the amount of uncertainty
in the spike train at a given time ¢. A noiseless spike train
with identical interspike time intervals yields F(¢) = 0. In
contrast, consider the case that the spike events are uniformly
distributed in the interval [0,#]: In this case, the probability for
a spike event to happen during a time interval [¢',t' 4+ At] is
independent of ¢’ and given by puAt, where p is the mean
firing rate. Then the resulting N(¢) is a Poisson random
variable uncorrelated in time (white noise) with (N(z)) =
((AN)?) = ut, leading to F(¢) = 1 atall times. In the presence
of low-frequency noise, F'(¢) is known to become larger than
one [21,33].

The observation of a Fano factor much larger than one rules
out the simple Poisson model and suggests the presence of
long time correlations in the data [1,31]. Middleton et al. [21]
derived an analytic expression for the Fano factor of the perfect
(R = o0) integrate and fire model subject to Lorentzian noise
[Eq. (5)]. At times much longer than the average interspike
interval, their result becomes

2
FLor.(t) = M 2t |:

1—”1——5} 10
0 cvel e 10

t

where ((AI%)) = I} is the current variance, (I) = I is the
bias current, t. is the correlation time of the Lorentzian noise,
C is the capacitor’s voltage, and Vy, is the threshold voltage.
We emphasize that Eq. (10) assumes an input current /(f) =
Io + I1n(); that is, it neglects the step function used in our
numerical computations [compare to Eq. (2)].

Here we generalize this result to an arbitrary noise spectral
density. A circuit with no leakage (R = co) will lead to a
capacitor voltage V that always increases with increasing time.
In the case of the neuron, V is reset to zero when it reaches
the threshold Vy,. In other words, the voltage is decreased by
Vin each time the neuron spikes. An equivalent way to treat
this reset process is to instead increase the threshold by an
additional Vy, each time the neuron spikes; this allows us to
count the number of spikes at a given time ¢ by simply dividing
the monotonically increasing V by Vy;. Therefore, the random
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variable N (t) is well approximated by

V()
Vin CVa Jo

This approximation is valid at long times, t > C Vy,/ I, that
is, times much longer than the mean interspike interval so that
N (t) can be represented by a real number instead of an integer.

The simplicity of the perfect integrate and fire model lies in
the fact that we do not need to consider the threshold barrier
explicitly. This property relies heavily on the fact that the
voltage of an RC circuit never decreases when R = oo. It is
worthwhile to show how the approximation Eq. (11) fails in
the presence of any amount of leakage.

When R < oo, the mean voltage according to Eq. (1) is
given by RIo(1 —e"/RC). Hence when t — oo the mean
voltage saturates at Ry, and the approximation of Eq. (11)
would give (N(t — 00)) = Rly/Vin < oo. This is clearly an
unphysical result: If the neuron spikes at least once, it will spike
an infinite number of times when ¢t — o0, and (N(t — 00))
must be either 0 or co. This unphysical saturation of (N(¢))
shows why we must include the threshold barrier explicitly
when dealing with the leaky model; it also shows why it is so
difficult to treat the leaky model analytically.

In the absence of leakage, we have (N(¢)) =t Ip/(CVy);
that is, at long times the number of spikes increases indefinitely
with increasing time. The Fano factor can be calculated
explicitly by plugging Egs. (2) and (11) into Eq. (9),

N(t) =~ dr'1(t). an

CVi 112 /t //l 1" ’ "
—_— dt dr’"{n(t" "))
It (CVa)* Jo 0 e

212 1 t/2 2T
= ' -[/ de dtS(t)
CVmlpt [ Jo 0

t 2t-T)
+/ de drS(t)i|. (12)
/2 0

In the last step we changed the variables to T = (t' +¢")/2
and 7 = (t' —t”) and used the symmetry S(t) = S(—1).
Equation (12) provides an explicit relationship between the
Fano factor and an arbitrary time correlation function. For
example, upon inserting S(z) = e~ !"//% we recover Eq. (10)
exactly.

A simpler expression can be derived by inserting S(t) =
21 [dfe "1§(f) into Eq. (12):

F(t) =

_ 27r112 o0 -
P = G o [ _AIS(IFGC.), (13)

where we defined the filter function by

F(t, f) = sinc*(w f1), (14)

where sinc(x) = sin (x)/x is the “unnormalized sinc function.”
Hence, the Fano factor can be expressed as an integral over
low-frequency noise; the filter function F (¢, f) dictates how
much noise is “allowed in” at each given time ¢. Inspecting
Eq. (14) shows that it acts as a low pass filter with bandwidth
~1/(xt). In the limit t — oo, we have fr > 1 for all
frequencies, and F & §(f)/t. This leads to a useful result:

Ft — o0 = 221 500) (15)
— 00) = —— .
CVanly
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Therefore, the saturation of the Fano factor (or lack thereof)
at long times is directly proportional to the amount of zero-
frequency noise.

We can use Eq. (12) to find the neuron Fano factor subject
to 1/f noise. From Eq. (6) we know that the time correlation
function for 1/f noise can be written as

1 Vmax d)/ B
Sip(t) = T/ —e 7M. (16)
In (m) Vmin 14

Hence, the Fano factor for 1/f noise can be written as a
weighted average of Lorentzian Fano factors,

217 1 Yinax 1
Fip(t) = —— / Dli-—a—e
p C ‘/thlo ln (Vm?x) Yoo y2 yt
N 2112 1 t |:(3 —2Cg)
CVinlpIn (%) 2 2

- 1n (Vmint):| ) (17)

where Cr = 0.5772 is the Euler-Mascheroni constant. The
latter approximation is valid for ﬁ Lt K ﬁ =T, where
T is the experimental time window. Hence, Fj,r(¢) increases
monotonically with increasing time, until it reaches a satura-
tion value around ~7 /In (T'). This saturation value, however,
is an artifact of the finite length 7 of the experiment; it
divergesas T — oo, thatis, when longer data sets are acquired.
This effect is a manifestation of the nonergodicity of 1/f
noise. In stark contrast, for an experimental window T > t,,
the Fano factor for the simple Lorentzian noise saturates at
Flo. =211 ]2 /(CVnly) and remains at this value regardless of
whether T is increased further. Assuming that this behavior
carries over to the leaky model, it offers one way to determine
whether the neuron noise is better described by 1/f or
Lorentzian spectrum. The dependence of F(¢) on ¢ is another
potential discriminator, as we see below.

Figure 3 illustrates the relevance of the filter function
Eq. (14) in quantifying the amount of noise absorbed by
neurons at a given time ¢. Here we plot the Fano factor
F(t) for several different noise spectra but choose each
noise power (proportional to I7) so that the Fano factor at
a particular time ¢ = 0.1 s is identical [F'(0.1 s) = 10] for all
noise spectra. Hence, at this particular t = 0.1 s, the amount
of disorder on neuron response is the same even though we
are describing neurons subject to very different dynamical
environments. Nevertheless, at times after ¢t = 0.1 s, the Fano
factor differs considerably for different environments. This is a
direct consequence of the fact that neurons integrate noise over
a bandwidth ~1/(;rt); hence, as ¢ increases, a neuron absorbs
noise over an increasingly narrow frequency range. Note also
how F(¢) for 1/f noise depends on the total observation time
window T', and how F(¢) is sensitive to different noise spectra
before r = 0.1 s.

B. Fano factor in the perfect integrate and fire model:
Numerical results

Figure 4 shows the Fano factor, as a function of time, for
In=1 =2 x 10719 Aand T = 10? s for white noise, and for
Lorentzian noise withy = 1 Hz[t, = 1/(27)s]andy = O0Hz
(. = 00). We also plot the analytical expression Eq. (10)
for the y = 1 Hz Lorentzian Fano factor; as expected, the
analytical expression shows slightly higher disorder [larger
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FIG. 3. (Color online) Fano factor [Eq. (9)] for the case R = oo
(nonleaky or perfect) integrate and fire model as a function of time
for white noise, Lorentzian noise with y = 0.16 Hz, and 1/f noise
with different observation time windows 7. For each noise spectra,
the noise amplitude /; was chosen so that F(r = 0.1 s) = 10 for all
noise spectra. This ensures that at # = 0.1 s the neurons absorb the
same amount of noise power, despite the fact that the noise spectra
are quite different. Nevertheless, for times ¢ after 0.1 s, the Fano
factor differs considerably for different spectra. This occurs because
neurons “integrate noise” over a bandwidth ~1/(rt) as described by
the filter function Eq. (14).

F(t)] than our Lorentzian noise simulation, because the
latter includes only positive input currents (they are in close
agreement when I, < Iy). For white noise, the Fano factor
tends to a small value at long times, in accordance with
Eq. (15), which gives F(t = 00) & 1/¥max (Vmax = 10° Hz
is the upper frequency cutoff of our white noise spectrum).
For the y = 0 Lorentzian, we have F(¢) o« t in accordance
with the limit 7, — oo of Eq. (10).

Figure 5 shows the neuron Fano factor subject to 1/f noise,
using two different simulation time windows: T = 10 s and
T = 10° s. We also show the corresponding analytic results
using Eq. (17) with ymin = T7" and ypax = N/T (N is the

104 . . .
10° | ]
10% | ]
= 10t 3
L 100 L 1
107 [ . Lorentzian with y=0 Hz 3
2 nalytical theory (Lor.)
107 ¢ m;ln W|th v=1Hz
3 ) s, VW HItE
10 -1 0 1 2
102 10 10 10 10

FIG. 4. (Color online) Fano factor [Eq. (9)] for the R =00
(nonleaky or perfect) integrate and fire model as a function of time for
white noise, Lorentzian noise with y = 1 Hz, and y = 0 Hz, the static
case. We assumed Iy = I; = 2 x 107! A and other parameters as in
Table . Also shown is a comparison between the numerical simulation
and the analytical expression Eq. (10) for Lorentzian noise. For white
noise, F(¢) tends to a quite small value at long times; for Lorentzian
noise, F(¢) plateaus at times t ~ (27 y)~'.
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10° ¢ Simulation 1/, T= 1023
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1072 10'1 10° 10
time (s)

FIG. 5. (Color online) Fano factor [Eq. (9)] for the nonleaky
(perfect) integrate and fire model as a function of time for 1/f noise,
using the same parameters as in Fig. 4. We show simulations of
1/f noise for two different time series: 7 = 10> s and T = 10% s
where T is the length of the simulation time window. We also show
the corresponding analytical approximations Eq. (17). Note how the
Fano factor due to 1/f noise increases logarithmically until it reaches
a slight saturation at t = 7', the “maximal experimental time.” This
behavior agrees qualitatively to what is observed in measurements on
single visual neurons in cats and insects [31].

number of frequency intervals used in our simulation; see
Appendix A). Similar to the Lorentzian case, the analytic
expressions for F(t) are larger than the numerical results
because the former does not take into account the step function
in Eq. (2).

As expected, we find that the qualitative behavior of 1/ f
noise is markedly different from Lorentzian noise. While
for Lorentzian noise F(t) increases linearly with ¢ until it
reaches an asymptotic maximum at t & t.., for 1/f noise F(t)
increases logarithmically [ox —¢ In(¢#/T)] and only reaches a
slight saturation when ¢ &~ T, the maximum possible value of
time.

C. Fano factor in the leaky integrate and fire model

We now describe the impact of leakage on the Fano
factor. We simulated the LIF model under Lorentzian and
1/f noise of several different noise levels. Figure 6 compares
the Fano factor with leakage and without leakage; in every
case, leakage increases the Fano factor noticeably (i.e., there is
increased variability in the spike train). This happens because
in the presence of leakage, the neuron tends to forget past
inputs that were not strong enough to break the threshold
barrier and returns to its rest state even though it received
a considerable amount of subthreshold input. This situation
is dramatically different from the perfect (nonleaky) model:
In the absence of leakage, every subthreshold stimulation
increases the charge of the neuron, priming it for firing.
The quantitative difference in Fano factor highlights the
importance of leakage in neuron dynamics. For example, note
the dramatic quantitative difference between Fano factor for
leaky and nonleaky cases at the level of 1% of 1/f noise
(I1/1p = 0.01).

Our explicit numerical results of Fano factor sub-
ject to 1/f noise shows that F(¢) does not saturate at
long times. This property is consistent with the direct
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FIG. 6. (Color online) Fano factor for integrate and fire neuron with leakage and without leakage, for 7,/ = 1, 0.1, 0.01. Leakage
increases the Fano factor considerably and can produce large quantitative difference at low levels of noise.

measurements of neuron Fano factor presented in Teich
et al. (see Fig. 6 in [31]). Their experimental Fano factor
increases well beyond one and does not appear to reach a
plateau at long times. Note that previous calculations based
on Lorentzian noise [21,33] have showed that the Fano
factor saturates at long times. This result is independent of
whether one uses the perfect or the leaky integrate and fire
model.

One can argue that with respect to a Lorentzian noise model,
the experimental data only explicitly rules out cases with 7, <
T; that is, Lorentzian models with correlation time longer than
the experimental window will not show saturation. This is true,
but the Lorentzian and 1/f model predictions for F(¢) differ
in other respects as well, which do not depend on . or T'.

The Fano factor F(¢) for the experimental data has a tangent
slope of 0.4-0.5 around ¢ ~ 1 s in log-log plot (Fig. 6 of [31]).
The predicted slope of the Lorentzian Fano factor, however,
is 1 for t <« 7. (before saturation takes place). This difference
rules out the possibility that the experimental results can be
understood in terms of an unsaturated Lorentzian model.

The Fano factor under 1/f noise has a tangent slope of
approximately 0.7 around ¢ ~ 1 s [Figs. 5 and 6(b)]. Note
that the Fano factor increases logarithmically, so the exponent
depends on particular time ¢ chosen to measure the slope.
We repeated our simulation using 1/£%% noise and obtained
results very similar to Figs. 5 and 6(b), except that the slope
was reduced to ~0.5. This shows that a LIF model subject to
1/f“ noise can provide an excellent fit to experimental data of
long time neuron dynamics and further suggests that neuron
input noise is better approximated by a 1/ f-like spectrum than
a Lorentzian with a single characteristic correlation time.

IV. HOW NEURONS RESPOND TO A SUDDEN
STEP EXCITATION

We now analyze the impact of low-frequency noise on the
reaction time of a LIF neuron. We consider the reaction of a
neuron subject to the following stimulus:

I(t) = 0[1in(1) + IOt — Igep)]. (18)

For times between t = 0 and ¢ = #, the current input is
pure noise with subthreshold amplitude Iy; at t = fgep, a
superthreshold bias current /j is suddenly turned on in addition
to the noise. In the simulations below, we used fgep = 1.5 s,

Iy =4.3 x 10719 A, and I, = 0.31,. Figure 7 shows the mean
fire rate averaged on 1 ms bins after 100,000 time series are
taken into account. The ensemble of time series can be thought
of as either an actual ensemble of different neurons or a single
neuron subject to statistically similar excitations at different
times. In both cases, we can make claims of optimality on
“average.”

In the absence of noise, the LIF neuron takes 43 ms
to respond. The quickest response is obtained in the case
of Lorentzian noise with y =0 Hz, that is equivalent to
S(f) = 8(f)/(2m), the static limit discussed in Sec. Il A. Note
that in this case the noisy current does not change in time and
is equivalent to a bias current with amplitude picked from
a Gaussian distribution. The response under 1/f noise lags
behind the static case by only =~ 5 ms, that is, it is nearly
optimal. Both static and 1/f noise reach their steady state
much faster when compared to other types of noise. Lorentzian
noise with roll-off frequency y = 1000 Hz is intermediate
between white and 1/f noise. Clearly, the response time
improves as the noise gets dominated by low-frequency
components.

Lor. y=0 Hz m===

1/f

Lor. y=1000 Hz ——
White

No Noise C——1

-
N
o

—
o
o

[o]
o
T

40

Mean fire rate (Hz)
3

20

1.48 1.5 1.52 1.54 1.56 1.58
time (s)

FIG. 7. (Color online) Mean fire rate of a single neuron in
response to step excitation under various types of noise: Lorentzian
noise with y = 0 Hz (“static” case), Lorentzian noise with y =
1000 Hz, white noise, and 1/f noise. We also included the noiseless
case for comparison. The presence of noise primes the neurons
to react significantly faster. The reaction time is optimal (almost
instantaneous) for the “static” case. Surprisingly, under 1/f noise the
neuron response time is nearly optimal.

051912-7



CAMERON SOBIE, ARIF BABUL, AND ROGERIO DE SOUSA

' ' "No Noise s
7+ White 1
Lor. y=1000 Hz ——
9 il
3; 51 Lor. y=0 Hz —— |
%
g3} '|||| || ‘
Sl ““\ .
F
|||I.| ||||||!!!!!!!!!!!!“III|||||||||||||IIIIII|I||||||||

0 002 004 006 008 0.1
Time of 15! spike (s)

FIG. 8. (Color online) Histogram of first spike times under a step
excitation subject to various types of noise. In the case of white noise,
it takes 30 ms for 1% of the neurons to spike for the first time. The
situation is markedly different for the static case (Lorentzian with
y =0 Hz) and for 1/f noise. Here some neurons respond almost
immediately, while others take a long time to spike; note the long
time tail in the distributions for Lor. 0 Hz and 1/f noise.

In order to elucidate the mechanism by which noise
sensitizes neuron response time, we present two additional
figures. Figure 8 shows a histogram of first spike times. Under
white-noise conditions, it takes approximately 30 ms for 1%
of the neurons to spike for the first time. On the other hand,
it takes only 8 ms for 1% of the 1/f noise neurons to spike
and a mere 2.5 ms for 1% of static noise (i.e., Lorentzian
y = 0) neurons to spike for the first time. Neurons subject
to 1/f noise and the y = 0 static noise have a much wider
distribution of first spike times. Some neurons spike almost
immediately, while others take a long time to spike—note
the extended tail in the distributions. This broad distribution
implies a greater variability in the neuronal interspike interval
and a degradation of any information coded therein. Extreme
low-frequency noise (1/f and y = 0) result in a tradeoff
between reliability and rapid response.

Figure 9 sheds light on the origin of this effect, by plotting
the distribution of neuron voltages just before the step stimulus
is applied. Here we see why the static case is optimal: The
distribution of neuron voltages is nearly flat and extends

12 - -
White
5% Lor. y=1000 Hz oo
10 Lok 1f 3
—_ : Lor. y=0Hz ==
2
2
3
©
o)
S
o

0 0.001

0.002 0.003 0.004 0.005 0.006
Neuron voltage (V)

FIG. 9. (Color online) Neuron voltage right before the step
excitation arrives. Note that for the static case (Lor. 0 Hz) and for
the 1/f noise case, a significant fraction of neurons have quite
high voltage. Hence, these neurons will reach threshold much faster,
explaining how noise can “prime” neurons for a fast response
time.
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close to threshold. Hence, when the stimulus is applied, a
significant amount of “primed neurons” will reach threshold
almost instantly. While the voltage distribution for 1/f noise
is not flat, it is broad and extends all the way to high voltages.
Similar to the static case, the presence of a tail extending
near the threshold implies that a significant number of neurons
are “primed” by 1/f noise; these neurons will react nearly
instantly to the stimulus.

We note in passing that it is possible to engineer a
Lorentzian noise spectrum to yield a response time similar to
that for 1/f noise via an appropriate choice of y = 1/T, where
we recall that T is the simulation time window. For T = 2 s,
we find that y = 0.5 Hz does the trick, in agreement with
expectations based on our previous analysis of the distribution
of interspike time intervals for different conditions (cf. Fig. 2):
The shortest interspike time interval for a Lorentzian with y =
0.5 Hz is similar to that for 1/f noise. The two distributions
are not identical. The ISI for the 1/f has a tail that extends to
much longer times.

V. CONCLUSIONS

In conclusion, we presented analytical and numerical
calculations of the perfect and the leaky integrate and fire
neuron aimed at elucidating the impact of 1/f noise on
single-neuron dynamics. Though more difficult to analyze than
the perfect integrate and fire model that is commonly used in
noise and network studies, our LIF model is a more realistic
model of a neuron, and, as we have shown, the inclusion of
the “leakiness” gives rise to much higher disorder.

With regard to the response of the LIF to 1/ f noise, we find a
surprising dichotomy: While it degrades the ability to transmit
information using interspike times, it manages to enhance the
overall response time (of an ensemble of neurons) to a sudden
stimulus by ensuring that a subset of neurons are primed with
a near threshold voltage.

Our explicit numerical simulations of neuronal response
to a sudden step excitation elucidates the mechanism by
which noise can enhance neuron response time. Neuron
response times were shown to be optimal under static noise
(noise sharply peaked at zero frequency) because a large
number of neurons are close to threshold just before the step
stimulus arrives. This select group of neurons act as the alarm
bells: They respond almost instantly to the step stimulus.
Remarkably, as we demonstrated, the case of 1/f noise is
not much different; the distribution for neuron voltages just
before stimulus also has along tail extending toward threshold.
These results allude to a possible explanation for why the brain
is populated by an astronomically large number of neurons.
It may well be an evolutionary adaptation designed to take
advantage of the ambient noise to enhance the probability of
survival. Neuron redundancy enables faster response times in
the presence of low-frequency noise, which in turn allows an
animal to react quickly to a sudden danger.

However, the apparently beneficial feature noted above does
not come without cost. The 1/f noise trades off speed for
reliability by introducing much more variability in the prop-
erties of the resulting spike train. We quantify this uncertainty
using the Fano factor. Our analysis of the Fano factor reveals
that in the presence of 1/f noise, this measure of disorder
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FIG. 10. (Color online) Example time series for three different kinds of noise spectra.

increases logarithmically as a function of time. On a positive
note, we find an excellent qualitative agreement between Fano
factor for the 1/f noise and the Fano factor derived from
laboratory results of experiments with single neurons [31,32].
Specifically, the latter also rises monotonically well beyond
one and shows no evidence for saturation. This agreement
suggests that the neuron input noise is better approximated
by a scale-free 1/f-like spectrum than the more commonly
invoked low-frequency Lorentzian spectrum.

The rate at which the Fano factor for a Lorentzian spectrum
grows with time prior to saturation is F(#) « t, independent
of y. Moreover, the Lorentzian Fano factor always tends to
a plateau at long times [21,33]. Both tendencies are at odds
with the behavior of the experimentally measured Fano factor
regardless of whether the Lorentzian spectrum is fine-tuned
to yield a response time similar to that of 1/f noise. We
note that these claims can be definitively tested by repeating
the experiments of Teich er al. [31] with increasingly longer
experimental time windows 7.

The logarithmically rising Fano factor reflects the fact that
the long-time spike dynamics is dominated either by periods
of extended inactivity or by periods of aggressive bursting.
This behavior is due to the lack of ergodicity in 1/f noise, that
is, the fact that it lacks a characteristic correlation time. Not
surprisingly, therefore, the neuron dynamics in the presence of
1/f noise is very different from that due to Lorentzian noise.
As an aside, we note that the degree of uncertainty is also
substantially greater in the leaky model than in the nonleaky
(perfect) case.

These conclusions are consistent with the observation that
some neurons seem to spike in a very irregular fashion. The
temporal gaps of a spike train has much larger information
capacity, and for this reason, there is considerable body of
work arguing that neurons use the timing intervals to encode
information. Loss of reliability due to low-frequency noise,
however, limits the information capacity of the spike trains
[22]. On the other hand, research has shown that in certain
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(a)White Noise

0
-4-3-2-10123 4
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cases neurons can spike with high degree of reproducibility
[35]. Whether the origin of highly reproducible spike patterns
is due to extremely low noise at the single neuron level or
a network effect that compensates for the noise remains to
be seen. A more interesting possibility is that the various
functional regions of the brain may have evolved different
strategies for managing ambient noise, depending on function
and associated information-capacity demands.
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APPENIDX A: NUMERICAL SIMULATION OF GAUSSIAN
NOISE WITH ARBITRARY SPECTRAL DENSITY

To simulate the noise used in Eq. (2), we used a variation
of the efficient algorithm proposed by Timmers and Koenig
[36]. Consider the time window from ¢t = 0 to t = T'. Define
a discrete set of N time instants t,, = nAt/2, where n =
0,1,....2N — 1 and At =T/N. Choosing N as a power
of 2 allows the use of the fast Fourier transform algorithm,
with significant speedup. The associated set of “lower half”
frequencies are f,, =m/T, with m =0,1,...,N, and the
“upper half frequencies” are f, = (2N —m)/T for m =
N+ 1,N+2,...,2N — 1. We are now ready to state the
algorithm that generates individual real-valued time series
n(t,) [7(f) are their Fourier transforms]:

(1) Setj(fo) =0.

(2) For each m=1,....N—1, set §j=¢e"\/S(fn),
where r,, is a random number in the interval [0, 1).

(3) Set i(fw) = VS(fw).

(4) Set#i( fn+m)equal to the complex conjugate of 77( fx—n)
forallm=1,...,N.

(5) Finally, take the inverse Fourier transform of 7(f,).
The resulting 7n(t,) realizes an individual time series of the
Gaussian process with noise spectrum S( f,,).

600
400
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200

0
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FIG. 11. (Color online) Histogram for the amplitudes of n(¢) for 100 000 time series, demonstrating that 7(z) is Gaussian distributed.
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FIG. 12. (Color online) Ensemble average correlation function, S(z) = (n(¢)n(0)), calculated as an arithmetic average of several time series

generated by the method.

Figure 10 depicts three example time series: white noise,
1/f noise, and Lorentzian with half-width y = 10 Hz. We sim-
ulated 100 000 of these time series and studied their amplitude
distribution and noise spectra [Eq. (3)]. Figure 11 demonstrates
that the noise amplitudes are distributed according to a Gaus-
sian, and Fig. 12 computes the ensemble average of their corre-
lation function, S(z) = (n(¢)n(0)). The latter have the expected
forms: For white noise S(¢) = sin (27 Ymax?)/ (27 Ymaxt), for
1/f noise S(t) ~1 - [CE + ln(ymaxt)]/ln(ymax/ymin) (CE =
0.5772 is the Euler-Mascheroni constant), and S(7) = e~ for
Lorentzian noise.

APPENIDX B: EXACT CALCULATION OF THE
INTERSPIKE INTERVAL HISTOGRAM FOR THE LIF
MODEL SUBJECT TO STATIC NOISE

The case of static noise S( f) =48(f)/2m (aLorentzian with
y — 0) is particularly simple because the stochastic process
n(t) randomizing the current Eq. (2) does not change in time.
Each 7 is picked from a Gaussian distribution at # = 0,

1.2
e 27,

1
= Bl
p(n) T (BI)

As a result, the quasistatic method for calculating the
ISI distribution developed in Refs. [21] and [34] be-
comes exact. As we show below, this allows us to com-
pute the ISI distribution exactly even in the presence of
leakage (R < o0).

In the presence of leakage, the voltage is obtained by solving
Eq. (1) under a constant current / = Iy + I n,

V(1) = R(Io + Lin)(1 —e"%). (B2)

The interspike time interval [ will be given by the time it takes
for this voltage to reach Vi, leading to

Vin/R )
I+1Iin)

where 1, is the refractory time period. The ISI distribution can
now be computed from the expression

/=1 —RCln (1 - (B3)

1 o0
PO =+ / dnp(n)s

n [e¢]

x {1 — [f, —RCIn <1 — V‘h—/R>]} (B4)
In+ Iin

where the normalization factor

o0
N, = / dnp(n)
[Vin/(RI1)—1o/11]

ensures that 7 is strong enough to “click” the § function. After
some algebra, we obtain the following exact result:

C Vi exp[—( — 7,)/(RC)]
V271N, (RC)* {1 —exp[—(I — 7,)/(RO)]}

1 (10>2 { Vin/ (R Iy) }2
xexpy—= | — ) 11— .
2 \1, 1 —exp[—(l — 1,)/(RC)]

(B6)

(BS)

P() =

This expression is plotted in Fig. 2.
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