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Equivalence of quantum and classical coherence in electronic energy transfer
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To investigate the effect of quantum coherence on electronic energy transfer, which is the subject of current
interest in photosynthesis, we solve the problem of transport for the simplest model of an aggregate of monomers
interacting through dipole-dipole forces using both quantum and classical dynamics. We conclude that for realistic
coupling strengths quantum and classical coherent transport are identical. This is demonstrated by numerical
calculations for a linear chain and for the photosynthetic Fenna-Matthews-Olson complex.
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I. INTRODUCTION

The role of electronic excitation transfer (EET) in the
photosynthetic process has been emphasized since the 1938
study by Franck and Teller [1]. Already in that paper EET was
suggested to occur through the coherent quantum motion of
Frenkel exciton waves [2]. Recently renewed interest [3–10]
has been awakened by spectroscopic observations pointing
to long-lived quantum coherences in the process of energy
transfer in photosynthesis [11]. In particular it has been
claimed that the speed of EET is enhanced by quantum
effects [10], which themselves are manifestations of quantum
entanglement. The analogy has been made to advantages in
quantum over classical information processing. Considerable
publicity has been accorded these claims, which have been
suggested to be the first example of “quantum weirdness
in physiology” [12]. Hence it appears timely to test this
hypothesis on the simplest exciton model of an aggregate of
dipole-coupled monomers, which we treat by both quantum
and classical mechanics. We demonstrate, both numerically
and analytically, that for dipole coupling strengths relevant
to EET in molecular aggregates, the coherences in quantum
transport (from the Schrödinger equation) are identical to those
occurring in classical transport according to Newton’s equa-
tion. Correspondingly, in this fundamental example, the effect
on the EET mechanism arising due to quantum entanglement
is mirrored by the coherence of classical dipole-dipole EET.

Although coupling to internal nuclear degrees of freedom
and to the environment plays an important role in EET (see,
e.g., Refs. [3,4,13–19]), here we will concentrate on the
most basic situation in which quantum coherence appears.
Accordingly we consider the idealized case of an aggregate
of monomers, each having only one electronic excited state,
whose purely electronic degrees of freedom are coupled
by dipole forces, shorn of any complications arising from
dissipation or decoherence due to vibronic or environment
coupling. Quantum transport will be determined by solving
the time-dependent Schrödinger equation (TDSE).

To treat the quantum system classically we must relate
the classical motion to quantum properties. Here we consider
the monomers to consist of an oscillating classical electron
whose dipole strength will be set proportional to the quantum
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oscillator strength. The same model we use here has also been
used to discuss excitonic light absorption by solids and liquids
(see, e.g., Refs. [20–22]) and energy transfer on dimers [23,24]
and nanoparticle arrays [25,26].

II. QUANTUM MECHANICS

The TDSE for a Frenkel exciton on an aggregate is

ih̄
∂

∂t
| �(t) 〉 = (H0 + V)| �(t) 〉, (1)

where H0 is the sum of the Hamiltonians of noninteracting
monomers and V is the total potential energy of the pairwise
interactions between monomers. Since we consider the prop-
agation of a single electronic excitation along the aggregate,
we expand the full time-dependent wavefunction as

| �(t) 〉 =
∑
m

cm(t)| πm 〉, (2)

where | πn 〉 denotes a state in which monomer n is electroni-
cally excited and all other monomers are in their ground state.
The full aggregate ground-state energy is set to zero. The
matrix elements of H0 are taken to be

〈πn |H0| πm 〉 = εn δnm. (3)

Here εn is the single-monomer transition energy. To connect
with the classical model of oscillating dipoles, we will take the
interaction operator V to be the dipole-dipole interaction

Vnm = 〈πn |V| πm 〉 = μnε̂n · Tnm · ε̂mμm, (4)

where μn and ε̂n denote the magnitude and orientation, respec-
tively, of the transition dipole matrix element of monomer n

and

Tmn = (1 − 3R̂mnR̂mn)/R3
mn, (5)

where R̂mn is the direction of the vector separation, with length
Rmn, of monomers m and n. Substitution of Eq. (2) in the TDSE
leads to a set of coupled equations of first order in the time
derivative,

iċn = εn

h̄
cn(t) +

∑
m

Vnm

h̄
cm(t). (6)

These are the quantum equations.
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III. CLASSICAL MECHANICS

In the classical case we consider that the coupled quantum
transition dipoles are modeled by classical oscillators in the
same geometry. The Hamilton equations of motion for linearly
interacting oscillators of mass Mn and frequency ωn are

ẋn = pn

Mn

, (7)

ṗn = −Mnω
2
nxn −

∑
m

Knmxm, (8)

where the Knm are coupling coefficients determined by

xn(t)Knmxm(t) = �μ class
n (t) · Tnm · �μ class

m (t), (9)

and the right-hand side has to be related to the quantum
mechanical dipole-dipole interaction.

The treatment of quantum transition dipoles, corresponding
to electronic excitation and de-excitation, as classical electric
dipoles requires incorporating the monomer quantum prop-
erties into a classical model. Here we follow Fano [20] in
defining classical dipoles whose dipole moment corresponds
to the quantum transition dipole moment. To this end we first
introduce the dimensionless quantum oscillator strength

fn = 2
meεn

(eh̄)2
μ2

n, (10)

where me is the oscillator (electron) mass, e is the electron
charge, and εn = h̄ωn relates the transition energy to the
monomer oscillation frequency. Equation (10) allows us to
represent the classical dipole moment in terms of the quantum
transition dipole moment μn. That is, we take the classical
dipole moment of monomer n to be given by

�μ class
n (t) = ε̂n

√
fne xn(t), (11)

where ε̂n is the direction of the transition dipole of the nth
monomer. After identifying Mn with me the classical coupling
strengths are then given by

Knm = ε̂n · Tnm · ε̂m (e2
√

fnfm)me. (12)

These coupling coefficients can now be related to the quantum
mechanical Vnm, given in Eq. (4). By inserting Eq. (10) into
Eq. (12) one finds

Knm

me

√
ωnωm

= 2Vnm

h̄
. (13)

To connect to the quantum equations, we introduce the
dimensionless complex amplitude

z̃n(t) = x̃n(t) + ip̃n(t) (14)

with

x̃n =
√

Mnωn

2h̄
xn, (15)

p̃n = 1√
2h̄Mnωn

pn. (16)

One then obtains

i ˙̃zn = ωnz̃n +
∑
m

2Vnm

h̄
Re(z̃m). (17)

This equation has to be compared to the quantum equation (6).
The difference is a factor of two and the appearance of Re(z̃m)
instead of z̃m in the coupling terms. The resulting difference
in the dynamical equations is best seen by first taking the time
derivative of Eq. (17) to obtain, using p̃n = ˙̃xn/ωn,

¨̃zn = −ω2
nz̃n − ωn

∑
m

2Vnm

h̄
z̃m − i

∑
m

(ωm − ωn)
2Vnm

h̄
p̃m.

(18)

By contrast, taking the time derivative of the TDSE [Eq. (6)],
we obtain a second-order equation for the quantum amplitudes,

c̈n = −ω2
ncn − ωn

∑
m

2Vnm

h̄
cm −

∑
m

(ωm − ωn)
Vnm

h̄
cm

−
∑
mm′

Vnm

h̄

Vmm′

h̄
cm′ . (19)

Scaling the time as ωnt this equation is

c̈n = −cn −
∑
m

2Vnm

εn

cm −
∑
m

(
εm

εn

− 1

)
Vnm

εn

cm

−
∑
mm′

Vnm

εn

Vmm′

εn

cm′ . (20)

We note that the last term in this equation is of second
order in the normalized coupling strength Vnm/(εn) and can
be neglected when this coupling is small. This we call the
realistic coupling approximation (RCA). The penultimate term
is zero for identical monomers εm = εn and small when the
fluctuations in the transition energies are small relative to the
mean. Under the same conditions the last term in the classical
Eq. (18) is small. In these two approximations, we can drop
the last two coupling terms in Eq. (19) and the last term in
Eq. (18), so that these two equations become identical. To this
order then the classical Eq. (17) and the quantum Eq. (6) are
equivalent, and we can associate, up to a normalization factor,
the quantum amplitudes cn with their classical counterparts
z̃n. The classical “probability of occupation” P class

n (t) is then
defined as

P class
n (t) ≡ |z̃n(t)|2∑

n |z̃n(t)|2 . (21)

In realistic cases of aggregates involving monomer
molecules one has the situation that the interaction splitting is
much less than the transition energy, i.e., Vnm � εn ∀ n,m;
i.e., the RCA is valid. Indeed, in the light-harvesting complexes
the electronic transition energy of the chlorophyll monomers is
∼12 000 cm−1, while the dipole-dipole interaction between the
chlorophylls is on the order of a few hundred cm−1 [27]. Hence
we can conclude that all coherences of propagation in the
quantum case are also contained in the classical propagation
for realistic coupling strengths. Note that the quantum equation
Eq. (6) can always be simulated by classical oscillators
coupled linearly in position (or dipole strength), so long as
all (Vnm/εn) are small and the relative fluctuations in εn are
small. We emphasize that this is quite different from a standard
mapping [28,29] of electronic degrees of freedom to classical
oscillators. This mapping gives an unrealistic complex classi-
cal Hamiltonian involving additional momentum couplings.
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Only in RCA do the equations (17) for coupled classical
electric dipoles reproduce the quantum amplitudes of coupled
transition dipoles; i.e., only in this approximation is Eq. (17) a
good approximation to Eq. (6). This is the major result of this
analysis.

IV. COMPARISON OF QUANTUM AND CLASSICAL
MECHANICS

In the following we will demonstrate the applicability of the
realistic coupling equation with two examples. The first one
is a linear chain of identical monomers and identical coupling
between neighboring monomers. Writing Vnm = V and taking
only nearest-neighbor coupling into account Eq. (6) reduces
to

i
dcn

dτ
= 1

2
[cn−1(τ ) + cn+1(τ )]. (22)

Here the dimensionless time τ = (2V/h̄)t has been introduced.
One can show that the solution of these equations with
initial condition cn(0) = δn0 are just the Bessel functions
cn = Jn(2V t/h̄) exp(inπ/2). Then, beginning on monomer
zero, the excitation probability of monomer n is

Pn(t) = J 2
n (2V t/h̄). (23)

This is the result obtained, e.g., in Refs. [17,30]. From the
analytic result

〈 n2 〉 =
∑

n

n2J 2
n (2V t/h̄) = (2V/h̄)2t2, (24)

one infers a constant “velocity” of electronic propagation
given by

√
〈 n2 〉/t = 2V/h̄. Hence in this simple model the

transport of electronic energy is fully coherent. Note that,
in nearest-neighbor coupling, the scaled time h̄/(2V ) is the
natural time unit since it is just the mean time of EET from one
monomer to its neighbors. A detailed study of this coherent
quantum transfer is given in Ref. [17]. Within the RCA the
classical equations predict identical coherence and constant
velocity of propagation. We have tested the validity of the
RCA by performing exact numerical evaluation of the full
classical equations Eq. (7) and Eq. (8) for this case of identical
monomers and nearest-neighbor interaction. P class

n (τ ) for the
classical energy propagation along a chain of 19 monomers
are compared to the quantum Bessel function prediction in
Fig. 1 where results for two different coupling strengths are
shown. One sees [Fig. 1(a)] that for a small value 1/40
of the parameter V/ε, nevertheless one that is typical for
photosynthesis, the exact classical probability that energy
resides on a given monomer at a given time is indistinguishable
from the quantum Bessel function result. Even for V/ε =
1/6, which is unrealistically large, one sees [Fig. 1(b)] that
the classical result still follows closely the envelope of the
quantum result, although some deviations are beginning to
appear. Hence, for realistic coupling, these numerical results
fully justify our analytic approximation leading to identity of
classical and quantum EET.

In the previous example of a linear chain all the nearest-
neighbor coupling strengths and transition energies have been
taken to be equal. To demonstrate that the classical and
quantum results also coincide in more general cases, we have
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FIG. 1. (Color online) The probability as a function of time in
units of h̄/2V of excitation of monomer n for a linear chain. Blue
(dotted line): quantum result, red (solid line): classical result. Left
figures for V/ε = 1/40 and right figures for V/ε = 1/6.

calculated energy transfer dynamics for an aggregate where
the coupling elements and transition energies correspond to
those usually assumed for the Fenna-Matthews-Olson (FMO)
complex [31]. Coupling to the environment is neglected.
The complex consists of seven monomers, and we have
calculated the probability that excitation, starting localized on
one monomer, has reached other monomers at later times.
Typical results are shown in Fig. 2 for excitation initially
localized on monomer 1. Since monomer 1 couples strongly to
monomer 2, only the probabilities for these two monomers are
of the same order. Also shown is the much lower probability
of exciting monomer 3. The probabilities of excitation of other
monomers are not shown, but the agreement between quantum
and RCA results is equally good. The left column shows results
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FIG. 2. (Color online) Time-dependent electronic occupation of
monomer 1 (top), monomer 2 (middle), and monomer 3 (bottom) in
the case of the FMO parameters. Initially the excitation is localized
on monomer 1. The right column shows results where the transition
energy is arbitrarily decreased by 12 000 cm−1.
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using realistic FMO couplings and transition energies quoted
in Ref. [31]. One sees an oscillatory motion of excitation
but most important, the classical and quantum results are
indistinguishable and appear as a single curve. In the right
column the transition energies have been artificially reduced
by 12 000 cm−1 so that they become similar to the coupling
energies. Then the RCA is no longer valid, and classical results
(red, solid line) are not identical to quantum ones (blue, dotted
line), although even in this case the overall agreement is still
very good. Similar agreement has been found for all other
monomers and for different initial conditions.

What is important here is not to infer that, since the
quantum result agrees with the classical, there is no quantum
entanglement. Rather, it is the classical amplitudes and phases
that mimic this entanglement. For the one-exciton manifold of
pure states considered here, entanglement is expressed simply
by the possibility to write the wavefunction, or parts of it, in a
single product form or not. A quantitative measure of the entan-
glement between sites i and j is the concurrence [32], which
in the present situation is simply proportional to the matrix ele-
ments of the corresponding density matrix, i.e., |ρij | = |c∗

i cj |.
As an example, for the linear chain we have the analytic result
|ρij (t)| = |Ji(2V t/h̄)Jj (2V t/h̄)| describing the development
of entanglement in time. Note, however, that the classical
complex amplitudes will lead in RCA to exactly the same
result. Indeed, quite generally we find that the agreement

between quantum and RCA classical complex amplitudes,
which determines the coherence, is equally close as for the
population comparisons shown in the figures.

To summarize, the question as to whether quantum me-
chanics has an effect on EET on molecular aggregates appears
from the results presented here to be answered with a
definite “no.” One can conclude that the entanglement in the
quantum case leads to no essential change from the coherence
characteristics of classical electronic energy transfer. The
results presented above are obtained by neglect of the influence
of an environment. We have also performed calculations
including dephasing processes in the quantum and classical
equations and found similar good agreement. Also, in a
recent paper, Zimanyi and Silbey [33] have studied the related
problem of energy transport between just two monomers of
differing character in the presence of environmental effects.
They show also in this case that a purely classical model leads
to the same energy transfer probability as the quantum result.
We conclude that some care must be taken when attributing
coherence in energy transfer as due to quantum mechanical
effects.
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