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Communication-induced multistability and multirhythmicity in a synthetic multicellular system
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Traditionally, the main role of cell-to-cell communication was thought of as synchronizing a population of cells,
thereby coordinating cellular behavior. Here we show that cell density, which quantifies cellular communication,
can induce multistability and multirhythmicity in a synthetic multicellular system, where individual oscillators
are a combination of repressillator and hysteresis-based oscillators and are coupled through a quorum-sensing
mechanism. Specifically, for moderately small cell densities, the coupled system can exhibit multistability
including stable homogenous and inhomogeneous steady states. For moderately large cell densities, it has the
potential to generate multirhythmicity including multimode oscillations such as an in-phase periodic solution,
antiphase periodic solution, asymmetric periodic solution, mixed-mode oscillations, coexistence of periodic
orbits of several different modes, and bursting oscillations such as periodic bursting, torus quasiperiodic bursting,
and chaotic bursting. Such versatility of cell-to-cell communication would be beneficial for cells or organisms to
live in diversely changeable environments.
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I. INTRODUCTION

Cell-to-cell communication (CCC) is omnipresent in bio-
logical systems ranging from prokaryotes to eukaryotes, and
from plants to animals and even to humans [1–5]. In nature,
communication is crucial for the physiological functions of
diverse organisms; e.g., in bacteria, cells use so-called quorum
sensing to communicate with each other through signaling
molecules that are released into the cellular environment. By
sensing the accumulation of these molecules, bacteria can
gauge cell density and coordinate their behavioral response,
consequently leading to the formation of various cellular
patterns [6]. During development in Drosophila, intercellular
signaling combines with spatial signal gradient sensing for
the formation of vein structure on the wing [7], where a
well-defined multicellular pattern emerges from the controlled
action of individual cells. In a nervous system, CCC links
together a wide variety of cells essential to the functioning of
the nervous system within a complex organism, where activity-
dependent adenosine-triphosphate (ATP) release by nervous
cells acts as an extracellular signal detected by purinergic
membrane receptors that modulate intracellular calcium and
cyclic adenosine 3′, 5′-monophosphate (AMP) [8]. In each
case, CCC plays a role of coordinating population behavior
can lead to the formation of a certain cellular pattern [9–11].

CCC systems have attracted great attention for use in
synthetic circuits based on genetic components from the
virus bacteriophage λ combined with those from the quorum-
sensing system. This is mainly because synthetic gene regu-
latory networks have the potential to enhance our knowledge
of cellular processes, on the one hand, and can encourage us
to study the design principles of natural systems, on the other.
Synthetic networks are also able to display the role of CCC
in coordinating multicellular behavior. For example, Garcia-
Ojalvo et al. [12], showed, by designing a biologically feasible
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multicellular system, viz., repressilators coupled by quorum
sensing, that a diverse and noisy community of interacting
repressilators can self-synchronize in a robust way, leading to a
substantially improved global rhythmicity in this multicellular
system. A similar example by McMillen et al. [13] proposed
another synthetic gene regulatory network in E. coli, which
combines the following two features: the system acts as a
relaxation oscillator and uses an intercell signaling mechanism
to couple individual oscillators. Consequently, the proposed
coupling scheme can lead to synchronous behavior across a
population of cells, which is achieved through the so-called fast
threshold modulation dominant mechanism. Except for such
a synchronization function, CCC has other functions; e.g., to
study population control and regulated killing, You et al. [14]
built and characterized a “population control” circuit that
autonomously regulates the density of an E. coli population.
This circuit can set a stable steady state in terms of cell density
and gene expression, which is easily tunable by varying the
stability of the CCC signal. For more relevant research works,
see a recent review paper [15] (including some of references
therein), where You et al. discussed the dynamic properties
of CCC modules, how they can be engineered for synthetic
circuit design, and applications of these systems.

We notice that most of the previous relevant works mainly
emphasize the role of CCC in synchronizing a population
of cells. A natural question is: Can cellular communication
induce new dynamics of a multicellular system? The answer
is yes; e.g., Basu et al. [11] showed that by fusing different
fluorescent proteins as outputs of network variants, an initially
undifferentiated “lawn” of receivers was engineered to form
a bull’s eye pattern around a sender colony. Other patterns,
such as ellipses and clovers, were also observed by placing
senders in different configurations. A more interesting example
is that of Ullner et al. [16,17], who demonstrated multistability
and clustering in a population of repressilators versus phase-
repulsive CCC, where the size of coupling strength (i.e., cell
density) plays a key role. Recently, we showed that CCC
combined with combinatorial regulation can induce several
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dynamic patterns [18,19]. In addition, CCC schemes can even
be used to create whole-cell density sensors in biology [20,21].
In spite of this experimental or theoretical endeavor, functions
of CCC remain to be fully explored.

This paper further addresses this issue from the view-
point of dynamics and shows the versatility of CCC in
coordinating population behavior. For this, we consider a
synthetic multicellular system, where the single oscillator
is a combination of a repressillator and a hysteresis-based
oscillator, and communication between cells is based on
the quorum-sensing mechanism. Such a so-called composite
oscillator, which was initially proposed by Yang et al.
[22], combines two distinct mechanisms into one regulatory
network so that only two parameters, the strength of an
additional regulatory connection and the timescale separation
for one of the variables, control the transition from one mech-
anism to the other. We demonstrate that cell density, which
quantifies cellular communication, can induce multistability
and multirhythmicity in coupled composite oscillators. More
precisely, small cell densities can make the coupled system
exhibit monostability, bistability, or multistability including
stable homogenous and inhomogeneous steady states along
the route to oscillation death, whereas moderately large cell
densities can induce multirhythmicity including multimode
oscillations such as in-phase period-1 oscillation, antiphase
period-2 oscillation, asymmetric period-2 oscillation (see
the following explanations), coexistence of periodic orbits
with different oscillation modes such as coexisting in-phase
period-1 oscillation and antiphase (or asymmetric) period-2
oscillation, and bursting oscillations such as periodic bursting
oscillation, quasiperiodic bursting oscillation, and even chaos.
These detailed results indicate that CCC can not only play a
role of synchronization but also induce complex yet interesting
dynamical phenomena that have not yet been observed in a
system of interacting oscillators with a standard coupling (e.g.,
linear coupling).

II. MODEL

As is well known, the repressilator is an engineered circuit
at the transcriptional level, where three repressors [U (TetR),
V (CI), and W (LacI)], which are products of three genes
[u (tetR), v (cI), and w (lacI), respectively], mutually repress
in a cyclic fashion [23] [see Fig. 1(a)]. This circuit can
generate self-sustained oscillations. Another synthetic circuit
is the hysteresis-based relaxation oscillator [24] [see Fig. 1(b)],
where the oscillation mechanism is based on driving a bistable
subnetwork of mutually repressing proteins U and V through a
hysteresis range of the autoinducer W in concentration. In this

FIG. 1. (Color online) Schematic diagram for three genetic os-
cillators: (a) repressilator; (b) hysteresis-based relaxation oscillator;
(c) composite oscillator.

circuit, the autoinducer is controlled under a negative feedback
from the hysteretic subnetwork, and its dynamics can be made
slow by introducing a small parameter in the W equation. As
a result, the system generates a relaxation-type oscillation.
These two oscillator networks share some similar motifs,
which can make it possible to combine the two systems with
a few changes. Thus, we can construct a so-called composite
oscillator (see Ref. [22] for details); see Fig. 1(c).

To establish our model to be studied, we integrate all
biological processes such as transcription, translation, pro-
moter binding, etc., into a single step and use the standard
quasi-steady-state approximation (QSSA) assumption that
dynamics of mRNA molecules is much faster than that of
proteins, for simplification. In addition, we define rescaled
concentrations as our dynamical variables, and introduce a
factor in the W equation into the repressilator so as to be
able to slow down dynamics of this component and match the
timescale separation used in the relaxation oscillator. Then the
resulting equations can be expressed as

dU

dt
= α1

1 + V n
− U,

dV

dt
= α1

1 + Wn
+ α2

1 + Un
− V, (1)

dW

dt
= ε

(
α1

1 + Un
− W

)
,

where dynamics of each component is governed by its
synthesis and degradation, which correspond, respectively,
to nonlinear functions and negative terms in the right-hand
side of Eq. (1). The parameter n is the Hill constant, the
dimensionless parameters α1 and α2 represent the maximum
regulation rates, and the parameter ε describes timescale
separation. It has been shown that relaxation-type oscillations
occur at 0 < ε � 1 and in a finite interval of the large α2,
whereas oscillations generated by the original repressilator
mechanism do at α2 = 0 and with no timescale separation
(i.e., ε = 1). Therefore, the composite oscillator contains both
the relaxation-type oscillation mechanism and the repressilator
mechanism as its limiting cases, where two key parameters
control both oscillatory mechanisms: the strength of U to V
connection α2 and the parameter of timescale separation ε.
In addition, there exists a single oscillatory region in the
(α2, ε) phase plane, where the two mechanisms support each
other [22].

Next, we introduce a multicellular system based on the
above composite oscillator in combination with a quorum-
sensing mechanism. In the standard manner of describing
such a communication mechanism [12,13,18,19,22,25], small
signaling molecules are assumed to diffuse into the inside of
each cell in a population and regulate the expression of the
target gene. Thus, there are two different kinds of dynamics
mechanisms for the signaling molecules: the intracellular
signaling molecules that are affected by synthesis, degradation,
and diffusion toward or from the intercellular medium, and
the extracellular signaling molecules that generally undergo
a mixing process in the cellular environment. Let Wi and
We represent the signaling molecule concentrations within the
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inside of cell i and in the cellular environment, respectively.
Then the resulting system can be governed by

dUi

dt
= α1

1 + V n
i

− Ui,

dVi

dt
= α1

1 + Wn
i

+ α2

1 + Un
i

− Vi, (2)

dWi

dt
= ε

(
α1

1 + Un
i

− Wi

)
+ η (We − Wi) ,

where i = 1,2, . . . ,N with N being the total number of
cells; the diffusion coefficient η describes the permeability
of the cell membrane to the signaling molecules. In the
QSSA [12,13,18,19,25], we can write We = Q

N

∑N
i=1 Wi ,

where Q represents cell density, varying between 0 and 1
in a controlled way in a chemostat experiment by changing
the total chemostat volume [12]. Our interest is in analyzing
what kinds of dynamics the parameter Q can induce if the
individual systems are in oscillatory states. In our analysis,
Matlab and the Xppaut package [26,27] are used, and α1 =
15, α2 = 3.3, n = 3, and η = 2 are fixed throughout this
paper.

It should be pointed out that the value choice of parameters
α1, α2, n, and η does not change our qualitative result if
the single system is guaranteed to generate an oscillation.
We will mainly examine two typical cases of ε: large (e.g.,
ε = 0.8) and small (e.g., ε = 0.4) values, and see how cell
density influences the dynamics of a population of composite
oscillators.

III. RESULTS

To see how the parameter Q affects collective dynamics
of a multicellular system described by the above model (2),
we consider only the N = 2 case for clarity and simplicity
(however, the Appendix shows some results for N > 2, which
indicate that a larger N does not fundamentally change our

qualitative conclusion that CCC can induce multistability
and multirhythmicity). Numerical simulations show that the
bifurcation diagram of component W versus cell density Q is
basically similar when the timescale separation parameter ε is
either in the range from 0.5 to 1 (data are not shown) or in
the range from 0 to 0.5 (data are also not shown). Moreover,
in the former case, the dominant mechanism for oscillations
of the uncoupled system can be viewed as the repressilator,
whereas in the latter case, the dominant mechanism can
be viewed as the relaxation oscillator. Therefore, without
loss of generality, we will consider only two cases: ε = 0.8
and ε = 0.4. Two bifurcation diagrams of W versus Q,
which correspond to these two values of ε, are shown in
Figs. 2(a) and 2(b) (their interpretations will be later given),
respectively. In what follows, we will adopt brevities for the
explanation of results: PB for pitchfork bifurcation, LP for
limit point (i.e., saddle-node point), HB for Hopf bifurca-
tion, PD for period-doubling bifurcation, and TB for torus
bifurcation.

Here we simply interpret why the cell density parameter Q

can lead to the bifurcation diagrams shown in Fig. 2 . Note that
the third equation of Eqs. (2) can be rewritten as the following
standard coupling form:

dWi

dt
= ε

(
α1

1 + Un
i

− Wi

)

−η(1 − Q)Wi + Qη

N

N∑
j=1

(Wj − Wi). (3)

In this form, the uncoupled system consists of three interrelated
equations: the first two equations of Eqs. (2) and Eq. (3)
without the coupling term. In general, the coupling term
in a standardly coupled system can have a larger influence
on collective behaviors (e.g., stability of synchronous states)
and less influence on internal dynamics of the single system.
Therefore, the cell density parameter Q would greatly affect

FIG. 2. (Color online) Two bifurcation diagrams of component W versus cell density Q in two coupled composite oscillators: (a) ε = 0.8
and (b) ε = 0.4. In both diagrams, thick solid lines stand for two different stable homogeneous steady states; thick long dashed lines for
stable inhomogeneous steady states; thin solid lines for unstable steady states; thick dash-dotted lines for stable in-phase period-1 oscillations;
thin dash-dotted lines for unstable period-1 oscillations; thick dotted lines for stable antiphase period-2 oscillations; and thin dotted lines for
unstable antiphase period-2 oscillations. Note that a segment of the thick solid line for Q ∈ (0,0.45) in (b) is omitted for better exhibition. See
the main text for the meanings of abbreviated symbols in the two diagrams.
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dynamics and even can induce new dynamics of the currently
uncoupled system since it depends obviously on Q [see
Eq. (3)].

A. Multistability

First, we point out that the individual system can exhibit
oscillations for arbitrary ε ∈ (0,1) and fixed α1 = 15, n = 3,
and η = 2 as long as α2 is appropriately chosen (data are not
shown here). In particular, it is oscillatory for both α2 = 3.3
(which will be fixed in the following analysis) and ε = 0.8
or 0.4. Then, we mainly examine two cases of ε: large (e.g.,
ε = 0.8) and small (e.g., ε = 0.4) values, and see how the cell
density parameter Q influences steady states of the coupled
system and their stability while the individual system is in an
oscillatory state.

For ε = 0.8, we observe from Fig. 2(a) that because of two
subcritical pitchfork bifurcations at PB1 and PB2, the coupled
system has two different stable homogeneous steady states if Q

locates, respectively, in an interval bounded by the W axis and
PB1 and in another interval bounded by PB2 and HB (see upper
and below thick solid curves). Here, by homogeneous steady
state (HSS), we mean that two corresponding components in
the coupled system take the same value. With the increase
of Q from the value corresponding to LP1, saddle-node
bifurcations occurring at two limit points, LP1 and LP2, lead to
the appearance of stable inhomogeneous steady states, which
can persist in the interval bounded by LP1 and LP2 (see
long dashed curves). Here, by inhomogeneous steady state
(IHSS), we mean that two corresponding components in the
coupled system take different values. Then, when Q is beyond
the value corresponding to LP2, the IHSS disappears but the
low HSS still persists even until other complex oscillatory
behaviors arise (see low thick solid curve). In addition, we
observe the coexistence of two stable steady states: IHSS
and upper or lower HSS (see thick long dashed and thick
solid curves between LP1 and PB2 or between PB1 and LP2),
or the coexistence of three stable steady states: two HSSs
and one IHSS (see thick solid and thick long dashed curves
between PB2 and PB1) when Q takes moderately small values.
Specifically, the coupled system has the unique HSS and
is therefore monostable if Q is in the interval bounded by
the W axis and LP1, has both a HSS and an IHSS, and is
therefore bistable if Q is in the interval bounded by LP1 and
PB2 or by PB1 and LP2, and displays multistability due to
the coexistence of three stable steady states: two HSSs and
one IHSS, if Q is in the interval bounded by PB2 and PB1.
The above analysis indicates that the coupled system can
undergo transitions from monostability to bistability and to
multistability if Q increases from 0 to PB1 through LP1 and
PB2, and returns to a monostable state via a bistable state if
Q is beyond the value corresponding to PB1. Note that in the
coexistence case of stable steady states, to which state the
coupled system ultimately evolves depends on the choice of
initial conditions.

For ε = 0.4, the situation is somewhat different in contrast
to ε = 0.8 [compare Fig. 2(b) with Fig. 2(a)]. The main
differences are that the range of Q for the unique stable
steady state in the case ε = 0.8 is currently enlarged, and
one of two homogeneous steady states in the case ε = 0.8 has

FIG. 3. (Color online) Distributed regions of stable steady states
in the (Q, ε) phase plane. The curves are, respectively, the loci of five
bifurcation points marked in Fig. 2: LP1, PB2, PB1, HB, and LP2,
which partition the whole parameter region into six subregions with
each corresponding to one of the emerging HSS and IHSS or their
different combinations: R1 for HSS1; R2 for HSS1 and IHSS; R3 for
HSS1, HSS2, and IHSS; R4 for HSS2 and IHSS; R5 for IHSS; and
R6 for HSS2.

currently disappeared [compare thick solid curves in Fig. 2(a)
and Fig. 2(b)].

In both cases, the coexistence of stable steady states follows
two kinds of bifurcations: PB and LP, which have been marked
in Fig. 2. It is worth noting that the emergence of stable steady
states in the coupling case implies oscillation death in the
individual system. In addition, some of the stable steady states
can also coexist with some periodic orbits (data are not shown
here but are partially mentioned in the caption of Fig. 2).

Next, we demonstrate distributed regions of stable steady
states in the (Q, ε) parameter phase plane (see Fig. 3), which
can further enhance our understanding of communication-
induced multistability (including bistability). First, Fig. 3
indicates that ε also has important influence on the formation
of stable steady states and their stability in the coupled
system. Second, the united effect of ε and Q can lead to the
situation that stable steady states are distributed mainly in
six subregions, denoted by R1–R6. There exist HSS1 [where
the subscript 1 represents a high state in the (U ,V ) state space]
in R1, HSS1 and IHSS in R2, HSS1, HSS2 and IHSS in R3
[where the subscript 2 represents a low state in the (U ,V ) state
space], HSS2 and IHSS in R4, IHSS in R5, and HSS2 in R6.
It should be pointed out that the R2 and R5 regions would
contain other types of attractors such as oscillations, which
can moreover coexist with both IHSS and HSS1 or with IHSS
(see below for more details).

B. Multirhythmicity

Let us introduce or explain several terms used in the
following analysis before presenting our results. The period-1
oscillation means that there are one maximum and one mini-
mum, whereas the period-2 oscillation means that there are two
local maxima and two local minima [28]. By multirhythmicity,
we mean the following three classes of behaviors: multimode
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FIG. 4. (Color online) Cell density-induced multimode oscillations in two coupled composite oscillators with ε = 0.8: (a)–(b) two modes
of in-phase period-1 oscillations for Q = 0.42 and Q = 0.93; (c)–(d) two modes of period-2 oscillations with a shifted phase for Q = 0.47
and Q = 0.91; (e) asymmetric period-2 oscillation for Q = 0.80; (f)–(j) five types of mixed-mode oscillations (MMOs): (f) symmetric 121211

MMO for Q = 0.766, (g) asymmetric 1212 MMO for Q = 0.73; (h) asymmetric 12 MMO for Q = 0.745, (i) symmetric 12111213 MMO for
Q = 0.76, and (j) symmetric 1113 MMO for Q = 0.78.

oscillations, coexistence of different-mode oscillations, and
bursting oscillations. Multimode oscillations can further be di-
vided into symmetric and asymmetric oscillations according to
characteristics of oscillation amplitude, but also can further be
divided into period-1, period-2, and mixed-mode oscillations
according to the wave form of oscillation. Here, by symmetric
oscillation we mean that two subsystems oscillate with the
same amplitude but may allow a phase difference between
them (in particular, no phase difference corresponds to in-
phase oscillation, whereas the half-period phase difference
corresponds to antiphase oscillation). In contrast, asymmetric
oscillation means that there are differences in amplitude be-
tween two oscillators, i.e., the oscillation exhibits asymmetry
in amplitude. Mixed-mode oscillations are a complex type
of dynamics, which can be a mixture of small-amplitude
oscillations and large-amplitude (relaxation) excursions. In
general, a mixed-mode periodic orbit can be characterized by
the so-called Farey sequence of the form L

k0
0 L

k1
1 . . . L

kj

j , which
encodes the number of large-amplitude excursions (denoted by
Lj ) and the number of small-amplitude oscillations (denoted
by kj ), respectively [29]. We point out that such a kind
of oscillation has been observed in both experiments and
theoretical models involved in neuroscience, chemistry, and
so on [29–31]. Finally, bursting oscillations can further be

divided into three cases: periodic, quasiperiodic, and chaotic
bursting. We point out that these kinds of bursting oscillations
have been observed in neural activity, pancreatic β cells, and
metabolic or genetic control networks [32–34].

Now we will focus on examining how the cell density
parameter Q leads to multirhythmicity. First, we observe from
the above bifurcation diagrams that Q can make the coupled
system undergo a Hopf bifurcation, but its location depends
on the size of the timescale separation parameter ε; e.g.,
it is increasing with the decrease of ε [compare Fig. 2(a)
with Fig. 2(b)]. However, the behavior produced through
the bifurcation is different when ε takes a large value and
a small value, respectively: The former makes the coupled
system generate a stable limit cycle, whereas the latter makes
it generate an unstable limit cycle. Second, a new branch
beginning from PD1 emerges on each of two branches of the
original periodic orbit produced through the Hopf bifurcation,
forming a period-2 limit cycle (see the change of Q from
small to large values in Fig. 2). For example, for ε = 0.8, the
coupled system goes through torus bifurcation at TB, pitchfork
bifurcation at PB4, and saddle-node bifurcation at LP3 in
order and achieves a stable antiphase period-2 limit cycle. In
contrast, for ε = 0.4, it undergoes pitchfork bifurcation at PB4

and saddle-node bifurcation at LP3 in order, and achieves a
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FIG. 5. (Color online) Observed coexisting attractors in the two coupled composite oscillators with ε = 0.4: (a)–(b) coexisting in-phase
period-1 and asymmetric period-2 oscillations for Q = 0.85; (c)–(d) coexisting in-phase period-1 and antiphase period-2 oscillations for
Q = 0.86.

stable antiphase period-2 limit cycle. Furthermore, on each of
two new branches bifurcated from PD1 until LP3, the coupled
system undergoes more complex bifurcations and produces
a stable asymmetric period-2 limit cycle between PD4 and
PB4 for ε = 0.8 or between PD3 and PB4 for ε = 0.4. Third,
bifurcations are more complex in the case of small ε values
than those in the case of large ε values, implying that the
relaxation oscillator is more easily influenced by CCC than
the repressilator. In particular, there exists a certain range of
Q such that several different behaviors can coexist, but the
coexistence mode (e.g., coexisting steady states and periodic
orbits, or coexisting periodic orbits) is more complex in the
latter case than in the former case.

Next, we show more details on communication-induced
multirhythmicity by distinguishing three cases: multimode
oscillations, coexistence of different-mode oscillations, and
bursting oscillations.

First, Fig. 4 shows several interesting but typical multi-
mode oscillations including in-phase oscillation, antiphase
oscillation, and several types of mixed-mode oscillations.
Specifically, for moderately small or large Q, the coupled
system can exhibit two modes of in-phase period-1 oscillation;
see Figs. 4(a) and 4(b). Moreover, the period of the former
is smaller than that of the latter, indicating that the cell density
can change oscillation period. In addition, the oscillation
with this mode is actually the usual synchronization observed
in a system of standardly coupled oscillators. Similarly, for
moderately small or large Q, we can observe two modes
of antiphase period-2 oscillation; see Figs. 4(c) and 4(d). In
these modes, the oscillation is characterized by two different

amplitudes, small and large, but the higher peak between two
oscillators differs by half a period. When Q decreases from
a large value, an asymmetric periodic oscillation can arise,
e.g., an asymmetric period-2 oscillation appears for Q = 0.8;
see Fig. 4(e). With the further decrease of Q, several types of
mixed-mode oscillations can be observed, e.g., 121211 state for
Q = 0.766, 1212 state for Q = 0.73, 12 state for Q = 0.745,
12111213 state for Q = 0.76, and 1113 state for Q = 0.78;
see Figs. 4(f)–4(j), respectively. Such mixed-mode oscillations
have been observed in other dynamical systems [29–31].

Next, we show the coexistence of periodic oscillations with
different modes. As an example, Fig. 5 shows the coexistence
of two different types of oscillations: in-phase period-1 and
asymmetric period-2 oscillations for ε = 0.4 and Q = 0.85,
and in-phase period-1 and antiphase period-2 oscillations for
ε = 0.4 and Q = 0.86. In addition, there are other types of
coexistence phenomena, e.g., coexisting IHSS and antiphase
period-2 oscillation for ε = 0.7 and Q = 0.49, coexisting
IHSS and in-phase period-1 oscillation for ε = 0.4 and Q =
0.82, and coexisting IHSS, in-phase period-1 oscillation and
asymmetric period-2 oscillation for ε = 0.4 and Q = 0.84
(data not shown). Note that three points, (Q,ε) = (0.49,0.7),
(0.82,0.4), and (0.84,0.4), are located in the R5 region of
Fig. 3. More complex coexistence phenomena are possible in
this region.

Finally, we simply demonstrate an interesting kind of
phenomenon: communication-induced bursting oscillations,
which are often observed in neuron activity (see Ref. [32]
and references therein). Figure 6 shows three types of burst-
ing oscillations: periodic bursting [Fig. 6(a)], quasiperiodic
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FIG. 6. (Color online) Three observed modes of bursting oscillation in the two coupled composite oscillators: (a) periodic bursting oscillation
when ε = 0.6 and Q = 0.664; (b) quasiperiodic bursting oscillation when ε = 0.8 and Q = 0.49; (c)–(d) chaotic bursting oscillation when
ε = 0.8 and Q = 0.60, where (c) is the phase diagram and (d) shows the maximal Lyapunov exponent λmax versus cell density Q.

bursting [Fig. 6(b)] and chaotic bursting [Fig. 6(c)–6(d)].
The occurrence of quasiperiodic bursting oscillation is due
to torus bifurcation. In Fig. 6(c)– 6(d), to verify the existence
of chaotic attractors, we also show the dependence relationship
of the maximal Lyapunov exponent(λmax) on cell density Q.
Apparently, there is a small interval of Q centered at Q =
0.6 such that λmax is positive, implying that the coupled
system is indeed chaotic. However, at other ranges of Q,
the maximal Lyapunov exponent drops to zero. In addition,
numerical simulations show that the chaotic regime contains
some periodic windows, which are actually mixed-mode
oscillations; see Figs. 4(f)– 4(j). Moreover, the mechanism
of generating chaos is through a quasiperiodic path (data not
shown).

IV. CONCLUSION AND DISCUSSION

For a multicellular system, communication between cells is
commonly seen, in particular in bacteria. Such communication
not only is crucial for the physiological functions of diverse
organisms from the viewpoint of biology but also plays
a key role in coordinating population behavior from the
viewpoint of dynamics. In addition, its role is also reflected

in antiquorum-sensing strategies present in both bacteria and
eukaryotes, which are apparently designed to combat bacteria
that depend on CCC for successful adaption to particular
niches [1]. However, because of complexity in communication
mechanisms and functions, the functions of CCC remain
to be fully understood. Here we have from the viewpoint
of dynamics shown the versatility of CCC in coordinating
population behavior by considering a synthetic multicellular
system, which is composed of composite oscillators coupled to
a quorum-sensing mechanism. It can synchronize a population
of composite oscillators, on the one hand, and can simul-
taneously induce complex dynamical behaviors including
multistability and multirhythmicity as well as coexistence as
shown in this paper, on the other. Such versatility would be
beneficial as cells face diversely changeable environments.

That we have selected the composite oscillator for investi-
gation is based mainly on the fact that such an oscillator can
combine two typical oscillation mechanisms: the repressilator
and the relaxation oscillator. Therefore, we can show as many
as possible functions of CCC. Moreover, according to our
investigation, we have actually shown the versatility of CCC in
the two typical-oscillation cases since the repressilator and the
relaxation oscillator can be taken as the limit of the composite
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oscillator in a sense. In addition, we have shown that CCC
has more influence in the relaxation oscillator case than in
the repressilator case, but our previous work showed that the
former is less sensitive (or more robust) to noise than the
latter [35].

However, it should be pointed out that our model is
simplified in several aspects. First, we neglected some detailed
biological processes such as transcription, translation, and
promoter binding, and instead integrated them into a single
step. In particular, our model did not consider the effect of
combinatorial regulation that can be described by several kinds
of cis-regulatory input functions [36–38]. In fact, it has been
shown that the combinatorial regulation also has important
influence on the formation of cellular patterns [18,19]. Second,
to simplify our multicellular system model, we adopted the
mean-field approximation for the signaling molecule concen-
trations in the extracellular environment. Third, we neglected
some biological factors such as cellular diversity, time delays
existing during signaling transmission between cells, and
stochastic fluctuations, which would also have significant
influence on dynamics of coupled systems. In fact, some
studies including experimental and theoretical works have
shown some influence [39–44]. Thus, our next work will focus
on effects of ways of communication (e.g., bidirectional or
unidirectional communication), various biological processes,
biological factors, and so on.
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APPENDIX

1. In the case N > 2

In the main text, we have shown that cell-to-cell com-
munication can induce multistability and multirhythmicity in
the case of two coupled oscillators. Here we will show that
the number of oscillators does not change this qualitative
conclusion. For this, we perform a direct numerical simulation
for a middle-scale coupled system (e.g., the number of
oscillators is set as N = 20) and compare the results in the
case N = 2 with those in the case N = 20. In simulation,
we fix a set of parameter values, where all the parameters
except for the cell density Q ∈ [0,1] are given in the main
text, and randomly generate initial values of three proteins U,
V, and W using a uniform distribution in the range [0,2] so as
to obtain 200 sets of time series data for one component of
coupled oscillators in the N = 2 and 20 cases, respectively.
Then we count the number of each of three classes of stable
attractors: homogeneous steady state (HSS), inhomogeneous
steady state (IHSS), and oscillation based on these data for both
cases. Thus, we are able to detect each stable attractor with a
significant attracting basin and further obtain the dependence
of the number of stable regions on Q (see Fig. 7, where ε = 0.8
is fixed).
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FIG. 7. (Color online) Shown is that the system size has only
finite influence on the distribution of dynamical regions in the case
ε = 0.8. When the cell density changes in the (0,1) interval, there
are three dynamical regions: HSS, IHSS, and oscillation, in each
case N = 2 (a) and N = 20 (b), but the boundary of these regions
is somewhat different between the two cases (compare boundaries
of the IHSS region in two diagrams), implying that the system size
influences only coexistent regions but does not alter the qualitative
conclusion that cellular communication can induce multistability and
multirhythmicity.

Comparing Fig. 7(a) with Fig. 7(b), we find that the
two cases share basically the same dynamical characteristics:
Each coupled system can exhibit monostability due to the
existence of HSS when Q is appropriately small, multistability
(including bistability) due to the coexistence of HSS and
IHSS when Q is suitably large, and oscillation when Q is
large enough, but also there are some differences between two
cases. One difference is that increasing the system size from
N = 2 to 20 can enlarge the stable region for IHSS, and both
oscillation and IHSS can coexist. Another difference is that in
the coupled system with N = 20 can have parameter regions
where multiple IHSSs can coexist, mainly due to the fact
that N coupled oscillators have N − 1 different distributions
between the steady-state clusters. Specifically, consider some
component in the coupled system, e.g., Ui(i = 1,2, . . . ,N ).
Assume that mU are located at a higher concentration state
(denoted by mU ), whereas the remaining (N − m) U are at
a lower concentration state [denoted by (N − m)L], where
m can take a value between 1 and N − 1. We denote such
an IHSS mode as mU |(N − m)L. As an example, Fig. 8(a)–
(d) displays four coexisting modes of IHSSs with different
distributions for Q = 0.36: 10U |10L, 9U |11L, 8U |12L, and
7U |13L, respectively. Note that for different Q, IHSSs of
different modes can coexist (data not shown).

More numerical simulations show that the coupled system
with N = 20 and ε = 0.8 can exhibit communication-induced
multirhythmicity similar to that shown in Figs. 4 and 6,
including multimode oscillations, e.g., two modes of in-phase
period-1 oscillations [see Fig. 8(e) for one of them], two modes
of antiphase period-2 oscillations [see Fig. 8(f) for one of
them], and asymmetric period-2 oscillation [see Fig. 8(g)];
several types of mixed-mode oscillations, e.g., symmetric
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FIG. 8. (Color online) An example for communication-induced multistability and multirhythmicity in 20 coupled composite oscillators
with ε = 0.8: (a)–(d) four modes of coexisting IHSSs with different distributions for Q = 0.36: (a) 10U |10L, (b) 9U |11L, (c) 8U |12L,
(d) 7U |13L; (e)–(j) multimode oscillations: (e) in-phase period-1 oscillation for Q = 0.43, (f)–(g) antiphase period-2 oscillation and asymmetric
period-2 oscillation for Q = 0.9, (h)–(j) three types of MMOs: (h) symmetric 12111213 MMO for Q = 0.76, (i) asymmetric 1111 MMO for
Q = 0.82, and (j) asymmetric 1211 MMO for Q = 0.82; (k)–(l) two modes of bursting oscillations, where (k) corresponds to quasiperiodic
bursting for Q = 0.51, and (l) to chaotic bursting for Q = 0.6.

12111213 MMO for Q = 0.76 [see Fig. 8(h)], asymmetric
1111 MMO for Q = 0.82 [see Fig. 8(i)], and asymmetric 1211

MMO for Q = 0.82 [see Fig. 8(j)]; and bursting oscillation,
e.g., quasiperiodic bursting oscillation [see Fig. 8(k)] and
chaotic bursting oscillation [see Fig. 8(l)]. However, the
coupled system can also demonstrate the coexistence of
several periodic oscillations different from that in the case
N = 2, e.g., coexisting antiphase period-2 and asymmetric
period-2 oscillations for Q = 0.9, and coexisting asymmetric
1111 MMO and asymmetric 1211 MMO for Q = 0.82, which
have not been observed in the case N = 2 for all Q ∈ [0,1].
In addition, we also find many other periodic oscillation
modes and coexisting modes of periodic oscillations (data not
shown).

In summary, we have seen that increasing the number
of oscillators does not change the qualitative conclusion of

communication-induced multistability and multirhythmicity
but possibly leads to richer phenomena.

2. More results on the coexistence of several different behaviors

In the main text, we have shown some coexisting phenom-
ena. Here we show more coexisting phenomena. For clarity,
we examine several lines of the timescale separation parameter
in Fig. 3 and list some ranges of the cell density parameter
and the corresponding states, including the ranges for the
existence of stable steady states, in-phase period-1 oscillations,
antiphase and asymmetric period-2 oscillations, and those for
the coexistence of several different dynamical behaviors, as
follows:

(1) For ε = 0.8, HSS1 in (0,0.3036); HSS2

in (0.1813,0.4186); IHSS in (0.1493,0.4119);
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IPPOO in (0.4186,0.457)
⋃

(0.9089,1); APPTO in
(0.457,0.4798)

⋃
(0.8131,0.9145); and ASPTO in

(0.7873,0.8131).
(2) For ε = 0.7, HSS1 in (0,0.3901); HSS2

in (0.2905,0.4569); IHSS in (0.2376,0.5373);
IPPOO in (0.4569,0.4791)

⋃
(0.8787,1); APPTO in

(0.4791,0.4961)
⋃

(0.8159,0.8926); and ASPTO in
(0.7905,0.8159).

(3) For ε = 0.6, HSS1 in (0,0.4767); HSS2

in (0.4035,0.5019); IHSS in (0.3278,0.6638);
IPPOO in (0.5019,0.5124)

⋃
(0.8506,1); APPTO in

(0.5124,0.5239)
⋃

(0.8225,0.8759); and ASPTO in
(0.7977,0.8225).

(4) For ε = 0.5, HSS1 in (0,0.5633); HSS2

in (0.5212,0.555); IHSS in (0.4207,0.7736);
IPPOO in (0.555,0.5605)

⋃
(0.8259,1); APPTO in

(0.5605,0.5746)
⋃

(0.8345,0.868); and ASPTO in
(0.811,0.8345).

(5) For ε = 0.4, HSS1 in (0,0.65); IHSS
in (0.5173,0.8447); IPPOO in (0.8078,1);
APPTO in (0.8546,0.8791); and ASPTO in
(0.8346,0.8546).

Here the following abbreviated symbols are used: HSS for
homogeneous steady state; IHSS for inhomogeneous steady
state; IPPOO for in-phase period-one oscillation; APPTO
for antiphase period-two oscillation; ASPTO for asymmetric
periodic-two oscillation. The subscript 1 stands for a high state,
whereas the subscript 2 stands for a low state in the (U , V )
state space.

From the above list, we can find that there are intervals
of coexisting phenomena, e.g., the IPPOO can coexist with
APPTO in the interval (0.9089, 0.9145), and HSS1 can
coexist with HSS2 in the interval (0.1813, 0.3036) and with
IHSS in the interval (0.1493, 0.3036), for the fixed ε =
0.8. For other values of ε, there are some similar existing
phenomena.
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